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Abstract— Web services are software components accessible 
via Internet. Web services are defined independently from any 
execution context. A key challenge of Web service compositions 
is how to ensure reliable execution. Due to their inherent 
autonomy and heterogeneity, it is difficult to reason about the 
behavior of service compositions especially in case of failures. 
In this work, we propose an approach to formalize a model of 
Web services composition to check and ensure reliable 
execution. To achieve this, we propose a proof oriented 
approach for the formalization and verification of 
transactional behavior of web services composition using 
Event-B. 

Keywords-web service composition; Event-B; transactional 
web service;  proof;  verification. 

I.  INTRODUCTION  

Web services are emergent and promising technologies 
for the development, deployment and integration of 
applications on the internet. One interesting feature is the 
possibility to dynamically create a new added value service 
by composing existing web services, eventually offered by 
several companies. Due to the inherent autonomy and 
heterogeneity of web services, the guarantee of correct 
composite services executions remains a fundamental 
problem issue. An execution is correct if it reaches its 
objectives or fails properly according to the designer’s 
requirement or users needs. The problem, which we are 
interested in, is how to ensure reliable web services 
compositions. By reliable, we mean a composition where all 
the executions are correct. 

Some web services are used in a transactional context, 
for example, reservation in a hotel, banking, etc.; the 
transactional properties of these services can be exploited in 
order to answer their composition constraints and the 
preferences made by designers and users. However, current 

tools and languages do not provide high-level concepts for 
express transactional composite services properties. The 
execution of composite service with transactional properties 
is based on the execution of complex distributed transactions 
which eventually implements compensation mechanisms. A 
compensation is an operation the goal of which is to cancel 
the effect of other transaction that failed to be successfully 
completed. several transactions models previously proposed 
in databases, distributed systems, collaborative 
environments. In order to manage with this focus many 
specifications proposed to response to this aspects. WS-
Coordination [1], WS-AtomicTransaction [2] and WS-
BusinessActivity [3]. Many research in this field aiming for 
instance to guarantee that an activity is cancellable and / or 
compensable. The verification step will help ensure a certain 
level of confidence in the internal behavior of an 
orchestration. Several approaches have been proposed in this 
direction, based on work related to the transition system [4], 
process algebras [5], or the temporal theories [6]. 

Our work deal with the formal verification of the 
transactional behavior of web services composition. In this 
paper, we propose to address this issue using proof and 
refinement based techniques, in particular the Event-B 
method [7] used in the RODIN platform [8]. Our approach 
consists on a formalism based on Event-B for specifying 
composite service (CS) failure handling policies. This formal 
specification is used to formally validate the consistency of 
the transactional behavior of the composite service model at 
design time, according to users’ needs. We propose to 
formally specify with Event-B the transactional service 
patterns. These patterns formally specified as events and 
invariants rule to check and ensure the transactional 
consistency of composite service at design time. Most 
previous work is based on the model checking technique and 
does not support the full description of transactional web 
services. Refinement and proof techniques offered by Event-
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B method are used to explore it and in section 5 we discuss 
this approach. 

This paper is organized as follows. In Section 2, we 
introduce a motivating example. Section 3 presents the 
Event- B method, its formal semantics and its proof 
procedure and introduces our transactional CS model. In 
Section 4, we present how we specify a pattern-based of the 
transactional behavior using the Event-B. An overview of the 
validation methodology is given in Section 5.                                                              

II. MOTIVATING EXAMPLE  

In this section, we present a scenario to illustrate our 
approach we consider a travel agency scenario (Figure 1). 
The client specifies its requirement in terms of destinations 
and hotels via the activity “Specification of Client Needs” 
(SCN). After SCN termination, the application launches 
simultaneously two tasks “Flight Booking” (FB) and “Hotel 
Reservation” (HR) according to customer's choice. Once 
booked, the “Online Payment” (OP) allows customers to 
make payments. Finally travel documents (air ticket and 
hotel reservations are sent to the client via one of the services 
“Sending Document by Fedex” (SDF) ,”Sending Document 
by DHL” (SDD) or “ Sending Document by TNT” (SDT). 
To guarantee outstanding reliability of the service the 
designers specify that services FB, OP and SDT will 
terminate with success.  Whereas on failure of the HR 
service, we must cancel or compensate the FB service 
(according to his current state) and in case of failure of the 
SDF, we have to activate the SDD service as an alternative. 

The problem that arises at this level is how to check / 
ensure that the specification of a composite service ensures 
reliable execution in accordance with the designer’s 
requirements. To do so, the verification process should cover 
the composite service lifecycle. Basically, at design time the 
designer should respect the transactional consistency rules.  

SCN
SDD

SDT

SDF

OP

HR

FB

Activate SDD 

when SDF fail
Cancel or 

compensate FB 

when HR fail

 
Figure 1.  Motivating example 

III.  FORMALIZING TRANSACTIONAL COMPOSITE SERVICE 

WITH EVENT-B 

To better express the behavior of web services we have 
enriched the description of web services with transactional 
properties. Then we developed a model of Web services 
composition. In our model, a service describes both a 
coordination aspect and a transactional aspect. On the one 
hand it can be considered as a workflow services. On the 
other hand, it can be considered as a structured transaction 
when the services components are sub-transactions and 
interactions are transactional dependencies. The originality 

of our approach is the flexibility that we provide to the 
designers to specify their requirements in terms of structure 
of control and correction. Contrary to the ATMs [9], we start 
from designers specifications to determine the transactional 
mechanisms to ensure reliable compositions according to 
their requirements. We show how we combine a set of 
transactional service to formally specify the transactional CS 
model in EVENT-B.   

A. Event-B 

B is a formal method based on he theory of sets, enabling 
incremental development of software through sequential 
refinement. Event-B is a variant of B method introduced by 
Abrial to deal with reactive system. An Event-B model 
contains the complete mathematical development of a 
discrete system. A model uses two types of entities to 
describe a system: machines and contexts. A machine 
represents the dynamic parts of a model. Machine may 
contain variables, invariants, theorems, variants and events 
whereas contexts represent the static parts of a model .It may 
contain carrier sets, constants, axioms and theorems.  

Refinement: The concept of refinement is the main 
feature of Event-B. it allows incremental design of systems. 
In any level of abstraction we introduce a detail of the 
system modeled. A series of proof obligations must be 
discharged to ensure the correction of refinement as the 
proof obligations of the concrete initialization, the 
refinement of events, the variant and the prove that no 
deadlock in the concrete and the abstract machine. 

Correctness checking: Correctness of Event-B machines 
is ensured by proving proof obligations (POs); they are 
generated by RODIN to check the consistency of the model. 
For example: the initialization should establish the invariant, 
each event should be feasible (FIS), each given event should 
maintain the invariant of its machine (INV), and the system 
should ensure deadlock freeness (DLKF). The guard and the 
action of an event define a before-after predicate for this 
event. It describes relation between variables before the 
event holds and after this. Proof obligations are produced 
from events in order to state that the invariant condition is 
preserved. Let M be an Event-B model with v being 
variables, carrier sets or constants. The properties of 
constants are denoted by P(v), which are predicates over 
constants, and the invariant by I(v). Let E be an event of M 
with guard G(v) and before-after predicate R(v, v’). The 
initialization event is a generalized substitution of the form 
v: init(v). Initial proof obligation guarantees that the 
initialization of the machine must satisfy its invariant: Init(v)
⇒I(v). The second proof obligation is related to events. Each 
event E, if it holds, it has to preserve invariant. The 
feasibility statement and the invariant preservation are given 
in these two statements[10]. 
• I(v) ∧G(v) ∧P(v) ⇒∃v’ R(v, v’) 
• I(v) ∧ G(v) ∧ P(v) ∧ R(v, v’) ⇒ I( v’)  

An Event-B model M with invariants I is well-formed, 
denoted by M |= I only if M satisfies all proof obligations. 
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B. Transactional web service model 

By Web service we mean a self-contained modular 
program that can be discovered and invoked across the 
Internet. Each service can be associated to a life cycle or a 
statechart. A set of states (initial, active, cancelled, failed, 
compensated, completed) and a set of transitions (activate(), 
cancel (), fail(), compensate (), complete()) are used to 
describe the service status and the service behavior. A 
service ts is said to be retriable(r) if it is sure to complete 
after finite number of activations. ts is said to be 
compensatable(cp) if it offers compensation policies to 
semantically undo its effects. ts is said to be pivot(p)  if once 
it successfully completes, its effects remain and cannot be 
semantically undone. Naturally, a service can combine 
properties, and the set of all possible combinations is {r; cp; 
p; (r; cp); (r; p)}[11]. 

The initial model includes the context ServiceContext and 
the machine ServiceMachine. The context ServiceContext 
describes the concepts SWT which represents all 
transactional web services and STATES represents all the 
states of a given SWT. These states are expressed as 
constants. A set named STATES is defined in the SETS 
clause which represents the states that describe the behavior 
of such a service. A set named TWS is defined in the SETS 
clause which represents all transactional web services. 

 

 
The service state which is represented by a functional 

relation service_state defined in VARIABLES clause gives 
the current state of such a service. The transactional behavior 
of a transactional web service is modeled by a machine. Inv1 
the invariant specifies that service_state is a total function, 
and that each service has a state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
In our model, transitions are described by the event. For 

instance the event activate changes the status of a service and 
pass it from initial status to active. The event compensate 
enables to compensate semantically the work of a service 
and pass it from completed status to compensate. The event 
retry changes the status of a service and activate it after his 
failure and pass it from failed status to active. The event 

complete enables to finite the execution of a service with 
success and pass it from active status to completed. 

 

C. Transactional composite service 

A composite service is a conglomeration of existing Web 
services working in tandem to offer a new value-added 
service [12]. It orchestrates a set of services, as a composite 
service to achieve a common goal. A transactional composite 
(Web) service (TCS) is a composite service composed of 
transactional services. Such a service takes advantage of the 
transactional properties of component services to specify 
failure handling and recovery mechanisms. Concretely, a 
TCS implies several transactional services and describes the 
order of their invocation, and the conditions under which 
these services are invoked. 

To formally specify in Event-B the orchestration we 
introduced a new context CompositionContext which extends 
the context ServiceContext that we have  previously 
introduced. The first refinement includes the context 
CompositionContext and the machine CompositionMachine 
which refine the machine introduced at the initial model. In 
this section we show how formally the interactions between 
CS are modeled. We introduce the concept of 
dependencies(depA, depANL, depCOMP...).  

 
Dependencies are specified using Relations concept. It is 
simply a set of couples of services. For example depA 
represents the set of couples of services that have an 
activation dependency.  

 
These dependencies express how services are coupled and 
how the behavior of certain services influences the behavior 
of other services. Dependencies can express different kinds 
of relationships (inheritance, alternative, compensation, etc.) 
that may exist between the services. We distinguish between 
“normal” execution dependencies and “exceptional” or 
“transactional” execution dependencies which express the 
control flow and the transactional flow respectively. The 

AXIOMS 
Axm1: STATES= {active, initial, aborted, cancelled, failed, 
completed, compensated} 
 

CONTEXT  ServiceContext 
SETS 
SWT 
STATES 

Activate ≙ ANY  s  WHERE 

grd1   :    s∈SWT  

grd2   :    service_state (s) =initial  

THEN 

act1   :    service_state (s):=active  

END 

Compensate ≙ANY  s  WHERE 

grd1   :    s∈SWT_C  

grd2   :    service_state (s) =completed  

THEN 

act1   :    service_state (s):=compensated  

END 

 

MACHINE  CompositionMachine 

REFINES  ServiceMachine 

SEES  CompositionContext 

 

Axm1 : depA∈SWT↔SWT 

Axm2 : depAL∈SWT↔SWT 

… 

 

MACHINE  ServiceMachine 
SEES  ServiceContext 
VARIABLES 
Service_state 
SWT_C 
SWT_P 
SWT_R 
INVARIANTS 

Inv1:  service_state∈SWT→STATES 

Inv2: SWT_C ⊆ SWT 

Inv3: SWT_R ⊆ SWT 

Inv4: SWT_P ⊆ SWT 
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control flow defines a partial services activations order 
within a composite service instance where all services are 
executed without failing cancelled or suspended. Formally, 
we define a control flow as TCS whose dependencies are 
only “normal” execution dependencies. Alternative 
dependencies allow us to define forward recovery 
mechanisms. A compensation dependency allows us to 
define a backward recovery mechanism by compensation. A 
cancellation dependency allows us to signal a service 
execution failure to other service(s) being executed in 
parallel by canceling their execution. Activation 
dependencies express a succession relationship between two 
services s1and s2.But it does not specify when s2 will be 
activated after the termination of s1. The guard added to the 
activate event which refines the activate event of the initial 
model expresses when the service will be active as a 
successor to other (s) service (s) (only after the termination 
of these services). For example, our motivating example 
defines an activation dependency from HR and FB; to OP 
such that OP will be activated after the completion of HR 
and FB. That means there are two normal dependencies: 
from HR to OP and from FB to OP. 

At this level, the refinement of the compensate event is a 
strengthening of the event guard to take into consideration 
the condition of compensation of a service when a service 
will be compensated. The guard grd4 in the compensate 
event in expresses that the compensation of a service s is 
triggered when a service s0 failed or was compensated and 
there is a compensation dependency from s to s0. Therefore 
compensate allows to compensate the work of a service after 
its termination, the dependency defines the mechanism for 
backward recovery by compensation, the condition added as 
a guard specifies when the service will be compensated. 

 

IV.  TRANSACTIONAL SERVICE PATTERNS 

The use of workflow patterns [13] appears to be an 
interesting idea to compose Web services. However, current 
workflow patterns do not take into account the transactional 
properties (except the very simple cancellation patterns 
category). It is now well established that the transactional 
management is needed for both composition and 
coordination of Web services. That is the reason why the 
original workflow patterns were augmented with 
transactional dependencies, in order to provide a reliable 
composition [14]. In this section, we use workflow patterns 
to describe TCS’s control flow model as a composition 
pattern. Afterwards, we extend them in order to specify 
TCS’s transactional flow, in addition to the control flow they 
are considering by default. Indeed, the transactional flow is 

tightly related to the control flow. The recovery mechanisms 
(defined by the transactional flow) depend on the execution 
process logic (defined by the control flow). 

The use of the recovery mechanisms described throw the 
transactional behavior varies from one pattern to another. 
Thus, the transactional behavior flow should respect some 
consistency rules(INVARIANT) given a pattern. These rules 
describe the appropriate way to apply the recovery 
mechanisms within the specified patterns. Recovering 
properly a failed composite service means: trying first an 
alternative to the failed component service, otherwise 
canceling ongoing executions parallel to the failed 
component service, and compensating the partial work 
already done. The transactional consistency rules ensure 
transactional consistency according to the context of the used 
pattern. In the following we formally specify these patterns 
and related transactional consistency rules using Event-B. 

s0

sn

…….

s2

s1

AND-split

s0

sn

…….

s2

s1

XOR-split

s0

sn

…….

s2

s1

AND-join  
Figure 2.  Studied patterns 

Our model introduces a new context And-patternContext 
which extends the context Composition-Context and a 
machine transactional patterns which refines the machine 
CompositionMachine. To extend these patterns we introduce 
new events that can describe them. For example, to extend 
the pattern AND-split the machine introduces a new event 
AND-split which defines the pattern AND-split. Due to the 
lack of space, we put emphasis on the following three 
patterns AND-split, AND-join and XOR-split to explain and 
illustrate our approach, but the concepts presented here can 
be applied to other patterns. 

An AND-split pattern defines a point in the process 
where a single thread of control splits into multiple threads 
of control which can be executed in parallel, thus allowing 
services to be executed simultaneously or in any order.  

 

Compensate ≙  REFINES Compensate 

… 

grd4:∃s0·s0∈SWT∧s0↦s∈depCOMP⇒((service_state(s0)=failed) 

∨ (service_state(s0) = compensated)) 

THEN 

act1   :    service_state (s) ≔compensated 

END 

AND-split   ≙ 

ANY 

S0 

SWToutside 

WHERE 

grd1   :    SWToutside⊆SWT_AS         

grd2   :    S0∈SWT_AS         

grd3   :    S0∉SWToutside 

grd4   :    service_state(S0)=complete 

THEN 

act1   :    stateSWTout≔activated  

END 
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The SWToutside represent the set of services (s1,…,sn) 
and s0 is represented by sAS.  

To verify the transactional consistency of these patterns 
we add predicates in the INVARIANT clauses. These 
invariants ensure transactional consistency according to the 
context of use. These rules are inspired from [14] which 
specifies and proves the potential transactional dependencies 
of workflow patterns. The transactional consistency rules of 
the AND-split  pattern support only compensation 
dependencies from SWToutside (Inv 23). 

• Inv 23:    ∀s.s∈SWToutside⇒sAS↦s∉depCOMP 
The compensation dependencies can be applied only over 

already activated services. The transactional consistency 
rules supports only cancellation dependencies between only 
the concurrent services. Any other cancellation or alternative 
or compensation dependencies between the pattern’s services 
(Inv 11, 12) are forbidden. 

• Inv 11: ∀s.s∈SWT_AS⇒s↦sAS∉depANL 
• Inv12:∀s, s1.s∈SWT_AS∧ s1∈SWT_AS⇒s↦ s1∉

depAL 
Our example illustrates the application of AND-split 

pattern to the set of services (SCN, HR, FB) and specifies 
that exist a dependency of compensation from HR to FB and 
a cancellation dependency also from HR to FB. The guard of 
the AND-split event represents the conditions of activation of 
the pattern. In our example SCN must terminates its work 
before activating the pattern.  In order to ensure a normal 
execution of the event an invariant must be preserved by 
AND-split event that express that all SWToutside services 
have an activation dependency from sAS  

• Inv 13:    ∀s.s∈SWToutside⇒sAS↦s∉depA 
An AND-join pattern defines a point in the process where 

multiple parallel subprocesses/services converge into one 
single thread of control, thus synchronizing multiple threads. 
To extend the pattern AND-join, the machine introduces a 
new event AND-join which defines the control flow of the 
AND-join pattern.  

 
Our example illustrates the application of AND-join 

pattern to the set of services (HR, FB, OP). The guard of the 
AND-join event represents the conditions of activation of the 
pattern. HR and FB must terminates its work before 
activating the pattern. The termination of HR is necessary 
and not efficient to activate the pattern. All SWToutside , HR 
and FB, services must complete their work. 

The transactional consistency rules of the AND-join 
pattern supports only compensation dependencies for 
SWToutside, sAJ can not be compensated by SWToutside 
services as they are executed after (inv 24). 

• Inv 24:  ∀s.s∈SWToutsideAJ⇒s↦sAJ∉depCOMP 
 The transactional consistency rules of the AND-join 

pattern support also cancellation dependencies between only 
the concurrent services. Any other cancellation or alternative 
or compensation dependencies between the pattern’s services 
are forbidden. 

• Inv25:∀s.s∈SWToutsideAJ⇒s↦sAJ∉depANL 
An XOR-split pattern defines a point in the process 

where, based on a decision or control data, one of several 
branches is chosen. To extend the pattern XOR-split, the 
machine introduces a new event XOR-split which defines the 
pattern XOR-split. 

 
The XOR-split pattern supports alternative dependencies 

between only the services SWToutside, as the alternative 
dependencies can exist only between parallel and non 
concurrent flows. The XOR-split pattern support also 
compensation dependencies from SWToutside to sXS.  

• Inv18:∀s.s∈SWT_XS∖{sXS}⇒s↦sXS∈depCOMP 
Any other cancellation or alternative or compensation 

dependencies between the pattern’s services are forbidden. 
• Inv15:  ∀s.s∈SWT_XS⇒s↦sXS∉depAL 
• Inv22:∀s.s∈SWT_XS∖{sXS}⇒sXS↦s∉depCOMP 

Our example illustrates the application of XOR-split 
pattern to the set of services (OP, SDD, SDF, SDF) and 
specifies that exist an alternative dependency from HR to 
FB. The guard of the XOR-split event represents the 
conditions of activation of the pattern. The execution of OP 
service must be completed for activate XOR-split pattern. 
After the activation one service from (SDD, SDF, SDF) will 
be active. 

V. VALIDATION  

In the previous section, we showed how to formally specify 
a TCS using Event-B. The objective of this section is to 
show how we verify and validate our model using proof and 
ProB animator[15]. In the abstract model the desired 
properties of the system are expressed in a predicate called 
invariant, it has to prove the consistency of this invariant 

AND-join   ≙  

ANY 

S0  

SWToutside  

WHERE 

grd1   :    SWToutside⊆SWT_AJ        

grd2   :    S0∈SWT_AJ            

grd3   :    S0∉SWToutside  

grd4   :    ∀s•s∈SWToutside⇒service_state(s)=complete 

THEN 

act1   :    service_state(S0) ≔ active 
END 
 

XOR-split   ≙ 

ANY 

S0  

SWToutside  

sw  

WHERE 

grd1   :    SWToutside⊆SWT_XS     

grd2   :    S0∈SWT_XS                      

grd3   :    S0∉SWToutside  

grd4   :    service_state(S0)=complete  

grd5   :    sw∈SWToutside  

THEN 

act1   :    service_state(sw)≔active  

END 
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compared to system events by a proof. We find many proof 
obligations (Figure 3). Each of them has got a compound 
name for example, « evt / inv / INV ». A green logo situated 
on the left of the proof obligation name states that it has 
been proved (an A means it has been proved automatically). 
In our case shown in Figure 3 the tool generates the 
following proof obligations « activate / inv1 / INV » and  « 
compensate / inv1 / INV » . This proof obligation rule 
ensures that the invariant inv1 in the CompositionMachine is 
preserved by events activate and compensate. Figure 4 show 
also the proof obligations «compensate / grd2 / WD ». This 
proof obligation rule ensures that a potentially ill-defined 
guard is indeed well defined. 
 

 
Figure 3.  Proof obligations and animation  

Our work is proof oriented and covers the transactional web 
services. All the Event-B models presented in this paper 
have been checked within the RODIN platform. The proof 
based approaches do not suffer from the growing number of 
explored states. However, the proof obligations produced by 
the Event-B provers could require an interactive proof 
instead of automatic proofs. Concerning the proof process 
within the Event-B method, the refinement of transactional 
web services Event-B models can be performed. This 
refinement allows the developer to express the relevant 
properties at the refinement level where they are 
expressible. The refinement is a solution to reduce the 
complexity of proof obligations. 
In our example the designer can initially specify, as CS 
transactional behavior, that FB will be compensated or 
cancelled if HR fails, SDD is executed as alternative of SDF 
failure. The Event-B formalization of our motivating 
example defines a cancellation dependency and 
compensation dependency from HR to FB and alternative 
dependency from SDF to SDD.  For example, by checking 
the compensation dependency between SCN and HR the 
RODIN platform mentioned that the proof obligations has 
not been discharged (Figure 4). As HR is executed after, it 

can not exist a compensation dependency from SCN to HR. 
A red logo with a ”?” appear in the proof tree and it means 
that is not discharged. This basic example shows how it is 
possible to formally check the consistency of transactional 
flow using Event-B. To repair this error we can refer to the 
initialization of the machine and verify the compensation 
dependencies. 
After the initialization of the ServiceMachine the 
compensate event is disabled and after the termination of the 
execution of a service the event will be enabled. ProB offer 
to the developer which parameter is used in the animation 
by clicking right on the event. 
 

 
Figure 4.  A red logo indicates that the proof obligations is not discharges 

In the development of our model some proof obligations 
are not discharged but the specifications is correct according 
to our work in [6] which is specified and validated using 
Event Calculus. To do so, we use ProB animator to verify 
our specification of transactional web services. This case 
study has shown that the animation and model-checking are 
complementary to the proof, essential to the validation of 
Event-B models. In other case, many proved models (proof 
obligations are discharged) still contain behavioral faults, 
which are identified with the animators. The main advantage 
of Event-B develop that can repair errors during the 
development. It allows the backward to correct specification. 
With refinement, the complexity of the system is distributed; 
the step by step proofs are more readily. Event-B offers more 
flexibility and expressivity than the input languages of model 
checkers. 

VI. CONCLUSION AND FUTURE WORKS 

The paper addresses the formal specification, verification 
and validation of the transactional behavior of services 
compositions within a refinement and proof based approach. 
The described work uses Event-B method, refinement for 
establishing proprieties. This paper presents our model of 
web service enriched by transactional properties to better 
express the transactional behavior of web services and to 
ensure reliable compositions. Then we describe how we 
combine a set of services to establish transactional 
composite service by specifying the order of execution of 
composed services and recovery mechanisms in case of 
failure. Finally we introduced the concept of composition 
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pattern and how we uses it to specify a transactional 
composite service.  
    In our future works we are considering the following 
perspectives: 

• Using automation approach of MDE type to verify 
transactional behavior of services compositions. 
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