
A Proof-based Approach for Verifying Composite
Service Transactional Behavior

Lazhar Hamel
MIRACL, ISIMS, TUNISIA

lazhar.hamel@gmail.com

Mourad Kmimech
MIRACL, ISIMS, TUNISIA

mkmimech@gmail.com

Mohamed Graiet
MIRACL, ISIMS, TUNISIA

mohamed.graiet@imag.fr

Mohamed Tahar Bhiri
MIRACL, ISIMS, TUNISIA

Tahar_bhiri@yahoo.fr

Walid Gaaloul
Computer Science Department Télécom SudParis

walid.gaaloul@it-sudparis.eu

Abstract— Web services are software components accessible
via Internet. Web services are defined independently from any
execution context. A key challenge of Web service compositions
is how to ensure reliable execution. Due to their inherent
autonomy and heterogeneity, it is difficult to reason about the
behavior of service compositions especially in case of failures.
In this work, we propose an approach to formalize a model of
Web services composition to check and ensure reliable
execution. To achieve this, we propose a proof oriented
approach for the formalization and verification of
transactional behavior of web services composition using
Event-B.

Keywords-web service composition; Event-B; transactional
web service; proof; verification.

I. INTRODUCTION

Web services are emergent and promising technologies
for the development, deployment and integration of
applications on the internet. One interesting feature is the
possibility to dynamically create a new added value service
by composing existing web services, eventually offered by
several companies. Due to the inherent autonomy and
heterogeneity of web services, the guarantee of correct
composite services executions remains a fundamental
problem issue. An execution is correct if it reaches its
objectives or fails properly according to the designer’s
requirement or users needs. The problem, which we are
interested in, is how to ensure reliable web services
compositions. By reliable, we mean a composition where all
the executions are correct.

Some web services are used in a transactional context,
for example, reservation in a hotel, banking, etc.; the
transactional properties of these services can be exploited in
order to answer their composition constraints and the
preferences made by designers and users. However, current

tools and languages do not provide high-level concepts for
express transactional composite services properties. The
execution of composite service with transactional properties
is based on the execution of complex distributed transactions
which eventually implements compensation mechanisms. A
compensation is an operation the goal of which is to cancel
the effect of other transaction that failed to be successfully
completed. several transactions models previously proposed
in databases, distributed systems, collaborative
environments. In order to manage with this focus many
specifications proposed to response to this aspects. WS-
Coordination [1], WS-AtomicTransaction [2] and WS-
BusinessActivity [3]. Many research in this field aiming for
instance to guarantee that an activity is cancellable and / or
compensable. The verification step will help ensure a certain
level of confidence in the internal behavior of an
orchestration. Several approaches have been proposed in this
direction, based on work related to the transition system [4],
process algebras [5], or the temporal theories [6].

Our work deal with the formal verification of the
transactional behavior of web services composition. In this
paper, we propose to address this issue using proof and
refinement based techniques, in particular the Event-B
method [7] used in the RODIN platform [8]. Our approach
consists on a formalism based on Event-B for specifying
composite service (CS) failure handling policies. This formal
specification is used to formally validate the consistency of
the transactional behavior of the composite service model at
design time, according to users’ needs. We propose to
formally specify with Event-B the transactional service
patterns. These patterns formally specified as events and
invariants rule to check and ensure the transactional
consistency of composite service at design time. Most
previous work is based on the model checking technique and
does not support the full description of transactional web
services. Refinement and proof techniques offered by Event-

386

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B method are used to explore it and in section 5 we discuss
this approach.

This paper is organized as follows. In Section 2, we
introduce a motivating example. Section 3 presents the
Event- B method, its formal semantics and its proof
procedure and introduces our transactional CS model. In
Section 4, we present how we specify a pattern-based of the
transactional behavior using the Event-B. An overview of the
validation methodology is given in Section 5.

II. MOTIVATING EXAMPLE

In this section, we present a scenario to illustrate our
approach we consider a travel agency scenario (Figure 1).
The client specifies its requirement in terms of destinations
and hotels via the activity “Specification of Client Needs”
(SCN). After SCN termination, the application launches
simultaneously two tasks “Flight Booking” (FB) and “Hotel
Reservation” (HR) according to customer's choice. Once
booked, the “Online Payment” (OP) allows customers to
make payments. Finally travel documents (air ticket and
hotel reservations are sent to the client via one of the services
“Sending Document by Fedex” (SDF) ,”Sending Document
by DHL” (SDD) or “ Sending Document by TNT” (SDT).
To guarantee outstanding reliability of the service the
designers specify that services FB, OP and SDT will
terminate with success. Whereas on failure of the HR
service, we must cancel or compensate the FB service
(according to his current state) and in case of failure of the
SDF, we have to activate the SDD service as an alternative.

The problem that arises at this level is how to check /
ensure that the specification of a composite service ensures
reliable execution in accordance with the designer’s
requirements. To do so, the verification process should cover
the composite service lifecycle. Basically, at design time the
designer should respect the transactional consistency rules.

SCN
SDD

SDT

SDF

OP

HR

FB

Activate SDD

when SDF fail
Cancel or

compensate FB

when HR fail

Figure 1. Motivating example

III. FORMALIZING TRANSACTIONAL COMPOSITE SERVICE

WITH EVENT-B

To better express the behavior of web services we have
enriched the description of web services with transactional
properties. Then we developed a model of Web services
composition. In our model, a service describes both a
coordination aspect and a transactional aspect. On the one
hand it can be considered as a workflow services. On the
other hand, it can be considered as a structured transaction
when the services components are sub-transactions and
interactions are transactional dependencies. The originality

of our approach is the flexibility that we provide to the
designers to specify their requirements in terms of structure
of control and correction. Contrary to the ATMs [9], we start
from designers specifications to determine the transactional
mechanisms to ensure reliable compositions according to
their requirements. We show how we combine a set of
transactional service to formally specify the transactional CS
model in EVENT-B.

A. Event-B

B is a formal method based on he theory of sets, enabling
incremental development of software through sequential
refinement. Event-B is a variant of B method introduced by
Abrial to deal with reactive system. An Event-B model
contains the complete mathematical development of a
discrete system. A model uses two types of entities to
describe a system: machines and contexts. A machine
represents the dynamic parts of a model. Machine may
contain variables, invariants, theorems, variants and events
whereas contexts represent the static parts of a model .It may
contain carrier sets, constants, axioms and theorems.

Refinement: The concept of refinement is the main
feature of Event-B. it allows incremental design of systems.
In any level of abstraction we introduce a detail of the
system modeled. A series of proof obligations must be
discharged to ensure the correction of refinement as the
proof obligations of the concrete initialization, the
refinement of events, the variant and the prove that no
deadlock in the concrete and the abstract machine.

Correctness checking: Correctness of Event-B machines
is ensured by proving proof obligations (POs); they are
generated by RODIN to check the consistency of the model.
For example: the initialization should establish the invariant,
each event should be feasible (FIS), each given event should
maintain the invariant of its machine (INV), and the system
should ensure deadlock freeness (DLKF). The guard and the
action of an event define a before-after predicate for this
event. It describes relation between variables before the
event holds and after this. Proof obligations are produced
from events in order to state that the invariant condition is
preserved. Let M be an Event-B model with v being
variables, carrier sets or constants. The properties of
constants are denoted by P(v), which are predicates over
constants, and the invariant by I(v). Let E be an event of M
with guard G(v) and before-after predicate R(v, v’). The
initialization event is a generalized substitution of the form
v: init(v). Initial proof obligation guarantees that the
initialization of the machine must satisfy its invariant: Init(v)
⇒I(v). The second proof obligation is related to events. Each
event E, if it holds, it has to preserve invariant. The
feasibility statement and the invariant preservation are given
in these two statements[10].
• I(v) ∧G(v) ∧P(v) ⇒∃v’ R(v, v’)
• I(v) ∧ G(v) ∧ P(v) ∧ R(v, v’) ⇒ I(v’)

An Event-B model M with invariants I is well-formed,
denoted by M |= I only if M satisfies all proof obligations.

387

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Transactional web service model

By Web service we mean a self-contained modular
program that can be discovered and invoked across the
Internet. Each service can be associated to a life cycle or a
statechart. A set of states (initial, active, cancelled, failed,
compensated, completed) and a set of transitions (activate(),
cancel (), fail(), compensate (), complete()) are used to
describe the service status and the service behavior. A
service ts is said to be retriable(r) if it is sure to complete
after finite number of activations. ts is said to be
compensatable(cp) if it offers compensation policies to
semantically undo its effects. ts is said to be pivot(p) if once
it successfully completes, its effects remain and cannot be
semantically undone. Naturally, a service can combine
properties, and the set of all possible combinations is {r; cp;
p; (r; cp); (r; p)}[11].

The initial model includes the context ServiceContext and
the machine ServiceMachine. The context ServiceContext
describes the concepts SWT which represents all
transactional web services and STATES represents all the
states of a given SWT. These states are expressed as
constants. A set named STATES is defined in the SETS
clause which represents the states that describe the behavior
of such a service. A set named TWS is defined in the SETS
clause which represents all transactional web services.

The service state which is represented by a functional

relation service_state defined in VARIABLES clause gives
the current state of such a service. The transactional behavior
of a transactional web service is modeled by a machine. Inv1
the invariant specifies that service_state is a total function,
and that each service has a state.

In our model, transitions are described by the event. For

instance the event activate changes the status of a service and
pass it from initial status to active. The event compensate
enables to compensate semantically the work of a service
and pass it from completed status to compensate. The event
retry changes the status of a service and activate it after his
failure and pass it from failed status to active. The event

complete enables to finite the execution of a service with
success and pass it from active status to completed.

C. Transactional composite service

A composite service is a conglomeration of existing Web
services working in tandem to offer a new value-added
service [12]. It orchestrates a set of services, as a composite
service to achieve a common goal. A transactional composite
(Web) service (TCS) is a composite service composed of
transactional services. Such a service takes advantage of the
transactional properties of component services to specify
failure handling and recovery mechanisms. Concretely, a
TCS implies several transactional services and describes the
order of their invocation, and the conditions under which
these services are invoked.

To formally specify in Event-B the orchestration we
introduced a new context CompositionContext which extends
the context ServiceContext that we have previously
introduced. The first refinement includes the context
CompositionContext and the machine CompositionMachine
which refine the machine introduced at the initial model. In
this section we show how formally the interactions between
CS are modeled. We introduce the concept of
dependencies(depA, depANL, depCOMP...).

Dependencies are specified using Relations concept. It is
simply a set of couples of services. For example depA
represents the set of couples of services that have an
activation dependency.

These dependencies express how services are coupled and
how the behavior of certain services influences the behavior
of other services. Dependencies can express different kinds
of relationships (inheritance, alternative, compensation, etc.)
that may exist between the services. We distinguish between
“normal” execution dependencies and “exceptional” or
“transactional” execution dependencies which express the
control flow and the transactional flow respectively. The

AXIOMS
Axm1: STATES= {active, initial, aborted, cancelled, failed,
completed, compensated}

CONTEXT ServiceContext
SETS
SWT
STATES

Activate ≙ ANY s WHERE

grd1 : s∈SWT

grd2 : service_state (s) =initial

THEN

act1 : service_state (s):=active

END

Compensate ≙ANY s WHERE

grd1 : s∈SWT_C

grd2 : service_state (s) =completed

THEN

act1 : service_state (s):=compensated

END

MACHINE CompositionMachine

REFINES ServiceMachine

SEES CompositionContext

Axm1 : depA∈SWT↔SWT

Axm2 : depAL∈SWT↔SWT

…

MACHINE ServiceMachine
SEES ServiceContext
VARIABLES
Service_state
SWT_C
SWT_P
SWT_R
INVARIANTS

Inv1: service_state∈SWT→STATES

Inv2: SWT_C ⊆ SWT

Inv3: SWT_R ⊆ SWT

Inv4: SWT_P ⊆ SWT

388

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

control flow defines a partial services activations order
within a composite service instance where all services are
executed without failing cancelled or suspended. Formally,
we define a control flow as TCS whose dependencies are
only “normal” execution dependencies. Alternative
dependencies allow us to define forward recovery
mechanisms. A compensation dependency allows us to
define a backward recovery mechanism by compensation. A
cancellation dependency allows us to signal a service
execution failure to other service(s) being executed in
parallel by canceling their execution. Activation
dependencies express a succession relationship between two
services s1and s2.But it does not specify when s2 will be
activated after the termination of s1. The guard added to the
activate event which refines the activate event of the initial
model expresses when the service will be active as a
successor to other (s) service (s) (only after the termination
of these services). For example, our motivating example
defines an activation dependency from HR and FB; to OP
such that OP will be activated after the completion of HR
and FB. That means there are two normal dependencies:
from HR to OP and from FB to OP.

At this level, the refinement of the compensate event is a
strengthening of the event guard to take into consideration
the condition of compensation of a service when a service
will be compensated. The guard grd4 in the compensate
event in expresses that the compensation of a service s is
triggered when a service s0 failed or was compensated and
there is a compensation dependency from s to s0. Therefore
compensate allows to compensate the work of a service after
its termination, the dependency defines the mechanism for
backward recovery by compensation, the condition added as
a guard specifies when the service will be compensated.

IV. TRANSACTIONAL SERVICE PATTERNS

The use of workflow patterns [13] appears to be an
interesting idea to compose Web services. However, current
workflow patterns do not take into account the transactional
properties (except the very simple cancellation patterns
category). It is now well established that the transactional
management is needed for both composition and
coordination of Web services. That is the reason why the
original workflow patterns were augmented with
transactional dependencies, in order to provide a reliable
composition [14]. In this section, we use workflow patterns
to describe TCS’s control flow model as a composition
pattern. Afterwards, we extend them in order to specify
TCS’s transactional flow, in addition to the control flow they
are considering by default. Indeed, the transactional flow is

tightly related to the control flow. The recovery mechanisms
(defined by the transactional flow) depend on the execution
process logic (defined by the control flow).

The use of the recovery mechanisms described throw the
transactional behavior varies from one pattern to another.
Thus, the transactional behavior flow should respect some
consistency rules(INVARIANT) given a pattern. These rules
describe the appropriate way to apply the recovery
mechanisms within the specified patterns. Recovering
properly a failed composite service means: trying first an
alternative to the failed component service, otherwise
canceling ongoing executions parallel to the failed
component service, and compensating the partial work
already done. The transactional consistency rules ensure
transactional consistency according to the context of the used
pattern. In the following we formally specify these patterns
and related transactional consistency rules using Event-B.

s0

sn

…….

s2

s1

AND-split

s0

sn

…….

s2

s1

XOR-split

s0

sn

…….

s2

s1

AND-join
Figure 2. Studied patterns

Our model introduces a new context And-patternContext
which extends the context Composition-Context and a
machine transactional patterns which refines the machine
CompositionMachine. To extend these patterns we introduce
new events that can describe them. For example, to extend
the pattern AND-split the machine introduces a new event
AND-split which defines the pattern AND-split. Due to the
lack of space, we put emphasis on the following three
patterns AND-split, AND-join and XOR-split to explain and
illustrate our approach, but the concepts presented here can
be applied to other patterns.

An AND-split pattern defines a point in the process
where a single thread of control splits into multiple threads
of control which can be executed in parallel, thus allowing
services to be executed simultaneously or in any order.

Compensate ≙ REFINES Compensate

…

grd4:∃s0·s0∈SWT∧s0↦s∈depCOMP⇒((service_state(s0)=failed)

∨ (service_state(s0) = compensated))

THEN

act1 : service_state (s) ≔compensated

END

AND-split ≙

ANY

S0

SWToutside

WHERE

grd1 : SWToutside⊆SWT_AS

grd2 : S0∈SWT_AS

grd3 : S0∉SWToutside

grd4 : service_state(S0)=complete

THEN

act1 : stateSWTout≔activated

END

389

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The SWToutside represent the set of services (s1,…,sn)
and s0 is represented by sAS.

To verify the transactional consistency of these patterns
we add predicates in the INVARIANT clauses. These
invariants ensure transactional consistency according to the
context of use. These rules are inspired from [14] which
specifies and proves the potential transactional dependencies
of workflow patterns. The transactional consistency rules of
the AND-split pattern support only compensation
dependencies from SWToutside (Inv 23).

• Inv 23: ∀s.s∈SWToutside⇒sAS↦s∉depCOMP
The compensation dependencies can be applied only over

already activated services. The transactional consistency
rules supports only cancellation dependencies between only
the concurrent services. Any other cancellation or alternative
or compensation dependencies between the pattern’s services
(Inv 11, 12) are forbidden.

• Inv 11: ∀s.s∈SWT_AS⇒s↦sAS∉depANL
• Inv12:∀s, s1.s∈SWT_AS∧ s1∈SWT_AS⇒s↦ s1∉

depAL
Our example illustrates the application of AND-split

pattern to the set of services (SCN, HR, FB) and specifies
that exist a dependency of compensation from HR to FB and
a cancellation dependency also from HR to FB. The guard of
the AND-split event represents the conditions of activation of
the pattern. In our example SCN must terminates its work
before activating the pattern. In order to ensure a normal
execution of the event an invariant must be preserved by
AND-split event that express that all SWToutside services
have an activation dependency from sAS

• Inv 13: ∀s.s∈SWToutside⇒sAS↦s∉depA
An AND-join pattern defines a point in the process where

multiple parallel subprocesses/services converge into one
single thread of control, thus synchronizing multiple threads.
To extend the pattern AND-join, the machine introduces a
new event AND-join which defines the control flow of the
AND-join pattern.

Our example illustrates the application of AND-join

pattern to the set of services (HR, FB, OP). The guard of the
AND-join event represents the conditions of activation of the
pattern. HR and FB must terminates its work before
activating the pattern. The termination of HR is necessary
and not efficient to activate the pattern. All SWToutside , HR
and FB, services must complete their work.

The transactional consistency rules of the AND-join
pattern supports only compensation dependencies for
SWToutside, sAJ can not be compensated by SWToutside
services as they are executed after (inv 24).

• Inv 24: ∀s.s∈SWToutsideAJ⇒s↦sAJ∉depCOMP
 The transactional consistency rules of the AND-join

pattern support also cancellation dependencies between only
the concurrent services. Any other cancellation or alternative
or compensation dependencies between the pattern’s services
are forbidden.

• Inv25:∀s.s∈SWToutsideAJ⇒s↦sAJ∉depANL
An XOR-split pattern defines a point in the process

where, based on a decision or control data, one of several
branches is chosen. To extend the pattern XOR-split, the
machine introduces a new event XOR-split which defines the
pattern XOR-split.

The XOR-split pattern supports alternative dependencies

between only the services SWToutside, as the alternative
dependencies can exist only between parallel and non
concurrent flows. The XOR-split pattern support also
compensation dependencies from SWToutside to sXS.

• Inv18:∀s.s∈SWT_XS∖{sXS}⇒s↦sXS∈depCOMP
Any other cancellation or alternative or compensation

dependencies between the pattern’s services are forbidden.
• Inv15: ∀s.s∈SWT_XS⇒s↦sXS∉depAL
• Inv22:∀s.s∈SWT_XS∖{sXS}⇒sXS↦s∉depCOMP

Our example illustrates the application of XOR-split
pattern to the set of services (OP, SDD, SDF, SDF) and
specifies that exist an alternative dependency from HR to
FB. The guard of the XOR-split event represents the
conditions of activation of the pattern. The execution of OP
service must be completed for activate XOR-split pattern.
After the activation one service from (SDD, SDF, SDF) will
be active.

V. VALIDATION

In the previous section, we showed how to formally specify
a TCS using Event-B. The objective of this section is to
show how we verify and validate our model using proof and
ProB animator[15]. In the abstract model the desired
properties of the system are expressed in a predicate called
invariant, it has to prove the consistency of this invariant

AND-join ≙

ANY

S0

SWToutside

WHERE

grd1 : SWToutside⊆SWT_AJ

grd2 : S0∈SWT_AJ

grd3 : S0∉SWToutside

grd4 : ∀s•s∈SWToutside⇒service_state(s)=complete

THEN

act1 : service_state(S0) ≔ active
END

XOR-split ≙

ANY

S0

SWToutside

sw

WHERE

grd1 : SWToutside⊆SWT_XS

grd2 : S0∈SWT_XS

grd3 : S0∉SWToutside

grd4 : service_state(S0)=complete

grd5 : sw∈SWToutside

THEN

act1 : service_state(sw)≔active

END

390

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

compared to system events by a proof. We find many proof
obligations (Figure 3). Each of them has got a compound
name for example, « evt / inv / INV ». A green logo situated
on the left of the proof obligation name states that it has
been proved (an A means it has been proved automatically).
In our case shown in Figure 3 the tool generates the
following proof obligations « activate / inv1 / INV » and «
compensate / inv1 / INV » . This proof obligation rule
ensures that the invariant inv1 in the CompositionMachine is
preserved by events activate and compensate. Figure 4 show
also the proof obligations «compensate / grd2 / WD ». This
proof obligation rule ensures that a potentially ill-defined
guard is indeed well defined.

Figure 3. Proof obligations and animation

Our work is proof oriented and covers the transactional web
services. All the Event-B models presented in this paper
have been checked within the RODIN platform. The proof
based approaches do not suffer from the growing number of
explored states. However, the proof obligations produced by
the Event-B provers could require an interactive proof
instead of automatic proofs. Concerning the proof process
within the Event-B method, the refinement of transactional
web services Event-B models can be performed. This
refinement allows the developer to express the relevant
properties at the refinement level where they are
expressible. The refinement is a solution to reduce the
complexity of proof obligations.
In our example the designer can initially specify, as CS
transactional behavior, that FB will be compensated or
cancelled if HR fails, SDD is executed as alternative of SDF
failure. The Event-B formalization of our motivating
example defines a cancellation dependency and
compensation dependency from HR to FB and alternative
dependency from SDF to SDD. For example, by checking
the compensation dependency between SCN and HR the
RODIN platform mentioned that the proof obligations has
not been discharged (Figure 4). As HR is executed after, it

can not exist a compensation dependency from SCN to HR.
A red logo with a ”?” appear in the proof tree and it means
that is not discharged. This basic example shows how it is
possible to formally check the consistency of transactional
flow using Event-B. To repair this error we can refer to the
initialization of the machine and verify the compensation
dependencies.
After the initialization of the ServiceMachine the
compensate event is disabled and after the termination of the
execution of a service the event will be enabled. ProB offer
to the developer which parameter is used in the animation
by clicking right on the event.

Figure 4. A red logo indicates that the proof obligations is not discharges

In the development of our model some proof obligations
are not discharged but the specifications is correct according
to our work in [6] which is specified and validated using
Event Calculus. To do so, we use ProB animator to verify
our specification of transactional web services. This case
study has shown that the animation and model-checking are
complementary to the proof, essential to the validation of
Event-B models. In other case, many proved models (proof
obligations are discharged) still contain behavioral faults,
which are identified with the animators. The main advantage
of Event-B develop that can repair errors during the
development. It allows the backward to correct specification.
With refinement, the complexity of the system is distributed;
the step by step proofs are more readily. Event-B offers more
flexibility and expressivity than the input languages of model
checkers.

VI. CONCLUSION AND FUTURE WORKS

The paper addresses the formal specification, verification
and validation of the transactional behavior of services
compositions within a refinement and proof based approach.
The described work uses Event-B method, refinement for
establishing proprieties. This paper presents our model of
web service enriched by transactional properties to better
express the transactional behavior of web services and to
ensure reliable compositions. Then we describe how we
combine a set of services to establish transactional
composite service by specifying the order of execution of
composed services and recovery mechanisms in case of
failure. Finally we introduced the concept of composition

391

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

pattern and how we uses it to specify a transactional
composite service.
 In our future works we are considering the following
perspectives:

• Using automation approach of MDE type to verify
transactional behavior of services compositions.

REFERENCES
[1] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T.

Freund, J. Johnson,S. Joyce, C. Kaler, J. Klein, D.
Langworthy, M. Little, A. Nadalin, E. Newcomer,D. Orchard,
I. Robinson, J. Shewchuk, and T. Storey. Web
servicescoordination(ws-coordination), 2005.

[2] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T.
Freund, J. Johnson, S. Joyce,C. Kaler, J. Klein, D.
Langworthy, M. Little, A. Nadalin, E. Newcomer, D.
Orchard,I. Robinson, T. Storey, and S. Thatte. Web services
atomic transaction (wsatomictransaction), 2003.

[3] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T.
Freund, S. Joyce,J. Klein, D. Langworthy, M. Little, F.
Leymann, E. Newcomer, D. Orchard, I. Robinson,T. Storey,
and S. Thatte. Web services business activity framework(ws-
businessactivity), 2003.

[4] R. Hamadi and B. Benatallah, “ A petri net-based model for
web service composition,” Fourteenth Australasian Database
Conference (ADC2003), 2003.

[5] G. Sala¨un, A. Ferrara, and A. Chirichiello, “Negotiation
among web services using lotos/cadp,” European Conference
on Web Services (ECOWS 04), 2004.

[6] W. Gaaloul, S. Bhiri, and M. Rouached, “Event-Based Design
and Runtime Verification of Composite Service Transactional
Behavior ,” IEEE Transactions on Services Computing, 02
Feb. 2010. IEEE computer Society Digital Library. IEEE
Computer Society.

[7] J.R. Abrial: Modeling in Event-B: System and Software
Engineering, cambridge edn. Cambridge University Press
(2010).

[8] J.R. Abrial., M. Butler, and S. Hallerstede, “ An open
extensible tool environment for Event-B,” .ICFEM06, LNCS
4260, Springer, pp. 588-605, 2006.

[9] A. K. Elmagarmid, Database transaction models for advanced
applications. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992.

[10] C. Metayer, J. Abrial, and L. Voisin , “Event-B Language.
Technical Report D7,” z RODIN Project Deliverable, 2005.

[11] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz, “A
transaction model for multidatabase systems.” in ICDCS,
1992, pp. 56–63.

[12] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu,
and A. K. Elmagarmid, “Business-to-business interactions:
issues and enabling technologies,” The VLDB Journal, vol.
12, no. 1, pp. 59–85, 2003.

[13] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede,
and B. Kiepuszewski, “Advanced Workflow Patterns,” in 5th
IFCIS Int. Conf. on Cooperative Information Systems
(CoopIS’00), ser. LNCS, O. Etzionand P. Scheuermann, Eds.,
no. 1901. Eilat, Israel: Springer-Verlag, September 6-8, 2000,
pp. 18–29.

[14] S. Bhiri, C. Godart, and O. Perrin, “Transactional patterns for
reliable web services compositions,” in ICWE, D. Wolber, N.
Calder, C. Brooks, and A. Ginige, Eds. ACM, 2006, pp. 137–
144.

[15] M.Leuschel and M.Butler, “ProB: A Model Checker for B,”,
in K. Araki, S. Gnesi, D. Mandrioli (eds), FME 2003: Formal
Methods, LNCS 2805, Springer-Verlag, pp. 855-874, 2003.

392

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

