
Automatic Generation of GUI from VDM++ Specifications
VDM++ GUI Builder

Carlos A. L. Nunes
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

ei05095@fe.up.pt

Ana C. R. Paiva
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

apaiva@fe.up.pt

Abstract—The Vienna Development Method is supported by
several tools. These tools allow generating Java code from a
VDM++ specification but do not generate a graphical user
interface (GUI). This paper describes a generic approach and
tool to automatically generate a GUI in Java from a VDM++
specification. The generated GUI calls methods of the VDM++
specification, which allows testing the specification itself in
order to increase confidence that it is an accurate description
of the intended behaviour. This GUI may evolve to interact
with the already supported generation code in Java (for the
API) in order to obtain a complete application from a VDM++
specification based on a fully automatic code generation
process.

Keywords-Formal Methods; Graphical User Interfaces;
Vienna Development Method; Automatic Code Generation

I. INTRODUCTION
In the development of a VDM++ specification,

interaction with the underlying model is usually done by the
use of an interpreter – VDMTools [1] or VDMJ [2].
Although current tools provide an API to externally use the
interpreter [1, 2], they offer little more than a way to
establish the connection. As this stands, in order to create a
Graphical User Interface (GUI) to interact with a VDM++
specification, a developer is forced to design and implement
it from the ground up, and also create the necessary “glue”
between the VDM interpreter/tool and the GUI.

Using automatic code generation techniques from a
formal specification, this research work puts forward an
approach that allows users to interact with a VDM++
specification through an automatically generated GUI.
Enabling the developer to execute and test the VDM++
specification without the direct use of an interpreter.

Additionally, the generated GUI may be considered as an
evolutionary prototype and be connected with the API code
generated by current tools, in the following steps of the
development process, in order to provide a complete
application obtained by a fully automatic code generation
process.

This paper is organized as follows: Section II introduces
related work; Section III presents basic concepts related to
the context of this work; Section IV describes the GUI
generator tool and its approach; Section V presents a case

study; Section VI discusses the results of a case study; and
Section VII presents conclusions and future work.

II. STATE OF THE ART
The development of Graphical User Interface (GUI) is,

currently, tied to the use of tools and techniques that support
the design and implementation of the user interfaces. These
tools and techniques vary according to the main problem
they focus on and use different approaches in order to
achieve the common goal of assisting the developer.

A. Interactive Graphical Tools
Also called GUI builders, this type of tool makes it

possible to “drag and drop” interface components into place,
in order to create windows and dialogs. Leaving to the
developer the task of coding the actions associated to a given
interface.

In this manner, the developer can instantly see the final
result. Something that is not always straightforward when
coding the GUI.

This kind of tool gained its momentum with the NeXT
Interface Builder [3].

Two examples of such tools, currently in use, are the
Glade interface builder [4] and the interface builder
component of the NetBeans integrated development
environment [5].

B. Graphical User Interface Markup Languages
Conventional programming methods to develop a GUI

use a specific programming language, and often lead to the
creation of repetitive, sometimes error prone, and frequently
complex code. User Interface Markup Languages address
these problems by describing the GUI in a markup language,
usually dialects of XML. Relying on sub-applications to
interpret and transform the GUI description into program
code. This approach, besides reducing the amount of written
code, makes it easier for the developer to concentrate on user
interface design, instead of functionality [6].

Examples of user interface markup languages include
UsiXML [7], XAML [8], XUL [9] and SwiXML [10].

 However these languages still rely on the developer to
insert functionality using a more conventional approach.

399

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

C. Property Models
Graphical user interfaces usually possess dependencies

between values manipulated by the user interface, that lead
to conditionally enabled GUI elements. The implementation
of this aspect of a user interface is time consuming and once
again leads to repetitive code. This is the problem property
models address.

By maintaining an explicit model of dependencies
between parameters of a command, property models can then
be used by reusable algorithms to implement enabling or
disabling of user interface elements.

But as stated, the model needs to be explicitly defined,
requiring the use of a special purpose language or similar
construct [11] .

D. Formal Language-Based Tools
The motivation behind the use of existing formal method

based techniques is a strong emphasis on dialog
management. Which for example, in typical graphical
installation user interfaces is indeed a very important aspect.
However, outside of this user interface style, dialog
management by the system does not contribute to having a
shortest path between windows.

Other problems with this kind of tool are the difficulty of
expressing unordered operations, thus the interface would
have a very rigid sequence of required actions; and the need
for the developer to learn a new special purpose language
[3].

E. Constraints
“A constraint can be thought of intuitively as a restriction

on a space of possibilities (…). Mathematical constraints are
precisely specifiable relations among several unknown (or
variables), each taking a value in a given domain (…)” [12].
This concept can be used to implement several different
aspects of a user interface. Two examples of such a tool are
Amulet [13, 14] and Subarctic [3].

Relying on constraints, a user interface designer can, for
example, easily define that a line has to be attached to a
button. In the same way, the colour, position and size of an
object can be derived from a relationship with another object
expressed by a constraint. At the end, a constraint solver is
used to find a solution.

These types of systems offer a simple and declarative
specification for implementing a user interface however, as
far as we know, they are not used beyond research
environments. One of the reasons for this is the inherent
unpredictability of the resulting user interface.

The solver will try to find a solution that satisfies all
constraints. When several solutions exist, the solver may find
one that was not expected by the interface designer.

Another difficulty lies in the debugging of a set of
constraints, as locating the bug may not be easily done. A
related problem is the need by some solvers, to build the set
of constraints in a particular form (for example, in a linear
form), or the need for the developer to know some details of
how the solver works. Also, it can prove to be difficult to
master the declarative programming paradigm of constraints
as most developers are used to imperative programming

languages – in which the way to approach problems is
different [3].

Nevertheless, constraints are widely used for layout
control. NeXTStep, for example, provided a limited form of
constraints that could be used to control layout [3]. This form
of constraints gained a fair share of usage as the results were
more predictable to developers, and was also easier to use.
The Java platform also makes use of constraints in the form
of layout managers [15].

F. Automatic Model-Based Techniques
The goal of these tools is to free the developer from GUI

implementation details, allowing him to focus on developing
functionality.

The motivation for this kind of tools may be the rapid
development of quality user interfaces; endowing
programmers with little to no experience in building user
interfaces, the capacity to create high quality user interfaces;
automatically creating user interfaces suited for a wide range
of platforms, without the need of additional work.

Early examples of such tools are UIDE [3] and
HUMANOID [16]. These systems used heuristic rules to
select the suitable elements and layout, as well as other
details of the user interface specified by the model. A more
recent example of an automatic model-based technique
generates user interfaces from UML domain and use case
models [17].

A common disadvantage in the use of these techniques is
the degree of unpredictability. When heuristics are involved,
the final result of the user interface specification may be
difficult to predict. Another common disadvantage is the
need to learn a special purpose modelling language. And due
to the inherent difficulty of automatically generating user
interfaces, this kind of tools typically place significant
limitations on the type of user interfaces they can produce.
This usually leads to the generated user interface being not as
good as one created by more common programming
techniques [3, 18].

G. Summary
The tools or techniques, described above, focused on a

specific aspect or problem within GUI development. For this
work, the main problems are: user interface design, defining
the look and feel; assigning functionality to the interface; and
automatic GUI generation. As the basis for the GUI
generation process is a formal model, this approach can be
considered an “Automatic Model-Based Technique”, with
the distinguishing features of not relying on a special
purpose modeling language, and the removal of
unpredictability. Another new aspect is the use of a XML
markup language to describe the user interface, giving a
greater degree of freedom to make alterations after the
automatic generation. No attention to user interface
functionality is required from the developer.

400

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

III. BASIC CONCEPTS

A. Formal Methods
Formal methods, in the context of software engineering,

are a set of mathematical based languages, techniques and
tools to specify and verify systems, in order to develop
reliably systems despite their complexity [19]. The use of
formal methods does not guarantee correctness, but can
reveal system inconsistency, ambiguity, and omissions that
otherwise could pass undetected.

For specifying the system and its properties in great
detail, a formal method uses a specification language, with
mathematical based syntax and semantics. As for system
verification, formal reasoning techniques are used [19, 20]
[21, 22].

B. The Vienna Development Method (VDM) Language
The Vienna Development Method is one of the oldest

formal methods [23]. Initially the method only possessed a
meta-language for specification, but evolved to include the
VDM++ specification language. The VDM++ language is an
object-oriented version of the VDM-SL formal language.
Apart from classes, the VDM++ language includes instance
variables, operations, functions, types, operators and
expressions. As with the VDM-SL, VDM++ allows the
definition of invariants, pre-conditions and post-conditions.

Besides basic types, such as Boolean and numeric, the
language includes three collection types – set, seq and map.
A set consists of a unordered collection without repeated
elements of the same type; a seq consists of an ordered
collection of elements, allowing repetition; and a map is a
finite function relating elements of type A with elements of
type B [24] [25].

IV. VDM++ GUI BUILDER
The VDM++ GUI builder generates a GUI from a

VDM++ specification. VDM++ can be used to model
virtually any kind of system. So the GUI generation
approach should be generic enough to work on any kind of
modelled system.

A. Architecture
The VDM++ GUI Builder is integrated with the tools

developed in the context of Overture Tool Project [26] – an
open source project to develop a set of high quality formal
modelling tools, built on top of the Eclipse Platform [27].

As such, the VDMJ engine [2] is used to execute and
evaluate VDM instructions, as well as providing the bulk of
the information about the VDM++ specification necessary
by the GUI generator.

The other major external tool (not part of Overture) used
is the SwiXML Engine [10]. This engine is used to render
the GUI elements from a XML description generated by the
VDM++ GUI Builder. This tool was chosen because it is
specifically designed for Java applications and possesses a
very simple mechanism for UI element search. The tool
optionally assigns an id for each UI element, which can be
used in runtime mode to retrieve the corresponding UI
element.

Figure 1. Diagram of the architechture

As shown in Figure 1, the architecture has five major
modules:

• The interpreter wrapper,
• The class reader,
• The UI manager,
• The container bridge,
• The internal representation.
The Interpreter Wrapper serves to establish a link

between the external VDMJ engine and the VDM++ GUI
Builder. It allows calling VDM++ specification methods and
retrieving the result.

The Class Reader is used to collect/maintain an internal
representation of the information about the VDM++ classes
inside the specification, for instance, their operations,
functions, constructors and other elements, tailored for the
purposes of GUI generation. This module relies heavily on
VDMJ to extract such information. Even though, this module
can be replaced with another one in order to use the VDM++
GUI Builder with other tools different from the ones
available within the Overture project.

The UI Manager is used to create the windows of the
GUI, and serves as an intermediary to the functionality of the
underlying VDM specification during runtime.

The Container Bridge, serves as a backend to a window.
Basically providing actions during runtime to the events of
the user interface and a wrapper for a generated window.

Finally, the Internal Representation is an internal
depiction of the VDM++ specification from which the GUI
will be generated.

B. Annotations
In order to provide extra information not extractable from

a pure VDM++ specification, some annotations were
defined. These annotations are written within VDM++
comments (starting with “--”) so that it does not require an
extension to the VDM++ grammar. The annotations take the
form of “--@name=value” or “--@name” and are handled
separately by the approach.

The annotations are intended for VDM++ classes,
operations and functions. There are two specific annotations
for methods (operations or functions), “--@press” and “--
@check=<value>” and one for classes “--@nowindow”. The
press annotation is intended to identify methods that describe

401

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

possible user action, and “--@check=<value>” is used to
retrieve information – value is used to name the state
variable with the required information. This annotation can
only be applied to methods without arguments. As for the “--
@nowindow” class annotation, it serves to mark classes that
are to be ignored by the GUI generation process. These
would be auxiliary classes in the specification that are not
converted to windows on the generated GUI.

C. GUI Generation Strategy
As previously stated, a VDM++ specification is the basis

for the GUI generation process. As this formal specification
can be used to describe almost any kind of system, and lacks
any intentional GUI oriented elements, the generation
strategy relies primarily on signature analysis of methods to
create the GUI elements.

The GUI generation strategy supports two different
generation modes. One ignoring annotations and another one
using annotations to guide the GUI generation process.

The strategy assumes that each class is a valid basis for a
single window. In a specification with n classes (not
annotated with “--@nowindow”), the resulting GUI will
have n+2 windows – two additional windows, one with n
buttons to give access to the other windows (Figure 8), and
another to show all the class instances created in each
moment of the execution, for debugging purposes (Figure
10).

Apart from annotations, the GUI elements are generated
from the analysis of the signatures of the methods of the
underlying class.

Not relying on annotations, a method will lead to the
generation of input data GUI elements for the arguments, a
button with the name of the method, and in cases where there
is a return value, an output data GUI element (Figure 2). In
cases where the parameter is a class, the generated GUI
provides a combo box with the class instances created until
that moment.

Figure 2. Example of a generated window from the “Dining” VDM++

example (//overture.svn.sourceforge.net/)

Relying on extra information provided by annotations,
the generation process adopts a different approach. When a
method is annotated with “--@press” the generation strategy
will be the same as the one previously described. The
annotation serves only to explicitly define that the method is
to be parsed in the context of GUI generation. If the method
is annotated with “--@check=<value>”, two labels will be
generated. The first label will show the string defined by

<value>, the second will have the return value of the
corresponding method.

Figure 3. Example of a window generated from the class Card (with

‘check’ annotated methods) of the Dispenser system used in the case study.

All windows generated from VDM++ specification
classes have a drop-down list. This list (labelled “Current
Instance” in Figure 3) contains all the instances of such class.

Such list also contains a “new” option to allow the
construction of new instances. This option leads to the
immediate creation of a new instance of the class when it
does not have a constructor, or to a new window (Figure 4)
when there is a constructor with arguments.

Figure 4. Example of a window generated from the class System of the
“ElectronicPurse” specification found in //overture.svn.sourceforge.net .

D. Dependency Graph
There may exist GUI elements disabled at a given time.

For example, when a method has a parameter of the type
Class X and there is no instance of such class, this method is
disabled. In order to address this issue, the approach keeps
track of the dependencies of a given method and checks if
they are satisfied.

Figure 5. Graph representing the dependencies of simple list system.

The above graph (Figure 5) represents the dependencies
obtained from a specification of a list. The specification has
two classes, “Item” and “List”, the latter possessing one
operation, “AddItem” (represented by a dashed arrow in
Figure 5). This operation requires the existence of an “Item”
instance to be enabled (dependency represented by a solid
arrow in Figure 5).

Extending the previous example, so that a “List” requires
a “Person”, would generate the dependency graph in Figure
6 which means that it will be possible to construct List
instances only after creating Person instances.

Figure 6. Graph representing the dependencies of the extended system.

402

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V. CASE STUDY
The Overture Project provides several examples of

VDM++ specifications (//overture.svn.sourceforge.net/). In
order to evaluate the approach, including the use of
annotations, the Cash Dispenser system was selected. The
specification describes a system that allows the withdrawal
money from accounts using a card and a till. The system
keeps record of issued cards, cardholders and current
accounts, and can issue card statements to the cardholders.
The VDM++ specification used in this experiment includes
the class “SimpleTest” used as a test case. Since this class
does not specify additional behaviour of the system being
modelled, the “--@nowindow” annotation was added to it.

The following figure depicts the dependencies that the
specification has, according to the previously described
approach. Note that in Figure 7, only classes, operations and
functions with dependencies are represented.

Figure 7. The Cash Dispenser system dependency graph.

The generated main window is shown in Figure 8. The
Till button is initially disabled because there is a dependency
between Till class and CentralResource class (represented by
a solid arrow in Figure 7) which means that an instance of
CentralResource in needed in order to construct a Till
instance.

Figure 8. The main window with the Till button disabled

An instance of CentralResource class is immediately
constructed when opening the corresponding window
(Figure 9) because such class has no defined constructor. The
window has two buttons disabled, “AddLetterbox” and
“AddAccount” – their dependencies are not yet satisfied, as
illustrated in Figure 7. “AddLetterBox” method is enabled
after creating instances of “Clock” and “Letterbox” classes.
“AddAccount” method is enabled after constructing
instances of the “Account” class.

Figure 9. The “CentralResource” window with AddLetterBox and

AddAccount buttons disabled

 After creating the “Clock” and the “Letterbox”, the
“AddLetterbox” operation becomes enabled, with the
appropriate controls now populated with the constructed
instances of “Clock” and “Letterbox” classes.

Figure 10. The list of instance window, after creating the instances.

VI. DISCUSSION
As the case study shows, the described approach is able

to generate a fully functional GUI to interact with a VDM++
specification, with minimal additional effort from the part of
the developer. It enables calling methods present in the
specification and displaying the return value.

However, the generated GUI is unsophisticated, due to
the inherent difficulty of implementing a GUI generation
process based on a formal language not specific for GUI
modelling (apart from the annotations introduced by the
approach). More annotations could be introduced, but they
would require additional modelling effort, which could put
into question the goal of this research work: generate a GUI
from a generic VDM++ specification with minimal
additional effort.

The GUI element enabling/disabling previously
described can check argument availability but does not
validate it. For example, a method that takes as argument a
class instance would still be accessible, even if the available
instances themselves possessed undefined or invalid required
values. But this is not necessarily a limitation of the
approach. As it could serve to help the developer identify
situations where function or operation pre-conditions are
missing.

VII. CONCLUSION AND FUTURE WORK
The described approach is able to generate a fully

functional GUI from a VDM++ specification. The generated
GUI is also capable of enabling/disabling GUI buttons based
on a dependency graph extracted from the analysis of GUI
specification methods. The approach achieves this while
following the grammar of the VDM++ formal language and

403

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

without requiring the user active participation in the GUI
generation process.

Furthermore, by adding annotation with additional
information to the VDM++ specification, it is possible a
better adjustment of the GUI elements generated.

Taking into account the results and features of available
VDM++ tools, the approach could be improved in the
following ways:

• Adding different user interface patterns to choose
from. Based on the design pattern terminology in
[28], this approach uses a user interface pattern [29]
that focuses on guaranteeing that the GUI will be
adequate for a VDM++ specification, whichever it
may be. But in terms of an evolving UI prototype, it
could be useful to try different interface patterns.

• Taking advantage of the available pre-conditions in a
VDM++ specification. The dependencies that check
for GUI element enabling/disabling could also be
extended to include the evaluation of pre-conditions.

• Implementing the connection of the generated GUI
with the API code generated automatically by
existing VDM tools. VDM Tools are capable of
generating Java code from a VDM++ specification.
The integration of the GUI with this code would lead
to a standalone java GUI application created with no
user intervention from a VDM++ specification. This
could be achieved by making the UI Manager
module aware of the proper VDM methods
equivalents in the generated Java code. Thus
‘redirecting’ the GUI calls to such methods in Java
instead of VDM++ methods like what happens now.

• Make the class reader dependent on the Overture
AST when the development of this tool is
completed. Currently the tool depends directly on
VDMJ for extracting class information, but this is
not a recommended method. Ideally the tool should
use a purposely built Abstract Syntax Tree.

REFERENCES
[1] C.S.K. Corporation, The VDM Toolbox API 1.1, 2008.
[2] N. Battle, VDMJ Tool Support: User Guide, 2011.
[3] B. Myers, S.E. Hudson, and R. Pausch, Past, present, and

future of user interface software tools. ACM Trans. Comput.-
Hum. Interact., 2000. 7(1): pp. 3-28.

[4] D. Aitel, A beginner's guide to using pyGTK and Glade.
Linux J., 2003. (113): p. 5.

[5] Oracle. Lesson: Using the NetBeans GUI Builder. [2011
6/3/2011]; Available from:
http://download.oracle.com/javase/tutorial/javabeans/nb/.

[6] J. Bishop, Multi-platform user interface construction: a
challenge for software engineering-in-the-small, in
Proceedings of the 28th international conference on Software
engineering, 2006, ACM: Shanghai, China. pp. 751-760.

[7] Q. Lambourg, et al., USIXML: A Language Supporting Multi-
path Development of User Interfaces, in Lecture Note in
Computer Science2005. pp. 134-135.

[8] Microsoft Corp., XAML Overview (WPF). [29/06/2011];
Available from: http://msdn.microsoft.com/en-us/en-
us/library/ms752059.aspx.

[9] M.D.N., The Joy of XUL. [28/05/2011]; Available from:
https://developer.mozilla.org/en/The_Joy_of_XUL.

[10] W. Paulus, SwiXML [03/06/2011]; Available from:
http://www.swixml.org/.

[11] J. Jarvi, et al., Algorithms for user interfaces, in Proceedings
of the eighth international conference on Generative
programming and component engineering 2009, ACM:
Denver, Colorado, USA. pp. 147-156.

[12] P.V. Hentenryck, and V. Saraswat, Strategic directions in
constraint programming. ACM Comput. Surv., 1996. 28(4):
pp. 701-726.

[13] B.A. Myers, et al., The Amulet user interface development
environment, in CHI '97 extended abstracts on Human factors
in computing systems: looking to the future 1997, ACM:
Atlanta, Georgia. pp. 214-215.

[14] B.T.V. Zanden, et al., Lessons learned about one-way,
dataflow constraints in the Garnet and Amulet graphical
toolkits. ACM Trans. Program. Lang. Syst., 2001. 23(6): pp.
776-796.

[15] I. Darwin, GUI Development with Java. Linux J., 1999.
1999(61es): pp. 4.

[16] P. Szekely, P. Luo, and R. Neches, Facilitating the
exploration of interface design alternatives: the HUMANOID
model of interface design, in Proceedings of the SIGCHI
conference on Human factors in computing systems 1992,
ACM: Monterey, California, United States. pp. 507-515.

[17] A. Rosado and J.P. Faria, A metamodel-based approach for
automatic user interface generation, in Proceedings of the
13th international conference on Model driven engineering
languages and systems: Part I 2010, Springer-Verlag: Oslo,
Norway. pp. 256-270.

[18] J. Nichols, D.H. Chau, and B.A. Myers, Demonstrating the
viability of automatically generated user interfaces, in
Proceedings of the SIGCHI conference on Human factors in
computing systems 2007, ACM: San Jose, California, USA.
pp. 1283-1292.

[19] E.M. Clarke and J.M. Wing, Formal Methods: State of the Art
And Future Directions. ACM Comput. Surv., 1996. 28: pp.
626-243.

[20] D. Bjørner, The Vienna development method (VDM):
Software specification and program synthesis, in Proceedings
of the International Conference on Mathematical Studies of
Information Processing 1979, Springer-Verlag. pp. 326-359.

[21] VDMTools: advances in support for formal modeling in
VDM. SIGPLAN Not., 2008. 43(2): pp. 3-11.

[22] J. Woodcock, et al., Formal methods: Practice and
experience. ACM Comput. Surv., 2009. 41(4): pp. 1-36.

[23] P.G. Larsen and J.S. Fitzgerald. Recent Industrial
Applications of Formal Methods in Japan. in BCS-FACS
Workshop on Formal Methods in Industry. 2008. British
Computer Society.

[24] J.S. Pedersen and K.H. Shingler, Software Development
Using VDM, 1989.

[25] P.G. Larsen, et al., VDM-10 Language Manual, 2011.
[26] P.G. Larsen, et al., Tutorial for Overture/VDM++, 2010.
[27] A. Wolfe, Eclipse: A Platform Becomes an Open-Source

Woodstock. Queue, 2003. 1(8): pp. 14-16.
[28] L. Aversano, et al., An empirical study on the evolution of

design patterns, in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering 2007, ACM: Dubrovnik, Croatia. pp. 385-394.

[29] A. Granlund, D. Lafrenière, and D.A. Carr. A Pattern-
Supported Approach to User Interface Design Process. in
HCI International'2001. 2001. New Orleans: Lawrence
Erlbaum Associates.

404

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

