
Towards CMMI-compliant MDD Software Processes 

 

Alexandre M. L. de Vasconcelos  
Centro de Informática 

Universidade Federal de Pernambuco 
Av. Jornalista Anibal Fernandes s/n, 50740-560 

Cidade Universitária, Recife-PE, Brazil 
e-mail: amlv@cin.ufpe.br 

Giovanni Giachetti, Beatriz Marín, Oscar Pastor 
Centro de Investigación en Métodos de  

Producción de Software - PROS 
Universitat Politècnica de València 

Camino de Vera s/n, 46022, Valencia, Spain 
e-mail: {ggiachetti, bmarin, opastor}@pros.upv.es 

 
 

Abstract — In the last years, Model-Driven Development 
(MDD) approaches have taken an important role in the quality 
improvement of software products. These approaches perform 
the automatic compilation of high-abstraction models to 
generate the final application code. In this way, MDD 
approaches aim at reducing development costs as well as 
increasing productivity, portability, interoperabil ity, and ease 
of software evolution; i.e., achieving higher product quality. A 
major obstacle for MDD approaches to be massively adopted 
by industry is their lack of alignment to well-defined quality 
models for software processes. We advocate that performing a 
compliance analysis, based on a software process quality 
model, is the first step to deal with this obstacle. In this paper, 
we analyze the degree of compliance of an industrially applied 
MDD approach with the CMMI-DEV quality model. In 
particular, we determine those characteristics that meet the 
technical solution process area of CMMI-DEV and identify 
improvement opportunities to obtain a proper alignment of the 
MDD approach with this model. 

Keywords – MDD; OO-Method; CMMI; Software Process 
Quality; Feature-based Analysis. 

I. INTRODUCTION 

Developing high quality software has been a continuous 
concern in the Software Engineering community. To achieve 
this goal, several software development approaches have 
emerged. In this context, the Model Driven Development 
(MDD) approach [1][3][4] has become subject of current 
research. The main idea behind MDD is the automatic 
generation of code from models through successive 
transformation of higher abstraction’s level models (problem 
domain) into more concrete models (solution domain).  

The MDD paradigm advocates that the initial software 
development and the implementation of future changes are 
all made in the model. In this way, MDD allows lower 
development costs, and higher productivity, portability, 
interoperability, and ease of software evolution [5]; i.e., 
higher software quality. 

In parallel to the research on MDD and to the gradual 
adoption of this approach, many software development 
organizations are strongly seeking improvement and/or 
assessment of their software processes on the basis of quality 
models [6][7]. Such organizations aim to improve the 
efficiency of their processes and the quality of the products 
developed by the enactment of these processes as well as to 

meet market and stakeholders needs. Hence, given the 
importance of software process quality models, MDD 
approaches must be compliant with these models to be 
widely used by software development organizations. Since 
this challenge has not been properly addressed by any MDD 
approach yet, further research into this direction is necessary. 
Thus, we propose the following research question: “Is it 
possible to design a MDD process that fully complies with a 
well-defined software process quality model?” 

We advocate that MDD approaches must be analyzed 
with regard to software process quality models as a first step 
towards answering this research question. In this paper, we 
analyze the compliance of a specific MDD approach, named 
OO-Method [8], with the Technical Solution (TS) Process 
Area (PA – a cluster of related practices that, when 
implemented collectively, satisfies a set of goals for making 
improvements in an area) of the CMMI-DEV (Capability 
Maturity Model Integration for Development) software 
process quality model [9]. This analysis is performed by 
using an assessment method based on SCAMPI (Standard 
CMMI Appraisal Method for Process Improvement) [10]. As 
consequences of this analysis, certain weaknesses in the OO-
Method approach have been indicated and adjustments have 
been proposed to make this MDD approach fully compliant 
with TS. Thus, the OO-Method approach can be integrated 
into a complete CMMI-based software process. 

OO-Method and CMMI (across the entire paper CMMI 
and CMMI-DEV are being used as synonyms) have been 
chosen for the analysis because the former is a MDD 
approach that has been successfully applied in the software 
industry [11] and the latter is the most frequently adopted 
software process quality model [6][7]. TS has been chosen to 
be analyzed because the main objectives of this PA are the 
design and the implementation of information system’s 
requirements, which are also the main objectives of MDD. 

The contribution of this paper is twofold. First, 
practitioners can benefit from the analysis by adapting it to 
detect weaknesses on other MDD approaches in relation to a 
software process quality model. As a result, they can decide 
whether adopt a specific approach (although having to 
modify it) or discard it and adopt another one. Second, this 
type of analysis can be useful in academia for identifying 
room for improvement in existing or new MDD approaches, 
and therefore, for discovering further research areas. By 
using this analysis as reference, other MDD approaches can 

522

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



be analyzed and improvements can be proposed for them so 
that their industrial acceptance could increase. 

The rest of this paper is organized as follows. Section II 
presents background and related work. Section III describes 
the SCAMPI-based assessment method which was used in 
the compliance analysis. Section IV presents the compliance 
analysis of OO-Method regarding TS. Finally, Section V 
summarizes some conclusions and proposes further work. 

II. BACKGROUND 

In this section, we provide a brief explanation of OO-
Method, CMMI-DEV, and some works related to this paper. 

A. OO-Method 

OO-Method [8] is an object-oriented method for 
conceptual modeling and automatic code generation that is 
supported by the industrial tool Olivanova [12]. It provides a 
precise UML-like notation, which is used to specify a 
Conceptual Schema that describes a system at the problem 
space level. The development process suggested by OO-
Method has two phases (Fig. 1): Development of a 
conceptual schema and Generation of a software product. 

 
Figure 1.  Phases and artifacts of the OO-Method MDD approach 

The first phase consists of eliciting and representing the 
essential properties of the information system under study, 
thereby creating the corresponding conceptual schema. In the 
second phase, a precise execution model, conformed by a set 
of compilation patterns, indicates the correspondences 
between the conceptual schema and the pieces of code in a 
target implementation platform. Thus, the application code is 
automatically generated for an input conceptual schema. 

B. CMMI-DEV 

CMMI-DEV [10] is a guide to implement a continuous 
process improvement for developing products and services. 
For accomplishing this task, it provides two representations: 
Continuous, which assesses the capability level of individual 
Process Areas (PAs) that are selected based on the 
organization’s business goals; and Staged, which assesses 
the maturity level of a whole development process. 

The compliance analysis presented in this paper focuses 
on the continuous representation, since only one PA is 
analyzed. In this representation, capability levels have goals 
and practices (decomposition of goals) of two types: 1) 
Specific Goals (SGs) and Specific Practices (SPs), which are 

applied only to a particular PA; and 2) Generic Goals (GGs) 
and Generic Practices (GPs), which are applied equally to all 
PAs. From the assessment of practices and goals, it is 
possible to classify the capability level of a PA on a scale 
from 0 to 3 (unlike the previous versions of CMMI, the 
continuous representation no longer has capability levels 4 
and 5). OO-Method will be assessed against level 1 because, 
according to CMMI-DEV, this level corresponds to the basis 
for improvement initiatives in a specific PA. 

C. Related Work 

Several authors have discussed the compliance of CMMI 
or CMM (the ancestor of CMMI) in relation to traditional or 
agile software development processes (e.g., [13][14][15], 
[16]). However, results obtained from these works are not 
completely useful to MDD approaches, which have 
characteristics that differentiate them from those other 
approaches [1][3][4][8]. For example, MDD approaches are 
mainly focused on: 1) modeling rather than coding; 2) 
implementing changes directly in the model rather than in 
the code; 3) maintaining the model updated; 4) 
synchronizing the model and the code; 5) automatically 
verifying properties in the model; and 6) automatically 
generating the complete code from models rather than using 
the model as a guide for manual code programming, or as a 
post-mortem code documentation. 

In addition, at least one of the following problems can be 
found in the works related to those other software 
development approaches: 1) non-use of the SCAMPI grades 
of satisfaction; 2) lack of explicit/objective criteria for 
attributing grades; 3) analysis based only on the activity 
descriptions, without requiring documental evidences or 
requiring only some of the evidences; 4) analysis not in the 
same depth level as SCAMPI; 5) lack of details about the 
rationale behind the analysis; or 6) non-provision of 
solutions to fill in the gaps found in the analysis. 

Although there are some specific works related to the 
compliance of MDD approaches with CMMI or CMM, they 
fail to deal with this issue properly. The works do not explain 
in detail how an approach complies with the quality model, 
where the approach should be adjusted for compliance, and 
whether/where the approach conflicts with the quality model 
requirements. The most relevant related works found are 
described as follows. 

An engineering and management software process to 
support the achievement of CMM level 3 is proposed in [17]. 
The process uses MDA (a standard for MDD) [18] in the 
context of system families and CMM. However, an explicit 
mapping between the process and Key Process Areas (KPAs 
– a CMM concept that is equivalent to a PA of CMMI) is not 
presented, neither satisfaction grades are assigned. 

The impacts in the software process and the main 
concerns to be dealt with when using MDD for the 
implementation of the CMM’s KPAs are discussed in [19]. 
However, the discussion is presented in a high abstraction 
level, without providing any explicit compliance mapping 
neither the attribution of grades to KPAs. 

The MDD Maturity Model, which establishes five 
capability levels towards the progressive adoption of MDD 

523

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



within an organization, is proposed in [20]. The authors 
argue that this model is compliant and complementary to 
CMMI staged. However, they do not present evidences to 
justify this affirmation. 

The compliance between a software development process 
(based on the formal specification language CSP-CASL) 
with the PAs of requirements management, product 
integration, requirements development, technical solution, 
verification, and validation of CMMI is analyzed in [21]. 
The analysis concluded that, in general, it is possible to 
conciliate the development based on formal specifications 
with the requirements of CMMI. Grades are assigned for the 
respective SPs and SGs of each analyzed PA. However, the 
grades are not based on the SCAMPI criteria and evidences 
are not presented to justify all of the assigned grades. 

The Model-Driven (software) Development Process 
(MDDP) is presented in [22]. It covers the software 
development stages from business processes through system 
requirements, analysis, and design models into test scripts 
and code. The authors argue that it can be used to comply 
with every level of CMMI staged. But, a grading scheme and 
an explicit mapping identifying the documental evidences 
that give support to this compliance are not presented. 

In [23], a case study on the use of MDD to support the 
implementation of processes for the following PAs of CMMI 
is described: requirements management, technical solution, 
product integration, verification, and validation. The study 
concluded that the use of MDD helps, but is not sufficient to 
satisfy all requirements of those PAs. However, evidences to 
justify this conclusion are not presented. 

Unlike those works, we present a detailed compliance 
mapping which uses a SCAMPI-based grading method. The 
mapping was produced with the help of experts on the MDD 
approach and a CMMI consultant/member of assessment 
teams [1]. These facts reinforce the mapping validity. 

III.  A SCAMPI-BASED ASSESSMENT METHOD 

SCAMPI [10] is a method to objectively assess the 
development process of an organization according to the 
requirements of respective PAs of CMMI. It deals with the 
consolidation of evidences (e.g., presentations, documents 
and interviews) related to the execution of the process in 
actual projects. The evidences are used, by an assessment 
team, to support the attribution of grades to practices, goals 
and, finally, to the evaluated PAs.  

Although SCAMPI-based analyses are usually performed 
using artifacts from actual projects, we defined an 
assessment method based on existing publications on OO-
Method [8][11][12][24] in order to obtain results 
independent from any organizational context, and draw 
conclusions without influences from the environment in 
which the approach is used. Therefore, these results and 
conclusions can be generalized to any organization that uses 
OO-Method or similar MDD approaches.  

Assessment based on publications can be seen as a 
feature-based analysis performed as part of a major 
evaluation scenario [25]. For instance, an organization that 
follows or plans to follow CMMI might analyze the 
possibility of adopting a MDD approach as part of its 

development process; in this scenario, the organization can 
perform a feature-based analysis on each candidate MDD 
approach, and perform a preliminary selection (a subset of 
the candidate approaches) based on the analysis’ results. 
Then, the selected approaches can be used on pilot projects 
to attest their effectiveness and to decide about the adoption. 

The proposed SCAMPI-based assessment method uses 
the following types of evidences for the compliance analysis: 

• Affirmations (AFs): statements described in the 
process that confirm or support implementation (or 
lack of implementation) of a practice as well as 
information obtained from experts in the approach. 

• Artifacts (ARs): tangible evidences, mentioned in 
the process description, that are indicative of the 
work being performed and represent either the 
primary outputs of a model practice or a 
consequence of implementing a model practice.  

The assessment is performed on a bottom-up way, from 
the practices up to the goals. Hence, for characterizing the 
level of implementation of a Specific Practice (SP) or 
Generic Practice (GP), the following grades are used: 

• Fully Implemented (FI): ARs are present and 
judged to be adequate for demonstrating the 
practice implementation. No weaknesses are found. 

• Largely Implemented (LI): ARs are present and 
judged to be adequate for demonstrating the 
practice implementation. However, one or more 
weaknesses are found. 

• Partially Implemented (PI): some or all data 
required is absent or judged to be inadequate, some 
data provided (if exist) suggest that aspects of the 
practice are implemented, and one or more 
weaknesses are found; or the data supplied to the 
assessment team present conflicts, i.e., certain data 
indicate that the practice is implemented and other 
data indicate the practice is not implemented, and 
also, one or more weaknesses are noted.  

• Not Implemented (NI): some or all data required is 
absent or judged to be inadequate, data supplied (if 
exist) do not support the conclusion that the 
practice is implemented, and one or more 
weaknesses are noted. 

Based on the grades defined for a practice, each Specific 
Goal (SG) or Generic Goal (GG) is graded as: 

• Satisfied: if and only if all corresponding practices 
are graded as either LI or FI, and the aggregation of 
weaknesses associated with the goal does not have 
a significant impact on the goal achievement; or, 

• Unsatisfied: if at least one of the corresponding 
practices has a grade different from LI or FI. 

Based on the grades defined for the goals (SGs and GGs), 
the capability level of a PA is defined. For instance, the 
capability level 1 has to satisfy the associated GG (hereafter 
called GG 1). Furthermore, GG 1 is “Satisfied” if all the SGs 
associated to the PA are graded as “Satisfied”. 

524

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



For capability levels higher than 1, a PA must satisfy the 
GG associated to the current level as well as all the GGs 
associated to the lower levels. The evaluation of the current 
GG is performed by applying the grading method defined 
previously to all the GPs associated to the GG (for instance, 
a process has capability level 2 for a specific PA if it satisfies 
all the GPs associated to the GG of capability level 2 and 
also satisfies GG 1). The application of this SCAMPI-based 
assessment method to OO-Method is shown in next section. 

IV. COMPLIANCE ANALYSIS OF OO-METHOD WITH THE 

TECHNICAL SOLUTION PROCESS AREA 

The purpose of TS is providing guidance for design, 
development and implementation of the given product 
requirements [9]. It focuses on evaluating and selecting a 
solution, developing a detailed design of the solution, and 
implementing the design as a product or product component. 

The compliance analysis presented in this section uses an 
instance of the assessment method described in Section III. 
Based on publications about OO-Method, the CMMI expert 
carried out the analysis playing the role of an assessor. Then, 
experts on the MDD approach reviewed the analysis to 
identify possible flaws or misinterpretations. After that, 
discussions on the results were carried out by the experts (on 
CMMI and on the MDD approach) to validate the analysis. 

The following subsections detail the results of the 
compliance analysis of OO-Method regarding the capability 
level 1 of TS process area. For each SG, the purpose of each 
corresponding SP is presented, the practice is mapped to AFs 
and ARs, and the SP is graded. After grading all the SPs of a 
SG, each SG is graded. Finally, a summary of the results is 
presented, where the whole PA is graded. Improvement 
suggestions are also discussed. 

A. SG 1 Select Product Component Solutions 

This specific goal includes SP1.1 and SP1.2. 

SP 1.1 Develop Alternative Solutions and Selection Criteria 
This SP identifies and analyzes alternative solutions to 

enable the selection of a balanced solution in terms of cost, 
schedule, performance, and risk. Selection criteria typically 
address costs (e.g., time, people, money), benefits (e.g., 
product performance, capability, effectiveness), and risks 
(e.g., technical, cost, schedule). 

AFs:  The application’s architecture is defined based on a 
three-layer architectural pattern and restrictions on 
the selected technological platform, 
implementation language(s), and persistence 
service(s). Then, the conceptual model compilation 
is parameterized by the chosen architecture and the 
application’s source code can be automatically 
generated [8]. 

ARs:  Conceptual Schema, Execution Model, Application 
Code. 

Grade: PI 
OO-Method does not explicitly analyze alternative 

solutions prior to code generation (the architecture is usually 
defined by the application’s developers jointly with the 
clients); neither defines criteria for the architecture selection. 

However, if the source code generated is not adjusted to the 
quality requirements of a particular application, it can be 
regenerated for alternative platforms [8]. 

SP 1.2 Select Product Component Solutions 
This SP selects the product component solutions based 

on selection criteria. Lower level requirements are generated 
from the selected architecture and used to develop product 
component designs. Interfaces among product components 
are described. The description of the solutions and the 
rationale for selection are documented. 

AFs:  Components identified during the phase 
“Development of a conceptual schema” are 
allocated to the architecture layers [8]. A 
documentation manager [26], which is part of the 
suite of tools to support OO-Method, automatically 
generates documentation from the conceptual 
schema, describing each component and its 
interface with other components. 

ARs:  Conceptual Schema, Execution Model, Application 
Code, Generated documentation, Documentation 
manager tool. 

Grade: LI 
OO-Method does not have an explicit artifact for 

documenting the selection decisions that are related to 
product component solutions, neither their rationale. 

Conclusion 
SP1.1 is graded as PI and SP1.2 is graded as LI. 

Therefore, SG 1 is graded as “Unsatisfied”. 

B. SG 2 Develop the Design 

This specific goal includes SP2.1, SP2.2, SP2.3, and 
SP2.4. 

SP 2.1 Design the Product or Product Components 
This SP designs the product or its components in two 

phases, which can overlap in execution: preliminary 
(abstract) and detailed (concrete) design.  

AFs:  During the phase “Development of a conceptual 
schema”, an abstract architecture is defined. A 
concrete architecture is defined during the phase 
“Generation of a software product”, according to 
an execution model driven by restrictions on the 
selected technological platform, implementation 
language(s), and persistence service(s) [8]. 

ARs: Conceptual Schema, Execution Model, Application 
Code. 

Grade: FI 
No weak points have been identified. 

SP 2.2 Establish a Technical Data Package 
This SP records the design in a technical data package (a 

collection of items providing the developer a description of 
the product or product components) created during 
preliminary design.  

AFs:  A documentation manager is responsible for 
documenting the architecture definition from the 
conceptual schema created, and a repository 

525

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



manager is responsible for creating and 
administrating a model library (including access 
control and management of model versions) [26]. 

ARs: Generated documentation, Data repository, 
Documentation manager tool, Repository manager 
tool, Conceptual Schema, Execution Model, 
Application Code. 

Grade: FI 
No weak points have been identified. 

SP 2.3 Design Interfaces Using Criteria 
This SP designs product component interfaces using 

established criteria (e.g., critical parameters that should be 
defined, or at least investigated, to ascertain their 
applicability). 

AFs:  OO-Method defines criteria for validating the 
Conceptual Schema in terms of correctness and 
completeness. The specification samples presented 
in part II of [8] illustrate the use of these criteria. 
Additional criteria for evaluating consistency, 
correctness and completeness are defined in [24]. 

ARs: Conceptual Schema, Validation criteria, Execution 
Model, Application Code. 

Grade: FI 
No weak points have been identified. 

SP 2.4 Perform “Make, Buy, or Reuse” Analysis 
This SP evaluates whether the product components 

should be developed, purchased, or reused based on 
established criteria. 

AFs:  Not identified. 
ARs: Not identified. 
Grade: NI 
OO-Method does explicitly mention this analysis in its 

process; neither establishes criteria for performing it. 
However, the approach makes it possible to integrate 
developed components with pre-existing components and/or 
systems (legacy code). 

Conclusion 
SPs 2.1, 2.2 and 2.3 are graded as FI, and SP 2.4 is 

graded as NI. Therefore, SG 2 is graded as “Unsatisfied”. 

C. SG 3 Implement the Product Design 

This specific goal includes SP3.1, SP3.2, and SP3.3. 

SP 3.1 Implement the Design 
This SP implements the design of the product 

components and includes the allocation, refinement, and 
verification of each product component. 

AFs:  Once architecture is chosen, its code can be 
automatically generated. Prior to the source code 
generation, it is possible to have a conceptual 
model validation [8]. 

ARs: Conceptual Schema, Validation criteria, Execution 
Model, Application Code. 

Grade: FI 
No weak points have been identified. 

 

SP 3.2 Develop Product Support Documentation 
This SP develops and maintains documentation that will 

be used to install, operate, and maintain the product. 
AFs:  The documentation manager [26] automatically 

generates support and end-user documentation 
from the conceptual schema created. 

ARs: Generated documentation, Documentation manager 
tool, Conceptual Schema, Application Code. 

Grade: FI 
No weak points have been identified.  

Conclusion 
SP 3.1 is graded as FI and SP 3.2 is graded as FI. 

Therefore, SG 3 is graded as “Satisfied”. 

D. Summary of Assessment and Improvement Suggestions 

As Table I summarizes, the OO-Method development 
process has capability level 0 with regard to TS. 

TABLE I.  OVERALL RESULTS OF OO-METHOD ASSESSMENT 

Goals and practices of TS Grades 
SG 1 Select Product Component Solutions Unsatisfied. 
SG 2 Develop the Design Unsatisfied. 
SG 3 Implement the Product Design Satisfied 

In spite of this negative result, several convergence 
points have been pointed out, and most of the weak points 
found are easy to solve with the improvement suggestions 
described in Table II. In general, the improvements are 
simple adjustments in the development process, mainly 
related to explicit documentation of evidences. 

TABLE II.  IMPROVEMENT SUGGESTIONS FOR OO-METHOD 

Improvements Affected 
SPs 

Extension of the development process to include an 
explicit analysis of alternative solutions prior to the code 
generation, as well as the explicit creation of a document 
defining criteria for the architecture selection. 

SP 1.1 

Explicit documentation of selection decisions (related to 
product component solutions) and their rationale. 

SP 1.2 

Explicit definition of criteria to perform “make, buy or 
reuse” analysis and the creation of an activity to explicitly 
perform this analysis prior to the code generation. 

SP 2.4 

Thus, by tailoring OO-Method with these improvements, 
it is possible to turn the grade of all SGs of TS into 
“Satisfied”. As a result, the development process of OO-
Method can reach the capability level 1 for this PA. 
However, in order to confirm the effectiveness of the 
changes, the improvements should be implemented in a new 
version of OO-Method and the modified approach should be 
used in actual projects. 

V. CONCLUSIONS AND FUTURE WORK 

Even though this work has presented an analysis for 
CMMI and OO-Method, its purpose is to emphasize the need 
of analyzing the compliance of MDD approaches in relation 
to any software process quality model and to show how it 
can be addressed. Hence, the analysis can be adapted to other 
quality models [6][7] and to other MDD approaches [27]. 

526

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6



In this paper, the compliance of OO-Method in relation 
to TS process area was analyzed. As a result, it was detected 
that this MDD approach does not sufficiently implement 
certain SPs. Hence, improvements were proposed aiming to 
fully implement the SPs for which weaknesses were found.  

Some of the problems found in the analysis of OO-
Method are also common to other approaches [27]. For 
instance, the lack of “make, buy, or reuse” analysis is a 
problem found in most of the approaches. Moreover, some of 
the features that were satisfied for OO-Method (e.g., the full 
code and document generations) are not presented in all of 
the other approaches [27]. 

This work is a starting point for several future works. We 
plan to perform a SCAMPI-based analysis of other MDD 
approaches for assessment and comparison; an assessment of 
the OO-Method development process applied to real projects 
must be addressed and an evaluation of the proposed 
improvements must be performed; the compliance with other 
PAs and capability levels of CMMI-DEV will be analyzed 
against OO-Method; and a systematic literature review [28] 
will be conducted to verify the existence of other works 
related to the compliance of MDD and software process 
quality models. All of these works are part of a research 
agenda towards the development of a complete MDD-based 
software process compliant with CMMI. 

ACKNOWLEDGMENT 

This work has been developed with the support of the 
Brazilian Research Agency CAPES, under the grant 
#BEX3229/10-6, and the Spanish Government, under the 
projects ORCA (PROMETEO/2009/15) and PROS-REQ 
(TIN2010-19130-C02-02). 

REFERENCES 
[1] A. Vasconcelos, “Curriculum Vitae”, in Portuguese, 

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4
787134E7, Last access 2011/07/18 

[2] B. Selic, “The Pragmatics of Model-Driven Development,” 
IEEE Software, vol. 20(5), 2003, pp. 19-25 

[3] D. Schmidt, “Model-Driven Engineering,” IEEE Computer, 
vol. 39(2), 2006, pp. 25-31 

[4] M. Völter, “Model-Driven Software Development – 
Technology, Engineering, Management,” Wiley, 2007 

[5] P. Mohagheghi and V. Dehlen, “Where is the Proof? – A 
Review of Experiences from Applying MDE in Industry,” 
LNCS, Springer, 2008, vol. 5095, pp. 432-443 

[6] F. J. Pino, F. García, and M. Piattini, “Software process 
improvement in small and medium software enterprises: a 
systematic review,” Software Quality Journal, vol. 16(2), 
2008, pp. 237-261 

[7] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. Cheng, R. 
Permadi, and R. Feldt, “Evaluation and Measurement of 
Software Process Improvement - A Systematic Literature 
Review,” IEEE-TSE, 2011 

[8] O. Pastor and J. C. Molina, Model-Driven Architecture in 
Practice: A Software Production Environment Based on 
Conceptual Modeling, 1st edn. Springer, New York, 2007 

[9] SEI, “CMMI for Development, Version 1.3,” CMU/SEI-
2010-TR-033, http://www.sei.cmu.edu, 2010, Last access 
2011/07/18 

[10] SEI, “Standard CMMI Appraisal Method for Process 
Improvement (SCAMPI) A, Version 1.3: Method Definition 
Document”, CMU/SEI-2011-HB-001, 2011, 
http://www.sei.cmu.edu, 2010, Last access 2011/07/18 

[11] PROS, Model Driven Development and Automatic Code 
Generation, http://www.pros.upv.es/index.php/en/lineas/69-
lineaddm, Last access 2011/07/18 

[12] O. Pastor, J. C. Molina, and E. Iborra, “Automated production 
of fully functional applications with OlivaNova Model 
Execution”, ERCIM News, nº 57, 2004 

[13] L. V. Manzoni and R. T. Price, “Identifying Extensions 
Required by RUP to Comply with CMM Levels 2 and 3,” 
IEEE TSE, vol. 29(2), 2003, pp. 181-192 

[14] C. Santana, C. Gusmão, A. Rouiller, and A. Vasconcelos, 
“Achieving Software Quality Certifications through Agile 
Software Development,” Internat. Journal of Advanced 
Manufacturing Systems, vol. 11(1), 2008, pp. 1-6 

[15] J. Smith, “Reaching CMM Level 2 and 3 with the Rational 
Unified Process – White Paper,” 
http://www.wthreex.com/rup/portugues/papers/pdf/rupcmm.p
df, 2000, Last access 2011/07/18 

[16] J. Diaz, J. Garbajosa, and J. A. Calvo-Manzano, “Mapping 
CMMI Level 2 to Scrum Practices: An Experience Report,” 
Proc. EuroSPI 2009, CCIS, Springer, 2009, vol. 42, pp. 93-
104 

[17] ESI, “Model-driven Architecture inSTrumentation, 
Enhancement and Refinement,” IST-2001-34600, MASTER-
2003-D3.2-V1.0-PUBLIC, 2003 

[18] OMG, “Model Driven Architecture (MDA) Guide Version 
1.0.1,” http://www.omg.org/mda/, 2003, Last access 
2011/07/18 

[19] R. Steinhau, et al., “Guidelines for the Application of MDA 
and the Technologies covered by it,” Deliverable 3.2, 
MODA-TEL Consortium, IST-2001-37785, Interactive 
Objects Software GmbH, 2003 

[20] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau, “MDD 
Maturity Model: A Roadmap for Introducing Model-Driven 
Development. Model Driven Architecture – Foundations and 
Applications,” LNCS, Springer, 2006, vol. 4066, pp. 78-89 

[21] S. Mishra and B. Schlingloff, “Compliance of CMMI Process 
Area with Specification Based Development,” Proc. VI 
Internat. Conf. on Softw. Engineering Research, Management 
and Applications, IEEE Computer Society, 2008, pp. 77-84 

[22] Crag Systems, The Model-Driven Development Process, 
http://www.cragsystems.co.uk/development_process, 2008, 
Last access 2011/07/18 

[23] S. Fricker,“Introducing Model-Driven Development for 
CMMI Engineering Process Areas,” SEPG 2006, 
http://www.secc.org.eg/sepg%202006/ingredients/Indexes/aut
horindex.html#f, 2006, Last access 2011/07/18 

[24] B. Marín, G. Giachetti O. Pastor, and A. Abran, “A Quality 
Model for Conceptual Models of MDD Environments” 
Advances in Software Engineering, (Special Issue: New 
Generation of Software Metrics), 2010 

[25] B. Kitchenham, “DESMET: A Method for Evaluating 
Software Engineering Methods and Tools,” TR96-09, 
Department of Computer Science, University of Keele, 1996 

[26] CARE-Technologies Web Page, http://www.care-t.com, 
2011/07/18 

[27] J. Estefan, “Survey of Model-Based Systems Engineering 
Methodologies – Rev. B,” Technical Report, INCOSE MBSE 
Initiative Focus Group, 2008 

[28] B. Kitchenham and S. Charters, “Guidelines for performing 
Systematic Literature Reviews in Software Engineering 
Version 2.3,” Keele University and Durham University Joint 
Technical Report EBSE-2007-01, 2007 

527

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-165-6


