ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

From Boolean Relations to Control Software

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Department of Computer Science
Sapienza University of Rome
Via Salaria 113, 00198 Rome, ltaly
Email: {mari,melatti,salvo,trongi@di.uniromal.it

Abstract—Many software as well digital hardware automatic ~ synthesis from formal specifications is still in its infancy
synthesis methods define the set of implementations meeting Unfortunately the approaches developed for hardware syn-
the given system specifications with a boolean relatio. In thesis cannot be directly used in a software context. In

such a context a fundamental step in the software (hardware) fact thesi thods t fi hard imol tati
synthesis process is finding effective solutions to the functional act, syntnesis metnods targeting a haraware implementati

equation defined by K. This entails finding a (set of) boolean typically aim at minimizing the number of digital gates and
function(s) F' (typically represented using OBDDs, Ordered of hierarchy levels. Since in the same hierarchy level gates

Binary Decision Diagrams) such that: 1) for all = for which K output computation iparallel, the hardware implementation
is satisfiable, K (z, F'(z)) = 1 holds; 2) the implementation of \y,cET (Worst Case Execution Tifhis given by the number

F is efficient with respect to given implementation parameters . . .
such as code size or execution time. While this problem has of levels. On the other hand, a software implementation will

been widely studied in digital hardware synthesis, littte has have tosequentiallycompute the gates outputs. This implies
been done in a software synthesis context. Unfortunately the that the software implementation WCET is the number of
approaches developed for hardware synthesis cannot be directly gates used, while a synthesis method targeting a software
used in a software context. This motivates investigation of implementation may obtain a better WCET. This motivates

effective methods to solve the above problem whe#' has to . L .
be implemented with software. In this paper, we present an investigation of effective methods to solve the above pobl

algorithm that, from an OBDD representation for K, generates When F has to be implemented with software.
a C code implementation for F' that has the same size as the In this paper we present an algorithm that, from an OBDD

OBDD for F and a worst case execution time linear innr, representation foks, effectively generates a C code imple-
being n = |z| the number of input arguments for functions in mentation fork that has the same size as the OBDD for
F and r the number of functions in F. . L . . ;
and a WCET linear in linear imr, beingn = |z| the size

Keywords-Control Software Synthesis; Embedded Systems; of states encoding and= |u| the size of actions encoding.
Model Checking This allows us to synthesize correct-by-constructontrol
software provided thatK is provably correct w.r.t. initial
formal specifications. This is the case of [4], where an algo-

Many software as well digital hardware automatic synthe-—rithm to synthesizex starting from the formal specification
sis methods define the set of implementations meeting thef a Discrete-Time Linear Hybrid SystenDTLHS in the
given system specifications with a boolean relationSuch following) is presented. Thus this methodology allows a
relation typically takes as input (the-bits encoding of) a correct-by-construction control software to be synthedz
statex of the system and (the-bits encoding of) a proposed starting from formal specifications for DTLHSs.
action to be performedu, and returndrue (i.e., 1) iff the Note that the problem of solving the functional equation
system specifications are met when performing actian K(x,F(z)) = 1 wrt. F is trivially decidable, since there
statex. In such a context a fundamental step in the softwareare finitely manyF'. However, trying to explicitly enumerate
(hardware) synthesis process is finding effective solstton all F' requires time(272") (being n the number of bits
the functional equation defined Wy, i.e., K (x,u) = 1. This encoding statec and » the number of bits encoding state
entails finding a tuple of boolean functiofs= (f1,..., f) u). By using OBDD-based computations, our algorithm
(typically represented using OBDD®rdered Binary Deci- complexity isO(r2™) in the worst case. However, in many
sion Diagramd1]) s.t. 1) for allz for which K is satisfiable interesting cases OBDD sizes and computations are much
(i.e., it enables at least one actiol(z, F'(xz)) = 1 holds, lower than the theoretical worst case (e.g., in Model Check-
and 2) the implementation of" is efficient with respect ing applications, see [5]).
to given implementation parameters such as code size or Furthermore, once the OBDD representation forhas
execution time. been computed, a trivial implementation &f could use

While this problem has been widely studied in digital a look-up table in RAM. While this solution would yield
hardware synthesis [2][3], little has been done in a softwar a better WCET, it would imply aQ(r2") RAM usage.
synthesis context. This is not surprising since softwardJnfortunately, implementations fdr in real-world cases are

I. INTRODUCTION

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 528

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

typically implemented on microcontrollers (this is the €as detail. Furthermore, the implementation synthesis diesdri
e.g., forembedded systeinsSince microcontrollers usually in [4] has not the same size of the OBDD 1By i.e., it does
have a small RAM, the look-up table based solution is nothot exploit OBDD node sharing.

feasible in many interesting cases. The approach we presentin [7], an algorithm is presented which computes boolean
here will rely on OBDDs compression to overcome suchfunctions F' satisfying a given boolean relatidid in a way
obstruction. s.t. K(x, F(x)) = 1. This approach is very similar to ours.

Moreover, ' : B" — B" is composed byr boolean However [7] does not generate the C code control software
functions, thus it is represented byOBDDs. Such OBDDs and it does not exploit OBDD node sharing.
typically share nodes among them. If a trivial implementa- Therefore, to the best of our knowledge this is the first
tion of F' in C code is used, i.e., each OBDD is translated agime that an algorithm synthesizing correct-by-constarct
a stand-alone C function, OBDDs nodes sharing will not becontrol software starting from a boolean relation (with the
exploited. In our approach, we also exploit hodes sharingcharacteristics given in Section 1) is presented.
thus the control software we generate fully takes advantage
of OBDDs compression.

Finally, we present experimental results showing effec- In the following, we denote witf8 = {0,1} the boolean
tiveness of the proposed algorithm. As an example, in lesdomain, where0 stands forfalse and 1 for true. We will
than 1 second and within 70 MB of RAM we are able denote boolean functiong : B™ — B with boolean
to synthesize the control software for a functidn of expressions on boolean variables involvirglogical OR),

24 boolean variables, divided im = 20 state variables - (logical AND, usually omitted thusy = = - y), ~ (log-
andr = 4 action variables, represented by a OBDD with ical complementation) ané (logical XOR). We will also
about4 x 10* nodes. SuchK represents the set of correct denote vectors of boolean variables in boldface, exg=
implementations for a real-world system, namely a multi-(z1,...,z,). Moreover, we also denote witfl,,—,(x) the
input buck DC/DC converter [6], obtained as describedboolean functionf(zy,...,z;—1,9(x),%it1,...,2,) and
in [4]. The control software we synthesize in such a casevith 3z; f(x) the boolean functiorf|,,—o(x) + flz,=1(x).
has about .2 x 10* lines of code, whilest a control software Finally, we denote withn] the set{1,...,n}.

not taking into account OBDDs nodes sharing would have 1) Most General Optimal ControllersA Labeled Tran-
had aboutl.5 x 10* lines of code. Thus, we obtain 2% sition Systen(LTS) is a tupleS = (S, A,T) where S is
gain towards a trivial implementation. a finite set of statesd is a finite set ofactions and7" is

This paper is organized as follows. In Section Il we give the (possibly non-deterministid¢jansition relationof S. A
the basic notions to understand our approach. In Section I\¢ontroller for an LTS S is a functionkK : S x A — B
we formally define the problem we want to solve. In Sec-enabling actions in a given state. We denote with D&M
tion V we give definition and main properties of COBDDs the set of states for which a control action is enabled. An
(i.e., Complemented edges OBDDsen which our approach LTS control problemis a triple? = (S, I, G), whereS
is based. Section VI describes the algorithms our approacis an LTS andl,G C S. A controller K for S is a strong
consists of. Finally, Section VIl presents experimentalitts solutionto P iff it drives eachinitial states € I in a goal
showing effectiveness of the proposed approach. statet € GG, notwithstanding nondeterminism 6t A strong
solution K* to P is optimaliff it minimizes path lengths. An
optimal strong solutiori™* to P is themost general optimal

Synthesis of boolean functiong’ satisfying a given controller (we call such solution amgg iff in each state it
boolean relationk in a way s.t. K(z, F(x)) = 1 is also enables all actions enabled by other optimal controlleos. F
addressed in [2]. However, [2] targets a hardware settingnore formal definitions of such concepts, see [8].
whereas we are interested in a software implementation Efficient algorithms to compute mgos starting from suit-
for F'. Due to structural differences between hardware andble (nondeterministic) LTSs have been proposed in the
software based implementations (see the discussion in Seliterature (e.g., see [9]). Once an mdo has been com-
tion I), the method in [2] is not directly applicable here. An puted, solving and implementing the functional equation
OBDD-based method for synthesis of boolean (reversible)<(x,w) = 1 allows a correct-by-construction control soft-
functions is presented in [3] (see also citations thereof)ware to be synthesized.

Again, the method in [3] targets a hardware implementation, 2) OBDD Representation for Boolean FunctionA: Bi-
thus it is not applicable here. nary Decision Diagran{BDD) R is a rooted directed acyclic

In [4], an algorithm is presented which, starting from graph (DAG) with the following properties. EackR node
formal specifications of a DTLHS, synthesizes a correctw is labeled either with a boolean variabter(v) (internal
by-construction boolean relatioR’, and then a correct-by- node) or with a boolean constantl(v) € B (terminal node).
construction control software implementation far. How- Each R internal nodev has exactly two children, labeled
ever, in [4] the implementation o is not described in with high(v) and low(v). Let zq,...,z, be the boolean

IIl. BASIC DEFINITIONS

Il. RELATED WORK

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 529

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

variables labelingR internal nodes. Each terminal node finite set of nodes iii) 1 € V is the terminal node of
representsf, (z) = val(v). Each internal node represents p, corresponding to the boolean constan{non-terminal
Jo(®) = T frigh(v) (€) + Zi fiow(w) (), beingz; = var(v). nodes are callednternal); iv) for each internal nodev,
An Ordered BDD(OBDD) is a BDD where, on each path var(v) < wvar(high(v)) and var(v) < var(low(v)); V)
from the root to a terminal node, the variables labeling eaclvar, low, high, flip are functions defined on internal nodes,
internal node must follow the same ordering. namely:var : V'\ {1} — V assigns to each internal node a
boolean variable iV, high[low] : V' \ {1} — V assigns to
each internal node a high child [low child] (or true child
Let K(z1,...,2n, u1,...,ur) be the mgo for a given [else child), representing the case in whichr(v) = 1
control problemP = (S, I, G). We want to solve the [var(y) = 0], flip : V' \ {1} — B assigns to each internal
boolean functional equatioi’ (z,u) = 1 w.r.t. variablesu, nodev a boolean value: namely, ffip(v) = 1 then the else
that is we want to obtain boolean functioff, ..., f, s.t. chjld has to be complemented, otherwise it is regular (i.e.,

IV. SOLVING A BOOLEAN FUNCTIONAL EQUATION

Kz, fi(x),.... fr(®)) = Klu,=f(@)....u,=f.(2) (@, %) = non-complemented).
1. This problem may be solved in different ways, depending) .]
on the target implementation(hardware or software) for COBDDs associated multigraphsiVe associate to a

functions f;. In both cases, it is crucial to be able to bound COBDD p = (V, V, 1, var, low, high, flip) a labeled

the WCET Worst Case Execution Tihef the obtained directed multigraplG”) = (V, E) s.t. V' is the same set of

controller. In fact, controllers must work in an endlessseip ~ N0des ofp and there is an edge, w) € E iff w is a child of

loop with the systemS (plant) they control. This implies ¢- Moreover, each edgec E has a typgype(e), indicating

that, everyT' secondsgampling timg the controller has to if e is a then, a regular else, or a complemented else edge.

decide the actions to be sent & Thus, in order for the Figure 1 shows an example of a COBDD depicted via its

entire system (plant + control software) to properly work, associated _mult_|graph, where edges are d|re_:cte_d downwards

the controller WCET upper bound must be at m@st Moreover, in Figure 1 thgn edges are solid lines, regular
In [2], fi,...,f are generated in order to optimize else edges_are dashed lines and complemented else edges

a hardware implementation. In this paper, we focus on aré dotted lines. .

software implementations fof; (control softwarg. As it The graph associated to a given COBRD= (V, V, 1,

is discussed in Section |, simply translating an hardwarear, low, high, flip) may be seen as a forest with multiple

implementation into a software implementation would re-rooted multigraphs. In order to select one root vertex and

sult in a too high WCET. Thus, a method directly tar- thus one rooted multigraph, we define tt®BDD restricted

geting software is needed. An easy solution would bd0 v € V' as the COBDDp, = (V, V,, 1, var, low, high,

to set up, for a given state, a SAT problem instance ilip) S.t.V, ={w € V| there exists a path from to w in

C = Cki,....Crxicry. . oy Where Crey A ... A Cre, G} (nOte thatw € V7). _ N

is equisatisfiable tdk and each clause; is eitherz; (if Reduced COBDDsTwo COBDDs areisomorphiciff

z; is 1) or z; (otherwise). TherC may be solved using a there exists a mapping from nodes to podes preserving at-

SAT solver, and the values assignedutdn the computed ~tributesvar, flip, high andlow. A COBDD is calledreduced

satisfying assignment may be returned as the action to b it contains no vertex with low(v) = high(v) Aflip(v) =

taken. However, it would be hard to estimate a WCET for0: hor does it contains distinct verticesandv" such thatp,

such an implementation. The method we propose in thi&ndp., are isomorphic. Note that, differently from OBDDs,

paper overcomes such obstructions by achieving a WCE# is possible thathigh(v) = low(v) for somewv € V,

proportional torn. provided thatflip(v) = 1 (e.g., see node8xf and Oxe in
Figure 1). In the following, we assume all our COBDDs to
V. OBDDs wiTH COMPLEMENTED EDGES be reduced.

In this section, we introduce OBDDs with complemented COBDDs properties:For a given COBDDp = (V, V,
edges (COBDDs, Definition 1), which were first presentedl, var, low, high, flip) the following properties follow from
in [10][11]. Intuitively, they are OBDDs where else edges definitions given above: if7() is a rooted directed acyclic
(i.e., edges of typév, low(v))) may be complemented. Then (multi)graph (DAG); i) each path i(») starting from an
edges (i.e., edges of typ@, high(v))) complementation internal node ends im; iii) let v, ..., v, be a path inG(),
is not allowed to retain canonicity. Edge complementationthenvar(vy) < ... < var(vg).
ums:riltl));yfeduce resources usage, both in terms of CPU anR. Semantics of a COBDD

Definition 1. An OBDD with complemented edg@&&OBDD
in the following) is a tuplep = (V, V, 1, var, low, high,
flip) with the following properties:)V = {z1,...,2,}
is a finite set ofordered boolean variables; i)V is a

In Definition 2, we define the semantifg of each node
v of a given COBDDyp as the boolean function represented
by v, given the parityb of complemented edges seen on the
path from a root tov.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 530

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Definition 2. Let p = (V, V, 1, var, low, high, flip)
be a COBDD. Thesemantics of the terminal node
w.rt. a flipping bit b is a boolean function defined as
[1,b], := b. The semantics of an internal node € V
w.rt. a flipping bit b is a boolean function defined as
[v,0], := x;[high(v), b], + Z;[low(v), b & flip(v)],, being
x; = var(v). Whenp is understood, we will writg-] instead
of [],

Example 1. Let p be the COBDD depicted in Figure 1. If we
pick nodeOxe we have[Oxe, b] = z2[1,b] + Z2[1,b® 1] =
Tob+ Tob =22 B b.

Theor. 1 states that COBDDs arecanonicalrepresenta-
tion for boolean functions (see [10][11]).

Theorem 1. Let f : B® — B be a boolean function. Then
there exist a COBDD = (V, V, 1, var, low, high, flip), a
nodev € V and a flipping bitb € B s.t. [v,b] = f(z).
Moreover, letp = (V, V, 1, var, low, high, flip) be a
COBDD, letvy,v2 € V be nodes and,, b2 € B be flipping
bits. Then[[’Ul, blﬂ = [[1)27 bg]] iff vy = v A by = bs.

VI. SYNTHESIS OFC CODE FROM ACOBDD

Let K(z1,...,2p,u1,...,u,) be the mgo for a given
control problem. Letp = (V, V, 1, var, low, high, flip)
be a COBDD s.t. there exist € V, b € B s.t. [v,0] =
K(z1, .y Ty tty ..o uy). ThUus, Y = X WU = {xq, ...,
xpp{uy, ..., u,.} (we denote with the disjoint union
operator, thust N/ = @). We will call variablesz; € X
asstate variablesand variables:; € ¢/ asaction variables
More in-depth details may be found in [8].

A. Synthesis Algorithm: Overview

Our method Synthesizetakes as inpufp, v and b s.t.
[v,b] = K(x,wu). Then, it returns as output a C function
voi d K(int *x, int =u) with the following prop-
erty: if, before a call toK, Vi x[i — 1] = x; holds (array
indexes in C language begin frothwith € Dom(K), and
after the call tK, Vi u[i—1] = u; holds, thenk (z, u) = 1.
Moreover, the WCET of functiofK is O(nr).

Note that our methodSynthesizeprovides an effective
implementatiorof the mgokK, i.e., a C function which takes

exploit COBDD node sharing in the generated software. This
phase is performed by functioBenerateCCode

Thus functionSynthesizas organized as in Algorithm 1.
Correctness for functiosynthesizeas stated in Theor. 2.

Algorithm 1 Translating COBDDs to a C function
Require: COBDD p, nodewv, booleanb
Ensure: Synthesizé, v, b):
1: (v1,by,...,v.,b.) < SolveFunctionalEg, v, b)
2: GenerateCCodp, vy, b1, ..., 0., b;)

B. Synthesis Algorithm: Solving a Functional Equation

In this phase, starting from, v andb (thus from[v, b] =
K(x,u)), we compute functiongy, ..., f, s.t. for allz €
Dom(K), K(x, fi(x),..., fr(x)) = 1.

To this aim, we follow an approach similar to
the one presented in [7]. Namely, we compuje
using fi,...,fi—1, in the following way: f;(x)

Uit1y---5Up K((L’, fl(iL')7 ey fi,1($)7 1,’LLZ'+1, Ce ,un).
Thus, functionSolveFunctionalEg, v,b) computes and re-
turns (v1, b1, ..., vy, by) St for alli € [r], [vi, bi] = fi(x).

C. Synthesis Algorithm: Generating C Code

In this phase, starting from COBDD nodes ..., v, and
flipping bits b4, ...,b, for functions f1,..., f. generated
in the first phase, we generate two C functionsvdi d
K(int =x, int =u),whichisthe required output func-
tion for our methodSynthesize i) i nt K bits(int
*X, int action), whichis an auxiliary function called
by K. AcalltoK_bi t s(x,) returnsf;(x), beingx[j—

1] = z; for all j € [n]. This phase is detailed in Algs. 2
(function GenerateCCodeand 3 (functionTranslatg.

Given inputsp, vy, by, ..., v, b, (output by SolveFunc-
tionalEg), Algs. 2 and 3 work as follows. First, function
int Kbits(int *x, int action) isgenerated. If
x[j—1] = z; for all j € [n], the callK_bits(x, 1)
has to returnf;(z). In order to do thisK_bi ts(x, 1)
traverses the grapty(#»:i) by taking, in each node, the
then edge ifx[j — 1] = 1 (with j s.t. var(v) = ;) and
the else edge otherwise. When nadés reached, then is
returned iff the integer sur+-b; is even, being the number

as input the current state of the LTS and outputs the actioof complemented else edges traversed. Parity #fb; is

to be taken. Thus is indeed a control software.

Function Synthesizeis organized in two phases. First,
starting fromp, v andb (thus from K (x,u)), we generate
COBDD nodesuy,...,v, and flipping bitsby, ..., b, for
boolean functionsfy, ..., f. s.t. eachf; = [v;,b;] takes
as input the state bit vectat and computes thé-th bit
u; of an output action bit vector,, where K (z,u) = 1,
provided thatz € Dom(K). This computation is carried
out in function SolveFunctionalEqSecond,f1,..., f, are
translated inside functionoi d K(int *x, int xu).

maintained by initializing a C variableet _b to b;, then
complementing et _b when a complemented else edge is
traversed, and finally returninget _b.

Thus, Algs. 2 and 3 generake bi t s in order to obtain
the above described behavior. Namely, foraglloutput by
the first phase (functiorSolveFunctionalEyy GenerateC-
Code calls Translatewith parametersp, v;, W, where W
maintains the set of nodes already translated in C code.
This results, for all such;, in a recursive graph traversal of
G(rv:) where, for each internal node ¢ W which was not

This step is performed by maintaining the structure of thealready translated, a C code bloégk= B, Bs is generated

COBDD nodes representing, ..., f... This allows us to

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

s.t. By isofthe formL_w: if (x[j—1]) goto L_h;

531

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

(line 7 of Algorithm 3) andB; has one of the following
forms: i) el se goto L_I; (if flip(w) = 0, line 9 of
Algorithm 3) or ii) el se {ret_b = !ret_b; goto
L_1; } (otherwise, line 8 of Algorithm 3). For the terminal
node, the blockL_1: return ret_b; is generated.

Note that maintaining the set of already translated nodes

W allows us to fully exploit COBDDs nodes sharing.
Algorithm 2 Generating C functions

Require: COBDD p, vy, ...,v,, boolean valueg,, ...
Ensure: GenerateCCode, v, b1, ..., 0., b.):

by

1 print “int Kbits(int *x, int action) {
int ret_b; switch(action) {"
2: for all i € [r] do
3 print “case ", i — 1, “: ret_b =" b, “
goto L_", v;,";"
4: print “}” /* end of the switch block */
5 W<+ o

6: for all do i € [r] W «Translatép,v;, W) done
7: print “} K(intxx,intxu){int
i;for(i=0;i<"r*i++)uli]=K bits(x,i);}"

Algorithm 3 COBDD nodes translation
Require: COBDD p, nodev, nodes setV
Ensure: Translatép,v, W):

1 if v € W then return W

22 W+ WU {v}, print “L_", v, “:”

3. if v = 1 then

4. print “return ret_b;”

5: else

6: let: be s.tvar(v) = z;

7. print “i f(x["i—1"]==1)goto L_", high(v)
8. if flip(v) then print “el se {ret_b = Iret_b;

goto L_", low(v),"; }"
9: else print“el se goto L_", low(v)
10: W <« Translatép, high(v), W)
11. W <« Translatép,low(v), W)
12: return W

Algorithm Correctness:Correctness of our approach,
i.e., of functionSynthesizen Algorithm 1, is stated by Th. 2
(for the proof, see [8]).

Theorem 2. Let p = (V, V, 1, var, low, high, flip)

be a COBDD withV Xul, v € V be a node,
b € B be a boolean. Lefv,b] = K(x,u). Then function
Synthesizép,v,b) generates a C functiowoi d K(i nt

*X, int *=u) with the following property: for allx €

Dom(K), if before a call toK Vi € [n] X[i — 1] = z;, and
after the call toK Vi € [r] u[i —1] = u;, thenK (z,u) = 1.

Furthermore, functiork has WCETO (nr).

An Example of TranslationConsider the COBDDp
shown in Figure 1. Withinp, consider mgoK (zg, 1,
X2, ug, uy) = [0x17, 1]. By applying SolveFunctionalEqg
we obtain fl(l'o, X1, IZ?Q) = [[OX157 1]] and fg(xo, X,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

u0

ul

x0

x1

x2

Figure 1. An mgo example

int K bits(int *x, int action) { int ret_b;
switch(action) { caseO: ret_b = 0; goto L_0x15;
case l: ret_b = 0; goto L_0x10; }

L_0Ox15: if (x[0] == 1) goto L_0x13;

else{ ret_b = !ret_b; goto L_O0x14; }
L_0x13: if (x[1] == 1) goto L_Oxe;

else{ ret_b = !ret_b; goto L_1; }
L_Oxe: if (x[2] == 1) goto L_1;

else{ ret_b = !ret_b; goto L_1; }
L_0x14: if (x[1] == 1) goto L_Oxe;

else gotolL_1;
L_0x10: if (x[0] == 1) goto L_Oxe;

else{ ret_b = !ret_b; goto L_Oxf; }
L_Oxf: if (x[1] == 1) goto L_Oxe;

else { ret_b = !ret_b; goto L_Oxe; }
L_1: return ret_b; }

void K(int *x, int *u) { int i;
for(i = 0; i < 2; i++) u[i] = Kbits(x, i); }
Figure 2. C code for the mgo in Figure 1 as generatedSiythesize

x3) = [0x10,1]. Note thatOxe is shared betweef(rox1s)
andG(Po<10) Finally, by calling GenerateCCodésee Algo-
rithm 2) on f1, f>, we have the C code in Figure 2.

VII.

We implemented our synthesis algorithm in C program-
ming language, using the CUDD package for OBDD based
computations and BLIF files to represent input OBDDs. We
name the resulting tool KS¥Kontrol Software Synthesizer
KSS is part of a more general tool named QKguéntized
feedback Kontrol Synthesizgt]).

1) Experimental SettingsWe present experimental re-
sults obtained by using KSS on given COBDPs .. ., p4
s.t. for all: € [4] p; represents the mgh; (x, v) for a buck
DC/DC converter with; inputs (see [6] for a description of
this system), where, = |x| = 20 andr; = |u| = i. K; is
an intermediate output of the QKS tool described in [4].

For eachp;, we run KSS so as to compu&ynthesizé;,

v;, b;) (see Algorithm 1). In the following, we will call
<1)17;, biiy, .oy Vig, b”>, with Vi € Vi,bﬁ € B, the out-

EXPERIMENTAL RESULTS

532

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Table |
KSSPE‘;FSRMACES the set of implementations meeting the given system speci-
fications, generates a correct-by-construction C codeempl
r CPU MEM K| |FUh) | Swl % menting K. This entails finding boolean functions s.t.

K(z, F(x)) = 1 holds, and then implement suéh WCET
2.2e-01 4.5e+07 12124 2545 2545 0.0e+00¢,, the generated control software is linear lineanin being
4.2e-01 53e+07 25246 5444 4536 1.7e+01, tho nymper of functions iF” andn = |z|. KSS allows
5.2e-01 5.9e+07 34741 10731 8271 2.3e+01 5 5 synthesize correct-by-construction control sofewar
6.3e-01 6.5e+07 43065 15165 11490 2.4e+01pyided thatk is provably correct w.r.t. initial formal spec-
ifications. This is the case in [4], thus this methodologg, €.
allows to synthesize correct-by-construction controtwafe
put of function SolveFunctionalEgp;, v;, b;). Moreover, starting from formal specifications for DTLHSs. We have
we call fi;,..., fii : B* — B the i boolean functions s.t. shown feasibility of our proposed approach by presenting
[vji, bji] = fji(x). All our experiments have been carried experimental results on using it to synthesize C contrsller
out on a 3.0 GHz Intel hyperthreaded Quad Core Linux PGor a buck DC-DC converter.
with 8 GB of RAM. In order to speed-up the resulting WCET, a natural possi-
2) KSS Performancein this section we will show the ble future research direction is to investigate how to paral
performance (in terms of computation time, memory, andelize the generated control software, as well as to improve
output size) of the algorithms discussed in Section VI. Ta-don't-cares handling i
ble | show our experimental results. Th¢h row in Table | AcknowledgmentsThis work has received funding both
corresponds to experiments running KSS so as to computeom MIUR project TRAMP and the FP7/2007-2013 project
Synthesizé&;, v;, b;). Columns in Table | have the following ULISSE (grant agreement’#18815).
meaning. Columm shows the number of action variables
(note that|x| = 20 on all our experiments). Colum@PU
shows the computation time of KSS (in secs). ColuviiaM
shows the memory usage for KSS (in bytes). Colufin
shows the number of nodes of the COBDD representation for
Ki(z,u), i.e.,|V,, |. Column|F“"s"| shows the number of [2] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive
nodes of the COBDD representationsfef, .. ., f;;, without paradigm to solve boolean relation$ZEE Trans. Comput.
> ! vol. 58, pp. 512-527, April 2009.
considering nodes sharing among such COBDDs. Note that . . .
we do consider nodes sharing inside eggh separately. [3] R. Wille and R. Drec_:hsle”r,_“de-based synthesis of reversible
That is,|Fun=h| — 2221 |V, | is the size of a trivial imple- logic for large functions,” inDAC, 2009, pp. 270-275.
T e & e ol 2 mBlemerted E v edbac oo ot o cros e e
by a stand-alone C function. Columfw| shows the size quantize
ozthe control software generated g}/ Kés, i.e., the number hybrid systems,” IrCAV, ser. LNCS 6174, 2010, pp. 180-195.
of nodes of the COBDD representatioffis;, . . ., fi;, con- [5] E. M. Clarke, O. Grumberg, and D. A. Peleldodel Check-
sidering also nodes sharing among such COBDDs. Thatis, N9 The MIT Press, 1999.
|Sw| = |U;_,V,,,| is the number of C code blocks generated [6] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Quantized
by lines 5-6 of functionGenerateCCodén Algorithm 2. feedback control software synthesis from system level for-
Finally, Column% shows the gain percentage we obtain by mal specifications for buck dc/dc converter€bRR vol.
considering node sharing among COBDD representations for abs/1105.5640, 2011.

Frire s fir il (1 — =22 9100. [7] E. Tronci, “Automatic synthesis of controllers from formal

Fu,nsh, e . -
From Table | we can see that, in less than 1 second SPecifications,” inCFEM. IEEE, 1998, pp. 134-143.

and within 70 MB of RAM we are able to synthesize the [8] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “From

A WDN PP

REFERENCES

[1] R. Bryant, “Graph-based algorithms for boolean function
manipulation,”IEEE Trans. on Computersol. C-35, no. 8,
pp. 677-691, 1986.

control software for the multi-input buck with = 4 action
variables, starting from a COBDD representationfofwith

boolean functional equations to control softwa@gRR vol.
abs/1106.0468, 2011.

about4 x 10* nodes. The control software we synthesize [9] A. Cimatti, M. Roveri, and P. Traverso, “Strong planning

in such a case has abouf2 x 10* lines of code, whilest

in non-deterministic domains via model checking,”AtPS

a control software not taking into account COBDD nodes 1998, pp. 36-43.
sharing would have had about x 10* lines of code. Thus, [10] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient

we obtain a24% gain towards a trivial implementation. implementation of a bdd package,” DAC, 1990, pp. 40—
45,

VIII. C ONCLUSION AND FUTURE WORK [11] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision

We presented an algorithm and a tool KSS implementing diag_ram vyith attributed edges for efficient boolean function
it which, starting from a boolean relatioR” representing manipulation,” inDAC, 1990, pp. 52-57.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 533

