
Meta-Model for Global Software Development to Support Portability and

Interoperability in Global Software Development

Bugra Mehmet Yildiz, Bedir Tekinerdogan

Department of Computer Engineering

Bilkent University

Ankara, Turkey

{bugra, bedir}@cs.bilkent.edu.tr

Abstract— Global Software Development (GSD) considers the

coordinated activity of software development that is not

localized and central but geographically distributed. To

support coordination among sites, usually it is aimed to adopt

the same development and execution platform. Unfortunately,

adopting a single platform might not be always possible due to

technical or organizational constraints of the different sites in

GSD projects. As such, very often GSD projects have to cope

with portability and interoperability problems. To address

these problems we propose to apply model-driven architecture

design (MDA) approach. For this we present a common meta-

model of GSD that we have derived from a systematic domain

analysis process. The meta-model enhances the understanding

of GSD, is used to define platform independent models of GSD

architecture, and transform platform independent models to

platform specific models.

Keywords-Global Software Development, Architecture

Modeling, Model-Driven Development

I. INTRODUCTION

Global Software Development (GSD) is a software
development approach that can be considered as the
coordinated activity of software development that is not
localized and central but geographically distributed. In
principle, GSD can be considered as the realization of
outsourcing. The reason behind this globalization of software
development stems from clear business goals such as
reducing cost of development, solving local IT skills
shortage, and supporting outsourcing and offshoring [1].
There is ample reason that these factors will be even stronger
in the future, and as such, we will face a further globalization
of software development [6].

One of the challenging issues in setting up global
software development is the interoperability among the
distributed sites [13][14]. Interoperability is defined as the
ability of two or more systems or components to exchange
information and to use the information that has been
exchanged [7]. Although it is aimed to adopt the same
platforms in global software development projects, this
might not be always possible due to technical or
organizational constraints. As such, different sites might run
on different operating system platforms, use different
component language platforms, or adopt a different
middleware platform. Further, due to the continuous
evolution of project requirements, the platforms on different
sites might also need to evolve. Portability of the existing

software to a new platform is not easy for even a single site
development project; in the case of global software
development projects this is even a much harder problem.
Altogether, both the portability and interoperability problems
will impede the adoption of a global software development
approach.

Portability to different platforms and interoperability
among different sites working on different platforms have
been mainly addressed in the model-driven software
development approaches. In this context, Model Driven
Architecture (MDA) is a framework defined by the Object
Management Group (OMG) that separates the platform
specific concerns from platform independent concerns to
improve the reusability, portability and interoperability of
software systems [12]. To this end, MDA separates Platform
Independent Models (PIMs) from Platform Specific Models
(PSMs). The PIM is a model that abstracts from any
implementation technology or platform. The PIM is
transformed into one or more PSMs, which include the
platform specific details. Finally the PSM is transformed to
code providing the implementation details. Obviously by
separating the platform specific concerns and providing
mechanisms to compose these concerns afterwards in the
code MDA provides a clean separation of concerns and as
such the systems are better reusable easier to port to different
platforms and have increased interoperability.

We present the model-transformation pattern for
transforming the global platform independent model to the
local platform specific models. An important part of the
model transformation is the common GSD meta-model. We
describe both the abstract syntax and the concrete syntax of
the meta-model. The abstract syntax is defined using the
UML notation; the concrete syntax is specific for the parts of
the meta-model. The meta-model enhances the
understanding of GSD, and supports the model
transformation for solving portability and interoperability
problems.

The remainder of the paper is structured as follows.
Section II provides some background on GSD. Section III
describes the meta-model for GSD and Section IV describes
the related work. Finally, Section VI concludes the paper.

II. GLOBAL SOFTWARE DEVELOPMENT

A GSD architecture usually consists of several nodes, or
sites, on which different teams are working to develop a part
of the system. The teams could include development teams,

98

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

testing team, management team, etc. Usually, each site will
also be responsible for following a particular process. In
addition, each site might have its own local data storage.
Overall we can identify four important key concerns in
designing GSD:

Development - the software development activities
typically using a software development process. This
includes activities such as requirements analysis, design,
implementation and testing. Each PDS will address typically
a subset of these activities.

Communication – communication mechanisms within
and across sites. Typically the different sites need to adopt a
common communication protocol.

Coordination – coordination of the activities within and
across sites to develop the software according to the
requirements. Coordination will be necessary to align the
workflows and schedules of the different sites. An important
goal could be to optimize the development using appropriate
coordination mechanisms.

Control – systematic control mechanisms for analyzing,
monitoring and guiding the development activities. This
does not only include controlling whether the functional
requirements are performed but also which and to what
extent quality requirements are addressed.

In fact each of these concerns requires further in-depth
investigation and has also been broadly discussed in the GSD
community.

To realize multi-site development is not a trivial task. In
particular if the different sites are working on different
platforms the interoperability problems must be resolved.

Figure 1 shows the transformation pattern for mapping a
global platform independent model to local platform specific
models. The platform independent model can be considered
the same across multiple development sites. If needed the
local sites can keep working on different platforms. In that
case the alignment and the interoperability can be achieved
by defining transformation patterns, which map the local
platform models to the global platform independent models,
and vice versa. To support the model transformation a proper
definition of the GSD meta-model is necessary. We discuss
this in the next section.

.

GSD Meta

Model

Global

Platform

Independent

Model

conforms

to

Transformation

Engine

Local Site

PSM MM

Local Site

PSM

Transformation

Specification

reads writes

executes

uses uses

conforms

to

Figure 1. Model-Transformation pattern for mapping GSD PIM

to local PSM

III. META-MODEL FOR GLOBAL SOFTWARE

DEVELOPMENT

Meta-models define the language for the models. In both
software language engineering [9] and model-driven
development domains [2], a meta-model should have the
following two key elements:

Abstract Syntax: Captures the concepts provided by the
language and relationships between these concepts.

Concrete Syntax: Defines the notation that facilitates the
presentation and construction of models in that language.

Based on the literature of GSD, we have defined a meta-
model for GSD that defines the concepts and their relations
to enhance the understanding of GSD and support the model
transformation. Since the meta-model is quite large and we
aim the modeling of different concerns of GSD, we have
decomposed meta-model into six meta-model units. Each of
these meta-model units includes semantically close entities
and address different concerns. These units are Deployment,
Process, Data, Communication, Tool and Migration. Each
unit includes abstract syntax representing GSD elements and
their relations and visual concrete syntax for visualization of
these elements.

A. Deployment Unit

Deployment Unit concerns the deployment of the teams
to different sites. The abstract and concrete syntax of this
unit are shown in Figure 2.

Team is the primary essential entity in Deployment and
also in the whole meta-model and is defined as a group of
persons that work together to achieve a particular goal. A
Team may be organized in a temporary way that it will be
dismissed after its function is complete. Team is allocated at
a particular Site. Site may to a country, city or a building
where a Team works at. Location attribute determines where
Site is placed in the world. Time zone shows the local time
of Site. Teams may belong to different types of
Organizations, such as commercial organizations,
subcontractors or non-profitable organizations such as open
source communities. Teams can be from different countries
and depending on the society they are in, they may have
different Social Cultures. Like Social Culture, Team’s
background including work experience, the time that
members work together, their habits are captured by Work
Culture entity. Expertise Area, Team and Site can be further
decomposed into sub-parts. For example, a Software Team
may consist of sub-Teams each responsible for Design,
Implementation, Testing and Integration.

99

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

is temporary

is virtual

Team

Expertise AreaLanguage

type

Organization

Work Culture Social Culture

time zone

location

Site

speaks has

1..* 1..*

0..1

1..* 1..*

1

has has

*

*

*

allocated at

belongs to

Abstract Syntax

Concrete Syntax

Site: <Site name>

<Teams>

Team:

<Team name>

<Properties>

<Organization name>

Site-Site association: <Parent Site> visually contains <Child Site>

Expertise Area:

Language:

Social, Work Culture: Displayed as property of Team

Displayed as property of Team

Displayed as property of Team

Team-Team association: <Child Team> <Parent Team>

Figure 2. Deployment Unit: Abstract and Concrete Syntax

B. Process Unit

Process Unit concerns the different kind of processes in
GSD. The abstract and concrete syntax of this unit are shown
in Figure 4.

Process is defined as a planned set of activities that aims
to provide some service. Teams participate in Process in
order to provide some service. Service is defined with
Function. A Function can be any service during software
development process that requires some Expertise Areas
such as software development, architecture design, business
management, requirements elicitation and so on.
Coordination is also a Function that should be provided for
coordinating several Teams’ activities. A Process consumes
or uses several different Data Entities and also creates other
Data Entities for providing targeted Functions. For
supporting activities defined in Process, Process concept is
further specialized into Workflow, Business Process and
Development Process (not shown in figure).

C. Data Unit

Data Unit is for representing ownership and physical
deployment of software development data. The abstract and
concrete syntaxes are shown in Figure 4.

Data Entity is the fundamental entity of this unit. It
represents any piece of data: digital, textual or informal piece
of information such as notes taken by developers, telephone
calls that are usually not recorded. Data Entity has size
whose unit is defined by size type; for example, a 120-page
report, 6 minutes of voice record, 2 gigabyte of digital data.
Creation date and last update date show the history of Data
Entity. Data Entity has Actual Type where Actual Format
can be one of predefined formats (video, sound, text, picture

and complex-Data Entity) or some designer defined format.
If Data Entity is digital, then in addition to Actual Format, it
has a Digital Format. Data Entity may be implemented in
one or more Languages.

Data Entity is stored in Data Storage. Data Storage
corresponds to any object in real world that can store
information. For example, some textual document is stored
in paper form, or it is stored in a voice record, or it is stored
digitally in the format of some text editor. Data Storage has
ability to store some Actual Types and if it can store digital
data, then it can support some Digital Types also. A Data
Storage instance is owned by one or more Teams and it can
be located in one Site or may be distributed over several Sites
like distributed databases.

Team

Function

Coordination

Process

Data Entity ExpertiseArea

coordinates

includes

provides

produces requires

1..*

1..*

1..*

0..* 0..*

1..*

*

uses

Abstract Syntax

Concrete Syntax

Team:

<Team name>

Data Entity:

<Data Entity name>

Function: <Function name>

<Expertise Areas>

Process: <Process name>

<Teams>

Expertise Area: Displayed as property of Function

Function-Process association: <Function> <Process>

Data Entity-Process association: <Used Data Entity> <Process>

<Process> <Produced Data Entity>

Figure 3. Process Unit: Abstract and Concrete Syntax

D. Communication Unit

Communication Unit focuses on the representation of
both formal and informal communication activities between
Teams. The abstract and concrete syntaxes are shown in
Figure 5.

Communication is done over Communication Platform in
the context of Process and it can be an instance of
sudden/event based communication activity like a telephone
call or a continuous communication channel such as a
discussion forum. Type attribute is for representing in which
way Communication takes place such as email, phone call,

100

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

face-to-face chat and so on. Suggested time period is an
important attribute for GSD since Teams work in different
time zones, some Communication channels can be used
effectively in a defined time period. For example, phone
calls should be done during the hours when both sides are in
or around their work hours.

Communication has two sides, which are caller and
receiver. Generally speaking, caller starts communication
and receiver is the one who is called by caller. For example,
an email sender is classified as caller and receiver is the one
who receives email. Sometimes, there can be multiple callers
such as video conferences or there can be multiple receivers
such as discussion forums. It is also possible that caller and
receiver are the same such as a planned meeting. For all
cases, caller and receivers are considered as Teams in this
unit. While Teams communicate, one or more Data Entities
are carried in the context of Communication.

size

is Digital

size Type

creation Date

last Update Date

Data Entity

can store digital

Data Storage

Team

Actual Format

Digital Format

Language

Site

stored in

in

owned by

0..* in

in

can store

can store

1..*

1..*

0..1

1

0..1

1..*

located by1..*

Abstract Syntax

Concrete Syntax

Site: <Site name>

<Data Storages>

Data Storage: <Data Storage name>

<Data Entities>

<Compatible Formats>

Team:

<Team name>

Team-Data Storage association: <Data Storage> <Team>

Data Entity: <Data Entity name>

<Compatible Formats>

Actual-Digital Format: <Format name>

Figure 4. Data Unit: Abstract and Concrete Syntax

Team

type

is Formal

is Syncronous

is Channel

start Time

end Time

suggested Time Period

Communication

Communication Platform

Data Entity

Process

has caller as

has receiver as

done over

aims

carries

1

1..*

1..*

1..*

0..*

Abstract Syntax

Concrete Syntax

Process: <Process name> Team:

<Team name>

Data Entity:

<Data Entity name>

Communication: <Communication name>

<Data Entities>

Communication Platform: <Communication Platform name>

Team-Communication association: <Caller Team> <Communication>

<Communication> <Receiver Team>

Communication-Process association: <Communication> <Process>

Communication-Platform association:<Communication> <Platform>

Figure 5. Communication Unit: Abstract and Concrete Syntax

E. Tool Unit

Tool Unit captures details of tools used by Teams for
communication and providing Functions. The abstract and
concrete syntax are shown in Figure 6.

Tool is compatible with one or more Actual Format and
Digital Format. Platform is the set of Tools used by Teams
for communication or providing some functions. Depending
on the purpose, the platform is defined as Function Platform
or Communication Platform.

F. Migration Unit

Migration Unit concerns the migration and traveling of
Teams during GSD activities. These travels are especially
needed in the first and final phases of the projects to ease and
support coordination and integration. The abstract and
concrete syntax are shown in Figure 6.

Migration is executed by one or more Teams from Site to
Site at a particular date. In a Migration, Teams may carry
Data Storage such as documents, digital data containers and
so on. Migration is executed in the context of Process.

101

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Team

Communication Platform

Function Platform

Digital Format

Actual Format

consists of

1..*

used by

compatible with

compatible with

1..*

1..*

1..*

used by

1..*

1..*

consists of

support Collaboration

Tool

Abstract Syntax

Concrete Syntax

Communication/Function Platform: <Platform name>

Team:

<Team name>

Actual-Digital Format: <Format name>

Tool: <Tool name>

<Compatible Formats>

Team-Platform association: <Platform> <Team>

<Tools>

Figure 6. Tool Unit: Abstract and Concrete Syntax

Team

Site
Data Storage

date

Migration

Process

done to

done from

executed by

1..*

1

1
0..*

1..*

carries

done in context of

Concrete Syntax

Abstract Syntax

Team:

<Team name>

Data Storage: <Data Storage name>

Process: <Process name>

Migration:
<Migration name>

<Processes>

<Teams>

<Data Storages>

Site: <Site name>

Migration-Site association: <Home Site> <Migration>

<Migration> <Destination Site>

Figure 7. Migration Unit: Abstract and Concrete Syntax

G. Example Case

As an example case, consider a GSD environment with 5
Sites. Company A operates in United States. Customer
relations and requirements management jobs are done in
New York while software architecture is designed in Los
Angeles. Company B is hired as subcontractor for
developing software and testing, which is located in Pekin,
China. Moving from this case definition and Deployment
meta-model unit, the model in Figure 9 can be drawn.

INTERNET

United States

Requirement Management Team

Company A

New York

Expertise Area: Requirement Analysis

Languages: English, Spanish

Social Culture: American Culture

Work Culture: Work Culture 1

Architecture Team

Company A

Los Angeles

Expertise Area: Architecture Design

Languages: English, Spanish

Social Culture: American Culture

Work Culture: Work Culture 2

China

Development Team

Company B

Pekin

Expertise Area: Java Development

Languages: Hindu, English

Social Culture: Indian Culture

Work Culture: Work Culture 3

Test Team

Company B

Expertise Area: Sofware Testing

Languages: Hindu, English

Social Culture: Indian Culture

Work Culture: Work Culture 4

Figure 9. Example Case Model

IV. RELATED WORK

Notably, architecting in GSD has not been widely
addressed. The key research focus in the GSD community
seems to have been in particular related to tackling the
problems related to communication, coordination and control
concerns. Clerk et al. [4] report on the use of so-called
architectural rules to tackle the GSD concerns. Architectural
rules are defined as “principles and statements about the
software architecture that must be complied with throughout
the organization”. They have defined four challenges in
GSD: time difference and geographical distance, culture,
team communication and collaboration, and work
distribution. For each of these challenges they list possible
solutions and describe to what extent these solutions can be
expressed as architectural rules. The work of Clerk et al.
aims to shed light on what kind of architectural rules are
necessary to guide the GSD. We consider our work
complementary to this work. In our work the design actions
that relate to the expected answers of questions are defined
as design actions.

Tool support has been named as one of the important
challenges for GSD since it requires making software
development tools and environments more collaborative
[13]. Booch and Brown [3] have introduced the vision for
Collaborative Development Environment (CDE), which is
defined as “a virtual space wherein all the stakeholders of the
project – even if distributed by time or distance – may
negotiate, brainstorm, discuss, share knowledge, and
generally labor together to carry out some task, most often to

102

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

create an executable deliverable and its supporting artifacts”.
A number of efforts have been carried out to support the idea
of CDEs. Whitehead [13] has presented a survey on existing
collaboration support tools in software engineering.
Whitehead distinguishes among four broad categories of tool
support to support collaboration in software engineering:
Model-based collaboration tools for representing the adopted
models; Process support tools for representing software
development process; Awareness tools for informing
developers about the ongoing work of others and to avoid
conflicts; Collaboration infrastructure to support data and
control integration and likewise support interoperability.
Despite the clear need and benefits of the existing CDE
tools, it appears that most of the work on CDE has focused
on the (social) collaboration concern and less on the
(technical) development part. Further the tools that address
development primarily focus on collaborative coding and
relatively little attention has been paid to architecture design.
There seems to be a general agreement that more research is
needed in this domain. Our approach and the meta-model
definition can be considered as part of the efforts for
enhancing CDE for design of GSDs.

Maciel et al. [10] present a domain-specific architecture
(DSA) defining middleware services to provide
interoperability in collaborative environments. Similar to our
approach they define a platform independent model that is
independent of platform specific models. In their approach
the reference architecture (PIM) is based on MDA’s UML
Profile for Enterprise Distributed Object Computing (EDOC)
[11] and the viewpoints defined in RM-ODP (Open
Distributed Processing-Reference Model) are adopted [8]. In
our approach we do not use a general purpose architecture
framework such as RM-ODP but adopt a meta-model based
on a domain analysis of the GSD literature.

V. CONCLUSION AND FUTURE WORK

Different challenges have been identified to set up a

Global Software Development environment. Our literature

study on GSD showed that in particular the challenges of

communication, coordination, and control of GSD is

addressed in the GSD community but less focus has been

provided on the modeling, documentation and analysis of

architecture for GSD. One of the key technical problems in

GSD projects is the evolution of platforms on different sites

and the need for interoperability among different sites. A

close analysis of the literature shows that the application of

MDSD has not been explicitly addressed, neither in the

GSD community nor in the MDSD community. In this

paper we have provided a general transformation pattern for

mapping a global platform independent model to the

platform specific models at local sites. Portability can be

supported by defining transformation definition that map

the new platform models to the global platform independent

models and vice versa. Interoperability is supported due to

the common model, global platform independent model that

conforms to the meta-model that we have defined in the

paper. The meta-model aimed to support the portability and

interoperability in GSD but also enhances the

understandability and communication about GSD. In our

future work we plan to define domain specific languages for

the six units of the GSD meta-model. For this we will use

the Eclipse Modeling Framework [5] and develop the

corresponding tool support for realizing the automatic or

semi-automatic model transformations in GSD projects.

REFERENCES

[1] P. J. Agerfalk, B. Fitzgerald, H. H. Olsson, and E. O´
Conchu´ir, “Benefits of Global Software Development: The
Known and Unknown,” in International Conference on
Software Process, ICSP 2008. 2008. Leipzig, Germany,:
Springer Berlin / Heidelberg

[2] J. Bézivin. On the Unification Power of Models. Software and
System Modeling (SoSym) 4(2):171-188, 2005.

[3] G. Booch and A. Brown. Collaborative Development
Environments. Advances in Computers Vol. 59, Academic
Press, August, 2003.

[4] V. Clerc, P. Lago and H. van Vliet, “Global Software
Development: Are Architectural Rules the Answer?” Proc. of
the 2nd International Conference on Global Software
Engineering, pp. 225–234. IEEE Computer Society Press, Los
Alamitos, 2007.

[5] Eclipse Modeling Framework, http://www.eclipse.org/
modeling/emf/, accessed: July 2011.

[6] J. D. Herbsleb, Global Software Engineering: The Future of
Socio-technical Coordination, 2007 Future of Software
Engineering, p.188-198, May 23-25, 2007

[7] Institute of Electrical and Electronics Engineers. IEEE
Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[8] ISO-2004. Use of UML for ODP system specification.
Working Draft. ISSO/IEC JTC1/SC7.

[9] A. Kleppe. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels. Addison-
Wesley Longman Publishing Co., Inc., Boston, 2009.

[10] R. S. P. Maciel, C. G. Ferraz, and N. S. Rosa, “An MDA
domain specific architecture to provide interoperability
among collaborative environments,” in Proceedings of the
19th Brazilian Symposium on Software Engineering (SBES
’05), pp. 1–16, Uberlandia, Brazil, October 2005.

[11] OMG EDOC. UML Profile for Enterprise Distributed Object
Computing Specification. OMG Adopted Specification
(ptc/02-02-05), 2002.

[12] OMG Model Driven Architecture, OMG Model Driven
Architecture. http://www.omg.org/mda/. Accessed in June
1,2011.

[13] J. Whitehead, Collaboration in Software Engineering: A
Roadmap, In FOSE '07: 2007 Future of Software
Engineering, pp. 214-225, 2007.

[14] I. S. Wiese and E. H. M. Huzita, "IMART: An
Interoperability Model for Artifacts of Distributed Software
Development Environments," Global Software Engineering,
2006. ICGSE '06. International Conference on , vol., no., pp.
255-256, Oct. 2006.

103

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

