
A New Approach to Software Development Process
with Formal Modeling of Behavior

Based on Visualization

Abbas Rasoolzadegan, Ahmad Abdollahzadeh Barfourosh
Information Technology and Computer Engineering Faculty
Amirkabir University of Technology (Tehran Polytechnic)

{rasoolzadegan, ahmad}@aut.ac.ir

Abstract—This work investigates the advantages and
limitations of various modeling methods. Despite of their
advantages, due to some limitations of each modeling method,
using only one of them as the sole approach will not ensure
high quality software. This work proposes a new feasible
approach to improve the software development process by
integrating semi-formal and formal modeling methods. In this
approach, software is initially modeled using the formal
specification language Object-Z. The formal models, produced
by Object-Z, are formally refined to ensure correctness. Then,
software behavior is extracted and visualized in specific
intervals using UML. Applying design patterns to the
visualized models increases reusability and flexibility. The
newly improved models are then re-formalized. Such an
iterative and evolutionary process continues until developing
the software with the desired quality. This paper proposes a
new approach to develop reliable, yet flexible software.

Keywords-Formalization; visualization; design patterns;
formal modeling methods; semi-formal modeling methods.

I. INTRODUCTION

Requirements engineering (RE) plays a crucial role in
software development cycle. Studies show that the major
causes of most software projects failure are imprecise and
incomprehensive understanding, elicitation, specification,
analysis, validation, and verification of software
requirements during software development process [3].
Moreover, mainstream software development, with its
recurring practice of trial and error, already suffers from its
premature insistence on code and program testing. The
problem is that code is expensive; it has too much detail,
and is not at the right level of abstraction to help thinking
about the problem and design of its solution [1].

The increasing importance of requirements engineering
and need for further abstraction leads to increasing use of
models during software development cycle, in general, and
throughout RE process, in special. Models can be used at
different phases of a software life-cycle, ranging from
requirements (more abstract) to detailed design (more
concrete). It also gives a basis for a stepwise approach to
software development: abstract models are refined into more
concrete ones in a stepwise manner, where each step carries
some design decisions. This is known as model refinement
[3].

Models and modeling play a crucial role in software
development cycle. In software engineering, models are
used to describe both the problem (requirements) and the
solution (design) in order to gain a better understanding of
the issues involved. Once a model has been constructed it
can be analyzed to uncover flaws and expose fundamental
issues [23]. This role of models cannot possibly be assumed
by code. The idea is not new, but there is a recent trend
towards more use of models in mainstream circles of
software engineering. This is the goal of MDSE [19], which
tries to alleviate the complexity of software development by
using models. Model transformation has a key role in
MDSE. A model transformation takes as input a model
conforming to a given meta-model and produces as output
another model conforming to a given meta-model. One of
the characteristics of a model transformation is that it is also
a model, i.e. it conforms to a given meta-model.

There are two reasons for against-our-expectation
behavior of the software [25]: either there are shortcomings
or omissions in the original specification, or the software
does not conform to its specification. These two issues result
from the following causes: 1) incomplete, ambiguous, and
inconsistent requirements specification, 2) imprecise and
imperfect verification of the specification and design which
in turn lead to incomplete and untimely discovery of the
software’s errors during the development cycle. These
problems arise from the weaknesses of informal and semi-
formal modeling methods (SFMMs) in specification and
verification of the software requirements.

This paper investigates the advantages and shortcomings
of SFMMs and formal modeling methods (FMMs) by
surveying the literature [1][5][13][25]. Reference [26] has
already investigated the advantages and disadvantages of
SFMMs and FMMs, empirically, by specifying the multi-lift
system case study. The most important conclusion is that
each modeling method has some unique advantages and
limitations. Using only one of them as the sole approach
leads not to satisfy all required aspects of software quality
such as reliability, flexibility, reusability, scalability, and so
on [30]. Combination of these methods is necessary to
successfully understand, analyze, specify, validate, and
verify requirements, problems, and solutions. Although,
there are several valuable attempts to integrate these

104

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

methods to utilize unique advantages of both formal and
semi-formal modeling methods, there is a long way ahead to
achieve the promised goals.

This paper proposes a new approach to enhance the
software development process. This work emphasizes on the
software behavior rather than its structure. In the proposed
approach, the formalism plays the key role, i.e., the structure
and behavior of the software is initially modeled using a
suitable formal modeling language (such as Object-Z).
These formal models, along with formal refinement [3]
ensure correctness and reliability. Then, with an iterative
and evolutionary approach and in specific intervals,
software behavior is extracted from formal models to be
visualized in a semi-formal modeling language (such as
UML). Visualized behavior increases and facilitates the
interactions among project stakeholders (such as analyzers
and designers), who are not, necessarily, familiar enough
with complex mathematical concepts of formal methods.
This also provides the possibility of applying design patterns
on visualized behavior to improve its flexibility, reusability,
and scalability. So, potential shortcomings and
inconsistencies of the software behavior are identified and,
consequently, required changes are applied and a newly
improved version of the formal behavior is produced. The
improved models are then re-formalized. The proposed
approach is a step towards development of correct, reliable
[6], flexible, reusable, and scalable software through
enabling the construction of formal models from semi-
formal ones (formalizing) and vice versa (visualization)
during an iterative and evolutionary approach. References
[26] and [27] present a case study in order to show the
proposal applicability.

A detailed study regarding visualization and
formalization is given in [1]. All related works are just a
step in the right direction, but much more is yet to be done.
The most frequently adopted approach is to define
transformations between the visual and formal models
[1][2][4][7][11][12][14][18][20][23][24]. However, a
significant problem with these suggested approaches is that
the transformation itself is often described imprecisely, with
the result that the overall transformation task may be
imprecise and incomplete. Consequently, the confidence the
developer may have in the models is reduced, making the
transformation approach unreliable.

The rest of this paper is organized as follows: Section 2
presents the motivation of the work by describing the
reasons of integrating SFMMs and FMMs and its
importance. The advantages and limitations of semi-formal
and formal modeling methods are also investigated
according to the literature review in this section. Section 3
defines the problem to be solved by the proposed approach.
Finally, Section 4 discusses future work and draws
conclusions.

II. MOTIVATION

This section describes the motivation of this paper via
elaborating the benefits and limitations of SFMMs and
FMMs according to the literature review.

A. Semi-formal Modeling Methods

SFMMs consist of a development method and a
collection of notations for modeling software systems. UML
is a unification of semi-formal modeling notations [23][31].
In summary, the main strengths of semi-formal techniques
are as follows:
 Semi-formal notations are graphical, making them

appealing, intuitive, and easy to be adopted. They are
good at describing particular aspects of systems,
abstracting away from details, and giving a good overall
picture of what is being described. Sometimes they do
not require a great deal of expertise to be understood. So
they provide a good medium for discussions with clients.

 SFMMs are more than just a notation. They provide
step-by-step guidance on how to approach problems.
They encourage problem decomposition, which helps to
reduce complexity.
Lack of a sound mathematical basis is the major

weakness of SFMMs. They do not have a formal semantics.
There are several problems related to their semantics:
 Either they are defined informally and vaguely using

natural language, or they are defined through meta-
modeling using some meta-language that is not precisely
defined.

 Developers tailor the interpretation of diagrams to the
problem at hand informally, tacitly, and sometimes
unconsciously. This constitutes a source of confusion
and ambiguity. Such misinterpretations might be even
greater if the specification volume is large or
development team crosses national and cultural
boundaries [5].
These limitations lead to lack of means for mechanical

analysis. They can also make the understanding more
apparent than real; All is too easy and superficial, and the
specifier is never confronted with the relevant issues. As a
result, semi-formal methods cannot produce a precise,
complete, and consistent specification. Specification plays a
vital role in producing reliable software. Design and
subsequent implementation is based upon the specification.
Misunderstandings in the specification lead to the delivery
of final applications that do not match user requirements.
Moreover, testing is always carried out with respect to
requirements as laid down in the specification. If the
specification document is in any way ambiguous it is open
to interpretation, and hence misinterpretation, making
testing a rather inexact science.

Next section shows how the formal methods help in
covering the weaknesses of SFMMs in specification,
validation, and verification.

105

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Formal Modeling Methods

FMMs are inspired by the way mature engineering
disciplines build their artifacts: based on prediction and
calculation with sound mathematical theories. Formal
methods are utilized in all phases of software development
process. FMMs, using formal languages such as Object-Z
[7], provide the software with a precise, unambiguous, and
abstract specification. In the next steps, required details are
added to the initial abstract specification through an
evolutionary process, including some design steps towards
the final program. Accordingly, the initial formal
specification is gradually refined. The refinement process
will proceed until the generation of the final code [3].
Certain notations of formal methods support the notion of
formal refinement. Formal refinement ensures that these
refinements and transformations are correct. The correctness
of a refinement is demonstrated through mathematical proof
[23]. The benefits of using the formal modeling techniques
have been recognized as follow:
 Formal modeling helps to gain a deep understanding of

the system and its domain. It encourages the specifier to
be abstract, yet rigorous and precise, forcing the modeler
to ask all sorts of questions.

 Formal modeling clarifies the customer's vague ideas,
revealing ambiguities, inconsistencies, and
incompleteness in the requirements [23].

 The analysis of formal models can be used to support
verification and validation. In verification, a formal
model can be proved or checked for the satisfaction of
desired properties, and that a refined design or
implementation satisfies its specification. In validation, a
requirements model can be checked against its
requirements for white-box system testing either through
animation or proof, and for black-box system testing by
generating test cases from the model.
Although the increased rigor, precision and means of

calculation that formal techniques offer seems indisputable
[22], formal methods have not been taken up by industry. To
explain this, many reasons have been hypothesized,
education being one of them. So, FMMs have been
embraced only in domains where reliability is absolutely
crucial, such as safety-critical, security-critical, and high
integrity systems [5]. Some other recognized shortcomings
of FMMs are given below:
 Formal methods are notorious for being hard. Substantial

efforts are required for formal modeling and verification.
They are only effectively usable by highly-skilled
experts.

 Most formal methods are suited to describe particular
aspects of systems, but usually not all aspects. The
problem occurs when all aspects need to be modeled.

 Formal methods provide a notation to write models and
approaches to analyze them. However, software
engineering practices require further support: guidelines,
approaches to modeling, and patterns.

 The large variety of formal methods makes the choice of
a particular one difficult.

 Most formal methods have little automated support
beyond type-checking; developers are usually left the
onus of performing proofs, which demand too much
time and expertise for practical application.

 Practitioners need to be trained, and, since there is not
much experience in using formal methods, the costs
associated with their use are high. They also require an
investment of time and money in specification, before
any code is written.
The main conclusion is that FMMs and SFMMs have

some advantages and limitations. Using only one of them as
the sole approach leads not to satisfy all required aspects of
software quality. This paper advocates an approach to
building a framework for rigorous MDSE based on
combining UML as a semi-formal language with Object-Z
as a formal modeling language. SFMMs are supplemented
with FMMs to introduce rigor in the development and to
sweeten formal methods usage with diagrams.

III. PROBLEM DEFINITION

The problem to be investigated by this work is defined in
this section. Solving this problem is a step towards
developing high quality software. To do so, a new approach
based on integrating Object-Z, as a formal, and UML, as a
semi-formal modeling language, is proposed.

Using FMMs as the sole approach to software
development leads to reliable software but with the
following issues:
1. There are different interpretations of the initial informal

requirements by customer and development team. There
is also possibility of changing requirements during
software development. These issues end to production of
a software in contrary with the initial requirements. Fig.
1 illustrates this problem. There are two reasons for such
an incorrect result: 1) there is no possibility of proving a
perfect match between actual informal requirements and
initial formal specification (

1T), 2) it is difficult to do
validation in the interval

2T because of the trouble in
understanding the formal models. So formal methods,
certainly brings us to a result that conforms to the initial
formal specification (because of formal refinements),
however, it does not necessarily conform to the actual
informal requirements.

Figure 1. Imprecise interpretation of customer requirements

Visualization is an approach to solve the first problem,
which leads to facilitate requirements validation in the
interval

2T [15]. However, prototyping [16] is a better

106

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

solution for requirements validation. To do so, the formal
specification should be transformed so that its new form can
be executed or animated [16][32].
2. Even assuming that the initial formal specification

exactly represents the actual informal functional
requirements of the customer, we still do not reach the
software with good enough quality of non-functional
requirements such as reusability, flexibility, scalability,
and extendibility. There are two reasons for such an
unexpected result: 1) difficulty in utilizing the heuristic
and narrative techniques of software engineering such as
design patterns in the interval

2T , 2) inability of
development team members such as analyzers and
designers in understanding complex mathematical
concepts of formal languages.
This work aims to solve the second problem. To do so, a

new approach is suggested to improve software
development process by combining Object-Z and UML to
achieve high quality models of specification and design. In
other words, this work proposes a new approach to develop
high quality software through model transformation between
Object-Z and UML. Fig. 2 illustrates a schematic view of
the new proposed approach. Visualization facilitates
understanding of the formal models and subsequently
provides possibility of interaction with stakeholders, who
are not necessarily familiar enough with complex
mathematical concepts of formalism. It also simplifies using
the narrative techniques of software engineering such as
design patterns during software development process.

Figure 2. A schematic view of the proposed approach

As illustrated in Fig. 2, the initial formal specification is
produced as the first artifact, according to the informal
requirements of the stakeholders, using Object-Z. The initial
formal specification is then refined using several
transformations. Details of design are gradually added to the
initial formal specification during transformations referred
to as formal refinement. Formal refinement ensures
correctness and reliability of the produced artifacts. In time

of reviewing the artifacts from the aspect of behavioral
design patterns, the last refined formal artifact is visualized
in a dominant semi-formal modeling language, i.e., UML.
UML diagrams make it possible to revise the structure and
behavior of the software from the view points of design
patterns. The visualized model is then gradually revised
using behavioral design patterns. Such a revision improves
the flexibility and reusability of the visual models. The last
revised visual model is then re-formalized in Object-Z.
Repeatedly, the more required details of design or even
implantation are augmented to the formal model using
formal refinement. Such an iterative and evolutionary
process continues until achieving a final product with the
desired quality.

Software includes two aspects: structure (static) and
behavior (dynamic) [16][21]. The proposed approach
concentrates on software behavior. It facilitates analyzing
and validating the behavioral aspect of formal models of
software by visualization. Visualization prepares an
appropriate ground to use heuristic and narrative principles
of software engineering such as behavioral design patterns
during software development process. So, the potential
shortcomings and inconsistencies of the behavioral aspect of
these models are identified. This improves the process of
gradual augmentation of design decisions to the initial
formal specification. Such an improvement leads to more
flexibility, reusability, and scalability in developing
software.

Design patterns are high level building blocks that
promote elegance in software by ordering proven and
timeless solutions to common problems in software design.
Applying design patterns in software design has important
effects on software quality metrics such as flexibility,
reusability, scalability, and robustness [9][22][28][29][33].
There are three types of design patterns, including structural,
creational, and behavioral patterns [8][9]. According to the
above-mentioned goal of this work, we focus on the
behavioral patterns (such as mediator, observer, and state)
which shift your focus away from flow of control to let you
concentrate just on the way objects are interconnected.

Object-oriented design encourages the distribution of
behavior among objects to increase software reusability and
flexibility. An important issue here is how peer objects
know about each other. Peers could maintain explicit
references to each other, but that would increase their
coupling. Though distributing software into many objects
generally enhances reusability and flexibility, proliferating
interconnections tend to reduce reusability again. Moreover,
it can be difficult to change the software behavior in any
significant way, since behavior is distributed among many
objects. Such a difficulty decreases the flexibility again. As
a result, you may be forced to define many subclasses to
customize the software behavior. The mediator pattern
avoids this by introducing a mediator object between peers.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their

107

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

interaction independently. In this respect, we attempt to
propose a systematic approach to improve the quality of
formal design from the viewpoint of the mediator design
pattern. That is, a formal design, in Object-Z, is received as
an input, and then behavior of this formal design is
abstractly visualized, in UML, as an output. Indeed, there is
a focus on visualizing those aspects of the software behavior
that are prone to revising from the viewpoint of the mediator
pattern. Moreover, this approach, after full implementation,
will automatically explore and recognize the suitable times
in order to review the software behavior from the view point
of mediator pattern throughout the software development
process.

 Moreover, software distribution into a collection of
cooperating classes requires maintaining consistency among
related objects. You don’t want to achieve consistency by
making the classes tightly coupled, because that reduces
their reusability and flexibility. Observer pattern define a
one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and
updated automatically. In short, the required activities to
visualizing the software behavior (by focus on those aspects
of behavior that are required for revision from the viewpoint
of observer pattern) include: 1) systematic elicitation of the
objects that their states are dependent on each other, 2)
visualizing the discovered objects as appropriate candidates
for review, as well as 3) automatic proposing of the suitable
times to review the software behavior from the viewpoint of
observer design pattern.

Strategy pattern define a family of algorithms,
encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients
that use it. We use the strategy pattern when: l) many related
classes differ only in their behavior. Strategies provide a
way to configure a class with one of many behaviors, 2) you
need different variants of an algorithm. Strategies can be
used when these variants are implemented as a class
hierarchy of algorithms, and 3) a class defines many
behaviors, and these appear as multiple conditional
statements in its operations. Instead of many conditionals,
move related conditional branches into their own Strategy
class. So the Strategy pattern increases the flexibility
through defining families of related algorithms, preventing
subclassing, and eliminating conditional statements.
Summarily, the required activities to visualize the software
behavior form the viewpoint of strategy pattern include: 1)
systematic discovery and elicitation of the classes that have
several behaviors, 2) visualizing the discovered classes as
appropriate candidates for review, as well as 3) automatic
proposing of suitable times for software behavior review
from the viewpoint of the strategy design pattern.

In all above-mentioned revision processes, the required
changes, revealed after visualization, are re-formalized and
thus the primary formal models are improved from the view
point of behavioral design patterns. Software behavior is
visualized from the required aspects using the suitable
diagrams of UML such as class diagram [15][16]. Class

diagram makes it possible to revise the structure and
behavior of the software from the view points of design
patterns

There has been an evolution in the way of transforming
the models [10][17]. In model transformation, the most
important issue is how to preserve the semantic and the
syntactic structure of model elements. To do so, this work
tends to propose a formal bidirectional meta-model-based
transformation between UML and Object-Z. To do so, a
meta-model should be formally defined for Object-Z in a
similar architecture to which the UML meta-model is
defined [11]. Then these meta-models will be used to define
a systematic transformation between the two languages at
the meta-level. In this way, we can provide a precise,
consistent, and complete transformation between the two
languages preserving the semantics and the syntactic
structure of models presented in both languages. Since UML
and Object-Z share basic object-oriented concepts, an
attempt to create a systematic transformation between the
two languages seems sound. Proposing such a meta-model-
based mechanism is left for future work. In the following
subsections, as an instance, we show how a common
construct between UML and Object-Z such as class can be
formally defined at the meta-level in a unified format using
Object-Z [11]. Then a formal rule is presented to transform
class construct from UML to Object-Z based on the formal
definitions of class in UML and Object-Z at meta-level.

A. Formal definition of UML class

A UML class has a name, attributes, and operations. An
attribute has a name, a visibility, a type, and a multiplicity.
An operation has a name, a visibility, and parameters. Each
parameter of an operation has a name and a given type. Prior
to formalizing classes, we define a given set, Name, from
which the names of all classes, attributes, operations,
operation parameters, associations, and roles are drawn:

The class UMLType, as an Object-Z class, is a meta-
type, from which all possible types in UML such as object
types, basic types (integer and string), and so on can be
derived. Each type has a name and contains a collection of
its own features: attributes and operations. Thus, a circled c
which models a containment relationship in Object-Z is
attached to the types of attributes and operations.

Attributes and parameters are also defined as follows.
Variable multiplicity in UMLAttribute describes the possible
number of data values for the attribute that may be held by

108

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

an instance. Visibility in UML can be private, public, or
protected.

Within an operation, parameter names should be unique.

With these classes, an Object-Z class UMLClass is
defined as follows. Since a class is a type, it inherits from
UMLType. Attribute names defined in a class should be
different and operations should have different signatures.
The class invariant formalizes these properties.

B. Formal definition of Object-Z class

First, the semantics of type Name is extended to include
the names of all classe, attributes, operations, and operation
parameters in Object-Z. The following Object-Z class
OZType is a formal description of metaclass OZType. In the
metamodel, OZType is an abstract class from which all
possible types in Object-Z can be derived.

The Object-Z class OZAttribute is a formal description
of attributes. Each attributs has a name, a type, and a
multipilicity constraining the number of values that the
attribute may hold. It also has an attribute, relationship, to
represent whether this attribute models a relationship

between objects. Like UML, relationships between objects
can be common reference relationships, shared, or unshared
containment relationships. For this, we define an
enumeration type, RelationshipKind, which can have
relNone, reference, sharedContainment, and
unsharedContainment as its values. The value relNone
represents pure attributes of a class. When an attribute
models a relationship, the attribute navigability represents
the direction of the relationship (although the navigability of
a relationship is modeled impilicitly in Object-Z). Visibility
in Object-Z can be public or private.

We formalize OZParameter and OZOperation in the
same way as OZAttribute.

Now we are in the position to formalize Object-Z
classes. An Object-Z class named OZClass is a formal
description for classes in Object-Z. Since classes are a kind
of type, OZClass inherits from OZType. The attribute
superclass maintains inheritance information of classes.
Each class has its own attributes and operations defining
static and dynamic behaviors of its instances. Circular
inheritance is not allowed. Attribute and operation names
should be unique within a class. These properties are
specified in the predicate of OZClass. Functions
directSuperclass and allSuperclass return direct superclass
of a class and all inherited superclasses of a class,
respectively.

109

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

C. Formal transformation rule for class

As illustrated in Fig. 3, a formal description for mapping
a UML class to an Object-Z class is given by function
mapUMLClassToOZ that takes a UML class and returns the
corresponding Object-Z class. The UML class name is used
as the Object-Z class name. All attributes of the UML class
are declared as attributes in the state schema of the
corresponding Object-Z class. Also, each operation in the
UML class is translated to an operation schema. In UML,
types of attributes are a language-dependent specification of
the implementation types and may be suppressed. Types of
attributes in Object-Z are language-independent
specification types and cannot be omitted. Operations
parameters are similar. Detailed transformation rules
regarding attribute types and operation parameter types are
not provided. Instead, an abstract function, convType is
defined that maps a UML type to an Object-Z type.

Visibility and multiplicity features are mapped to those of
Object-Z.

An appropriate evaluation method helps determine the
overall effects of the new approach in relation to promised
objectives. This method also includes any recommendations
for improvement. As previously mentioned, the major goal
of introducing the new approach is to improve the process of
formal modeling (including specification and design) of
software behavior based on visualization. So we should
measure the capability of the suggested approach in
satisfying the expected goals. Evaluation criteria of the
proposed approach include: 1) correspondence percentage
between visual and formal models transformed to each other
by the proposed meta-model based transformation method,
2) the amount of increasing the quality (such as flexibility,
reusability, and scalability) of the developed software using
the proposed method. As we intend to propose a meta-
model-based transformation approach, a formal and
systematic transformation between the two languages will
be defined at the meta-level. So we can prove the
correctness, precision, and completeness of the
transformation mathematically. In addition, to demonstrate
the proposed approach, a high quality multi-lift system as a
non-trivial case study will be developed using the proposed
approach.

IV. CONCLUSION AND FUTURE WORK

Although, the widespread use of SFMMs in mainstream
software development provides the possibility of developing
flexible, reusable, and scalable software, it does not lead to
software reliable enough for safety-critical purposes. Their
semantics are not well defined. FMMs have precise
semantics, allowing for unambiguous models of systems to
be specified and designed. However, their use has not been
widely adopted due to the mathematical nature of the
languages.

Figure 3. Formal transformation rule for class

110

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Investigation of integrated methods has taught us many
things: (a) visual modeling notations and formal methods
can coexist within the same development and complement
each other when developing software models, (b) this
coexistence is useful and provides many benefits, and (c)
formalization of diagrammatic languages, like UML, and
visualization of formal models, like Object-Z, is far from
trivial.

This work proposes a new approach for integrating
visual and formal models to ensure achieving more flexible,
reusable, scalable, yet reliable software. To do so, we
propose a precise mechanism to transform graphical models
into formal specifications and vice versa. This work intends
to present a meta-model-based transformation between
UML and Object-Z. The two languages will be defined in
terms of their meta-models, and a systematic transformation
between the models will be provided at the meta-level. As a
result, we provide a precise, consistent, and complete
transformation between visual models in UML and formal
models in Object-Z. Visualizing the formal models of the
software behavior prepares an appropriate ground to revise
them from the viewpoints of design patterns. Although, this
paper draws the path towards solving the defined problem
and achieving the promised goals, proposing the meta-
model-based transformation is left for future work.

REFERENCES
[1] N. Amálio, Generative frameworks for rigorous model-driven

development, PhD thesis, Dept. of Computer Science, University of
York, 2006.

[2] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation”, Proc. ACM/IEEE 10th
International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pp. 436-450, 2007.

[3] D. Bjørner, Software Engineering 3: Domains, Requirements, and
Software Design, Springer, 2006.

[4] F. Bouquet, F. Dadeau, and J. Groslambert, “Checking JML
specifications with B machines”, Proc. ZB 2005, LNCS, vol. 3455,
Springer, pp. 434-453, 2005.

[5] Q. Charatan and A. Kans, Formal Software Development: From
VDM to Java, Palgrave Macmillan, 2004.

[6] R. N. Charette, “Why software fails”, IEEE Spectrum, vol. 42(9), pp.
42-49, 2005.

[7] R. Duke and G. Rose, Formal Object-Oriented Specification Using
Object-Z, MacMillan Press, 2000.

[8] E. Freeman, E. Freeman, and B. Kathy Sierra, Head First Design
Patterns. O’Reilly Media, First edition, 2004.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Publishing Company, Fifth printing, 1995.

[10] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum,
“Generating Transformation Rules from Examples for Behavioral
Models”, Proc. Second International Workshop on Behavior
Modeling: Foundation and Applications, Paris, France, 2010.

[11] S. Kim and D. Carrington, “A formal meta-modeling approach to a
transformation between the UML state machine and Object-Z”, Proc.
ICFEM 2002, LNCS, vol. 2495, Springer, pp. 548-560, 2002.

[12] H. Miao, L. Liu, and L. Li, “Formalizing UML models with Object-
Z”, Proc. ICFEM2002, Springer-Verlag, pp. 523-534, 2002.

[13] J. Bowen and M. Hinchey, “Seven more myths of formal methods”,
IEEE Software, vol. 12 (4), pp. 34-41, 1995.

[14] I. Poernomo, “Proofs-as-model-transformations” LNCS, vol. 5063,
pp. 214-228, 2008.

[15] F. Polack, “SAZ: SSADM version 4 and Z”, Proc. Software
Specification Methods: an overview using a case study, Springer, pp.
21-38, 2001.

[16] I. Porres, “Modeling and Analyzing Software Behavior in UML”,
PhD thesis, Department of Computer Science, Abo Akademi
University, Finland, 2001.

[17] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th
edition, McGraw Hill, 2009.

[18] S. K. Rahimi, “Specification of UML Model Transformations”, Proc.
Third International Conference on Software Testing, Verification and
Validation, pp. 323-326, Paris, 2010.

[19] R. Razali, C. Snook, M. Poppleton, and P. Garratt, “Usability
Assessment of a UML-based Formal Modeling Method Using
Cognitive Dimensions Framework”, Human Technology, 2008.

[20] D. C. Schmidt, “Model-driven engineering”, IEEE Computer, 39 (2),
pp. 25-31, 2006.

[21] C. Snook and M. Butler, “UML-B: Formal modeling and design aided
by UML”, ACM Trans. Softw. Eng. Methodol, vol. 15 (1), pp. 92-
122, 2006.

[22] I. Sommerville, Software Engineering, 8th edition, Addison Wesley,
June 4, 2006.

[23] S. Stepney, F. Polack, and I. Toyn, “Patterns to guide practical
refactoring: examples targeting promotion in Z”, Proc. ZB 2003,
Finland, LNCS, vol. 2651 of, Springer, pp. 20-39, 2003.

[24] J. R. Williams, Automatic Formalization of UML to Z, MSc Thesis,
Department of Computer Science, University of York, 2009.

[25] J. Ludewig, “Models in software engineering – an introduction”,
Software and Systems Modeling, vol. 2(1), Springer-Verlag, 2003.

[26] A. Rasoolzadegan and A. Abdollahzadeh, Specifying a Parallel,
Distributed, Real-Time, and Embedded System: Multi-Lift System
Case Study, Technical Report, Information Technology and Computer
Engineering Faculty, Amirkabir University of Technology, Tehran,
Iran, 2011: http://ceit.aut.ac.ir/~86131901/Publications.htm.

[27] A. Rasoolzadegan, A. Abdollahzadeh, “Empirical Evaluation of
Modeling Languages Using Multi-Lift System Case Study”, Proc.
MSV'11: The 8th annual International Conference on Modeling,
Simulation and Visualization Methods, Las Vegas, Nevada, USA,
2011.

[28] S. Blazy, F. Gervais, and R. Laleau, “Reuse of specification patterns
with the B method”. Proc. ZB 2003, Turku, Finland, LNCS, vol.
2651, Springer, pp. 40-57, 2003.

[29] A. Flores, R. Moore, and L. Reynoso, “A formal model of object-
oriented design and GoF design patterns”, Proc. FME 2001, LNCS,
vol. 2021, pp. 223-241, Springer, 2001.

[30] A. H. Eden and T. Mens, “Measuring Software Flexibility”, IEE
Software, vol. 153(3), pp. 113-126. London, UK: The Institution of
Engineering and Technology, 2006.

[31] OMG, Object Constraint Language (OCL). version 2.0, Object
Management Group, 2006: http://www.uml.org.

[32] H. Liang, J. Song Dong, J. Sun, and W. Wong, “Software monitoring
through formal specification animation”, Innovations in Systems and
Software Eng., vol. 5(4), pp. 231-241, 2009.

[33] S. Kim and D. Carrington, “A rigorous foundation for pattern-based
design models”, Proc. ZB 2005, LNCS, vol. 3455, Springer, pp. 242-
261, 2005.

111

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

