
A Graph-Based Requirement Traceability Maintenance Model

Facilitating Chronological Evolution

Vikas Shukla
1, 2

, Guillaume Auriol
1, 2

, Claude Baron
1, 2

1 LAAS-CNRS ,

7 avenue du Colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse; UPS, INSA, INP, ISAE; UT1, UTM, LAAS ;

F-31077 Toulouse, France

{vshukla, gauriol, cbaron}@laas.fr

Abstract—Requirement traceability remains a challenging task

for the software developers. It helps stakeholders to

understand the various relationships between the artifacts

produced during the development process. During this

requirement evolution process, information is produced and is

stocked as trace. Some part of this information is lost owing to

traceability maintenance process as links are deleted and

removed from the system. This lost information is very useful

while making decisions during the development process. In this

paper we discuss a graph-based traceability model, which

allows easy maintenance without any significant information

loss. We show that both nonfunctional and functional

requirements can be traced forward and backward using our

proposed graph-based traceability model.

Keywords-Requirement Traceability; Graph; Maintenance;

Decision making.

I. INTRODUCTION

 Requirement traceability is the ability to describe and
follow a requirement in both forward and backward direction
in a software development life cycle [1]. Requirement
traceability is seen as an index of software quality, it is one
of the recommended activities for the system requirement
specifications [2], CMMI and ISO 15504 consider it as ‘best
practice’ and strongly suggest its usage. Requirement
traceability allows various stakeholders to understand the
various existing relationships among the produced artifacts
during the product development process.
 A requirement is traceable if you can discover who
suggested the requirement, why the requirement exists,
which requirements are related to it and how that
requirement relates to other information such as systems
design, implementation and user documentation. Traceability
information helps you discover which other requirements
might be affected by requirement changes.
 Requirement traceability is always associated with
artifacts, we define artifact as any product which may have
originated during the course of development process or is
utilized during the development process or later and is
important for the success of project.
 Every organization implements its own suitable guiding
principles for requirement traceability which are known as
‘traceability policies’. Traceability policies define which
information dependencies between requirements should be
maintained and how this information should be used and
managed.

Traceability means different things for different types of
users depending on the types of users high-end or low-end
[3, 4]. Usually, quality requirement of a system, which are
mostly nonfunctional requirements, are high-end users
requirements associated with management people. Low-end
users are usually developers, programmers or people
involved with testing, verification or validation.
 For high-end users it implies how the client needs have
been fulfilled but usually the low-end users find it
unnecessary work overload [3], Tracing of nonfunctional
requirements satisfies their needs. Similarly the traceability
need of low-end users is satisfied with functional tracing.
 We have contributed to the existing state of art by
proposing a valid solution to the maintenance problems, i.e.,
the information loss, and dangling traces. Our paper
addresses solution for the existing requirement traceability
maintenance problems using graph-based methodologies,
based on event-based traceability [5]. We show how we can
increase the value of trace for the low-end users and hence
involve them rigorously in traceability process. Our approach
shows the interesting solution for the dangling-trace and
information-loss problem and shows how our technique can
be suitably used for minimizing cost of maintenance.
 The paper is organized as follows. Section 2 of this paper
highlights the current traceability maintenance problems.
Section 3 presents the existing related works. Section 4
presents our graph-based traceability maintenance model.
Section 5 discusses various aspects of our maintenance
scheme and discusses feasibility and scalability issues linked,
and equally the various combinations possible with recovery
schemes. Section 6 concludes the paper and brings the
possible problems and solutions linked to our approach.
Finally, Section 7 presents the future perspective works
envisaged.

II. TRACEABILITY MAINTENANCE PROBLEM

 The requirement traceability is a continuous activity,
involving peoples of various levels to participate
continuously and maintaining a perfect communication
channel among them for avoiding any information lapse. A
good communication channel can help to figure out
inconsistencies in the interpretation of requirements among
various stakeholders which is very necessary for requirement
engineering activities. Besides the communication there are
various issues in traceability maintenance. Maintenance is
the activity of updating and modifying already existing
traceability relationships [6]. We discuss a few of the

161

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

existing important maintenance problems, which we address
in this paper.

A. Cost of Maintenance

 As the requirements are continuously evolving through
the life of a project, requirements are added, removed or
modified. The links between these evolving requirements
need to be maintained. In a sufficiently complex system, the
number of requirements can vary up-to few thousand
requirements depending upon the granularity. Maintaining
these requirements can be tedious task involving lot of
computational and human resources.

B. Dangling Trace

 A dangling trace is one which points nowhere or it lacks

either a source or a target [7]. Such situation may arise due

to human or system error during the course of a continuous

evolution of a fairly complex system. They may also arise

due to changes in the system model rendering some part of

old system out of the boundaries of new system and hence it

becomes difficult to trace them with respect to new

requirements.

C. Information Loss

 Whenever a new requirement is added to the system it
needs to be linked to other requirements and available
artifacts. The corresponding owners of the linked artifacts
should be informed and advised to bring up the necessary
changes. Similarly whenever an artifact is removed or
altered or its dependency changes all the information should
be communicated to the various stakeholders. This task
usually involves maintaining these fine grained relationships
and continuous update of such information usually leads to
loss of data and hence information. We claim this
information to be important as they are result of earlier high
level discussions and decisions which involved certain cost.

If any such information is deleted permanently then in
case of a future discussion there is chance that development
team may reach a similar decision which was earlier found to
be inutile. This may happen due to a probable change in the
team or may be just of a simple absence of a member, which
is quite possible as project development may take
sufficiently long time.

D. Increasing Value of Trace for low end users

 As mentioned earlier, for the low end users traceability

seems to be a monotonous task and they are reluctant to

involve themselves in traceability process. They do not find

it very useful for their objectives and hence traceability does

not offer them sufficient valorization for their work.

 Whereas with every change brought to an artifact during

the course of development there is an inherent risk attached

to every dependent artifact involved which may jeopardize

the success of project. We show in the following section that

this risk evaluation factor can be used as a tool to valorize

the work of low-end users and hence to continuously

involve them in traceability mechanism. This associated

risk can then be utilized in change impact management.

III. OTHER REALATED WORKS

 Current literature on traceability contains ample work on

need, and generation of traceability [1]; however, fewer

work has been produced regarding the maintenance of

traceability [5, 7, 9, 10, 14] the existing ones do not address

properly the information loss problem. Cleland-Huang et al.

[5] proposes publish–subscribe mechanism, a relationship

between artifacts is registered to a central server. The

evolution is represented by the series of change event. When

a requirement is changed, the subscribers are notified about

the change and they may bring the potential changes to their

artifacts. It allows complete removal of requirements.

 Another event-based scheme [14] uses a tool called

Ttracemaintainer but it uses only UML structural models.

Another similar tool to Ttracemaintainer is ArchTrace [13],

it addresses the consistency and evolution of trace links

between software architecture models and their associated

code. Another approach for evolving traceability for

heterogeneous artifacts [11] gives interesting insights about

which information should be traced for corresponding

artifacts so that fine-grained differencing can be used to

identify evolution. The graph-based traceability schemes

exist in literature like [6, 15, 16]. Schwarz et al. [6]

recommends the complete deletion of traceability links

hence in this respect it is like our maintenance model, but it

insists the trace maintenance using the technique based on

[5], but essentially they are based on transformation models,

while this paper is based on classical techniques. Some

earlier works have recommend versioning schemes for

traceability maintenance of artifacts [9], but with the

versioning schemes it becomes hard to see the evolution at

an instant. The other approaches are state-based [7], and

scenario-based traceability. The state-based techniques

employ syntactic differences between different versions of

model. Some use text differencing to identify change. The

other techniques for managing traceability, based on

evolution, use policy-based support [10].

 An important aspect of various traceability models is of

the traceability recovery scheme. To reduce the cost of

traceability, use of semi-automatic and automatic

mechanism for traceability recovery is advocated. This is an

important aspect, as for a fairly large sized project creating

traces manually can be tardy.

 ADAMS [16, 17] uses a latent semantic indexing

scheme for traceability recovery from the checked in

artifacts. There are many schemes based on IR (information

retrieval) and vector space model techniques. The majority

of traceability tools equipped with semi-automatic or

automatic recovery techniques are plagued with ‘false

positive’ problem [16]. The tool ADAMS uses an event

notification scheme and claims automatic traceability

recovery scheme and other modules for project

management. It also uses a versioning scheme for traces, but

still some information loss is still possible owing to

complete removal of artifacts before the version release.

162

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 There are many traceability models, but most of the

systems are overly complex and do not address the

chronological evolution and information loss problem in

particular. Valorizing traceability can be used as a tool in

software configuration management [8].

IV. GRAPH-BASED TRACEABILITY MAINTENANCE MODEL

 Figure 1 .Trace meta-model

 Our graph-based traceability maintenance model is
comprised of two entities: trace meta-model and traceability
mechanism.

A. Meta-model

 We propose our solution to the aforesaid problems; we

assume that the information that a trace should contain are

decided by traceability policies of the enterprise. We define

our traceability meta-model, as shown in Figure 1. We have

introduced the concept of live and dead information in our

meta-model. Live information is one which is coherent till

date and is represents the current state of artifact, whereas

dead information is one which is obsolete with respect to

current state of artifact but still holds information which

shows the chronological evolution of system.

 The trace meta-model defines trace as composition of

other traces; a trace always contains at least one source and

at least one target artifact. A trace contains two types of

information live information and dead information.

 Information is always associated with a time stamp

indicating the period during which it was conceived or

created. A trace should contain at least single live

information and may not contain dead information. A trace

always contains a risk associated apart from information.

We recommend link model of [11] data to be taken in

consideration for representing a trace information.

B. Traceability mechanism

 Traceability mechanism is based on the graphical

traceability techniques in which artifacts are represented as

nodes and traces are links between the two or more artifact.

The need of a product or product is considered as the root of

the tree, non-functional requirements (NFRs) and functional

requirements (FRs) are the immediate nodes to the root. As

most of the NFRs are implemented as FRs, the NFRs are

later linked to FRs and artifacts in next level at finer

granularity.

 In our traceability mechanism, we define three actions

addition, modification, and rejuvenation; they can be

applied both on traces and artifacts; there is no deletion

operation but instead another sub-operation of modification

called suspension. Suspension is envisaged to provide

similar functionality like deletion, which permits to keep the

track of trace evolution.

Figure 2. Addition operation

Figure 3. Modification-suspension operation

Each node/artifact maintains two additional lists, one for the

dependencies or links, which are pointing to a dead artifact,

and one which maintains the names of dead child artifacts.

1) Addition operation

Figure 2 shows the addition operation, when an artifact is

created a trace is created pointing from the parent node to

the recently created node. All the necessary data are filled

and the node is initialized.

163

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

2) Modification operation

Modification operations are of two types change and

suspension.

a) Change

In case of modification change operation whenever data are

updated the earlier existing data are marked dead and the

newer ones take their place and are marked alive.

b) Suspension operation

Modification-suspension operation is one when an artifact is

no longer coherent with the current system state, and user

actually wants to remove it, in this case the artifact is

marked dead and is suspended and instead of complete

deletion from tree it is moved one level up and is added to

the list of dead artifacts of corresponding node. Figure 3

shows the modification–suspension operation. The other

consequence to modification–suspension operation is that

all the links from the various other artifacts which were

pointing to dead artifact are added to the list of dead

pointers.

3) Rejuvenation operation

A rejuvenation operation permits to change the status of a

trace from dead to alive. This operation can only be applied

when all the pre-artifacts to current artifact are alive or

controlled, i.e., all the earlier artifacts which were the

existential reason for the current artifacts should have been

taken in account suitably.

V. DISCUSSION

 In principle, the majority of graph-based traceability

tools are more or less similar, plagued with similar

deficiencies. We would recommend a semi-automatic

traceability recovery technique. As, in a fairly large system

a fully automatic mechanism can lead to false-positive

notifications, which can be errant for requirement engineers.

The current traceability mechanisms based on information

retrieval (vector space models, latent semantic indexing, and

probabilistic model etc.), structural rule-based, linguistically

rule-based, transformation rule-based or other hybrid

techniques are still error prone and needs to be improved.

 Our traceability maintenance technique can be coupled

with any traceability recovery technique, and used

efficiently. Our paper addresses vital issue of information

loss; for example, in a fairly large project which has

duration of several years, it is possible that one artifact

which was previously decided not to be included in the

product owing to a certain constraint, is reintroduced. If the

analyst had removed this artifact from system, the

information regarding its exclusion was lost which was

valuable to the project, and hence it costs again time and

money, only to be discovered later regarding its deficiency.

We claim that this ‘artifact evolution information’ is useful

and should not be lost whether the decision regarding the

artifact is finally affirmative or negative.

 The major limitation of event-based traceability

approach is of scalability; as the number of messages

generated passes a certain limit, it becomes difficult to

handle so many notifications manually [17]; even reduced

subscription cannot answer this problem. This maintenance

problem is addressed by our technique. The cost of

maintenance using our technique is fairly less, as compared

to other techniques. For every artifact updated, the

information which is obsolete becomes part of the parent

node in the form of dead information, and the pointing trace

is also removed and stocked as dead information with parent

node, this eases the work of requirement engineer. In a large

project with an event-based notification procedure, using

our proposed technique, the deletion operation on any

artifact could be executed without the overhead of

notifications, and overhead of follow-up trace deletion

requests from lower level artifact owners to higher level

artifact owners.

 Our traceability model includes risk evaluation of every

trace created, this helps to valorize the traceability task of

requirement engineer. The risk involved can be the

information vital information regarding the dependencies or

the rationale behind the existence of the artifact. We claim

that, this can help requirement engineer to valorize his work

and renders the tracing activity interesting by coupling

analysis together, which can be used later, for calculating

ripple effect.

VI. CONCLUSION

 This paper has presented a new approach for traceability

maintenance scheme, trying to address chief problems of

current trace processes. The proposed traceability model

emphasizes on maintenance with efficient maintenance

schemes, we are developing a tool which comprises our

technique, and we are yet to obtain results and observations

which support our claims. Our technique provides

interesting solution to the dangling trace problem, which can

immensely help to reduce the tediousness of tracing process.

Our solution offers a plausible solution to the information-

loss problem as the information ever generated in the

development process remains in system to provide the exact

trace of evolution of the system.
With the ease in trace maintenance process the cost of

maintenance can be reduced noticeably as the dangling
pointer problem is solved the effort in maintenance is
reduced and hence less time and less human resources are
engaged to do the same task.

We claim that our technique can bind tightly the low-end
users to the traceability process and can help them to valorize
their work by involving them in risk assessment process of
every artifact they own. Usually in the system development
process there are numbers of iterations before an artifact is
finally accepted as the part of system, our technique allows
retaining the information regarding iterations and
chronological evolution and hence helps in better decision
making.

We can still not trace 100% of information as it is always
difficult to trace the informal aspects of many artifacts. We
advocate the usage of semi- automatic trace mechanism with

164

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

event specific human intervention for the optimal benefits of
traceability.

VII. FUTURE WORK AND PERSPECTIVES

 We are currently working to fully implement our

technique, which addresses maintenance issues which we

discussed in this paper. In spite of these facts there are other

issues which need to be addressed like heterogeneous

traceability schemes for capturing informal aspects.

 Usually graph becomes large and hard to understand

[12], our technique can be constrained to map intra-level

traceability, reducing size and increasing the

understandability of graph. Our technique can be evolved

further to enable global distributed traceability.

 There are still issues like increasing the value of trace

and methods to augment the usability of trace in

organization and how to holistically link the various aspects

of system development with the traces. Can we utilize traces

for rapid development process? Can traceability patterns be

used for product development? How to evolve traceability

techniques as a tool for change impact analysis? These are

the numerous issues which need to be addressed by research

communities.

ACKNOWLEGEMENTS

The research leading to above results has received funding

from the European Community’ Seventh Framework

Program (FP7/2007-2013) under grant agreement n°

234344.

REFERENCES

[1] Gotel, O.C.Z., and Finkelstein, C.W., “An analysis of the
requirements traceability problem,” Proceedings of the First
International Conference on Requirement Engineering (ICRE 1994),
pp. 94-101, 18-22 Apr-1994, doi: 10.1109/ICRE.1994.292398.

[2] “IEEE Recommended Practice for Software Requirements
Specifications,” IEEE Std 830-1998, 1998
doi:10.1109/IEEESTD.1998.88286.

[3] Ramesh,B., “Factors influencing requirements traceability practice,”
Commun. ACM 41, 12 (December 1998), pp. 37-44.
doi=10.1145/290133.290147.

[4] Ramesh, B., and Jarke, M., “Toward reference models for
requirements traceability,” IEEE Transactions on Software
Engineering, vol.27, no.1, pp. 58-93, Jan 2001
doi: 10.1109/32.895989.

[5] Cleland-Huang, J., Chang, C.K., Christensen, M., “Event-based
traceability for managing evolutionary change,” IEEE Transactions
on software engineering, vol.29, no.9, pp. 796- 810, Sept. 2003, doi:
10.1109/TSE.2003.1232285.

[6] H. Schwarz, J. Ebert, and A.Winter., “Graph-based traceability: a
comprehensive approach,” Softw. Syst. Model. 9, 4 (September
2010), pp. 473-492. doi=10.1007/s10270-009-0141-4.

[7] N ,Drivalos-Matragkas; D.S. Kolovos. R. F. Paige; and K.J.
Fernandes., “A state-based approach to traceability maintenance,”
Proceedings of the 6th ECMFA Traceability Workshop (ECMFA-TW
'2010). ACM, New York, NY, USA, pp. 23-30.
doi=10.1145/1814392.1814396.

[8] K.Mohan, P.Xu, LCao, B.Ramesh., “Improving change management
in software development: Integrating traceability and software
configuration management,” Decision Support Systems, Volume 45,
Issue 4, Information Technology and Systems in the Internet-Era,
November 2008, pp. 922-936, ISSN 0167-9236, doi:
10.1016/j.dss.2008.03.003.

[9] T. N. Nguyen, C. Thao, and E. V. Munson., “On product versioning
for hypertexts,” Proceedings of the 12th international workshop on
Software configuration management (SCM '2005), ACM, New York,
NY, USA, pp. 113-132. doi=10.1145/1109128.1109137.

[10] A.Seibel, S. Neumann, and H.geise., “Dynamic hierarchical mega
models:comprehensive traceability and its efficient maintenance,”
Softw. Syst. Model. 9, 4 (September 2010), pp. 493-528.
doi=10.1007/s10270-009-0146-Z.

[11] Hong, Y; Kim, M; Lee, S-W., “Requirements Management Tool with
Evolving Traceability for Heterogeneous Artifacts in the Entire Life
Cycle,” Proceedings of the Eighth ACIS International Conference on
Software Engineering Research, Management and Applications
(SERA 2010), pp. 248-255, 24-26 May 2010
doi: 10.1109/SERA.2010.39.

[12] Winkler, S., and Pilgrim, J.V., “A survey of traceability in
requirements engineering and model-driven development,” Softw.
Syst. Model. 9, 4 (September 2010), pp. 529-565.
doi=10.1007/s10270-009-0145-0.

[13] Murta, L.G.P.,van der Hoek, A., Werner, C.M.L., “ArchTrace:
Policy-Based Support for Managing Evolving Architecture-to-
Implementation Traceability Links,” Proceedings of the 21st
IEEE/ACM International Conference on Automated Software
Engineering (ASE '06), pp. 135-144, 18-22 Sept. 2006
doi: 10.1109/ASE.2006.16.

[14] P.Mäder, O.Gotel, and I.Philippow., “Enabling Automated
Traceability Maintenance through the Upkeep of Traceability
Relations,” Proceedings of the 5th European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA
'09), LNCS 5562, pp. 174-189, doi: 10.1007/978-3-642-02674-4_13.

[15] Pinheiro, F.A.C., Goguen, J.A., “An object-oriented tool for tracing
requirements,” Proceedings of the Second International Conference
on Requirements Engineering (ICRE 1996), pp. 219, 15-18 Apr
1996, doi: 10.1109/ICRE.1996.491449.

[16] De.Lucia, A., Fausto, F., Rocco, O., and Genoveffa, T., “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.
16, 4, Article 13 (September 2007). doi=10.1145/1276933.1276934.

[17] De.Lucia, A., Fausto, F., Rocco, O., and Genoveffa, T., “Fine-grained
management of software artefacts: the ADAMS system.,” Softw.
Pract. Exper. 40, 11 (October 2010), pp. 1007-1034,
doi=10.1002/spe.v40:11.

165

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

