
Specification of Formalized Software Patterns for the

Development of User Interfaces

Danny Ammon, Stefan Wendler, Teodora Kikova, Ilka Philippow

Software Systems / Process Informatics Department

Ilmenau University of Technology

Ilmenau, Germany

{danny.ammon, stefan.wendler, teodora.kikova, ilka.philippow}@tu-ilmenau.de

Abstract — The aim of this paper is the development of

specifications for a general analysis model for user interface

patterns that can be applied in a model-based user interface

development process. To accomplish this, we compile a detailed

definition of what user interface patterns are and how they can

be classified. Furthermore, we analyze how available methods

and notations can be used for a pattern application in user

interface development, based on two exemplary applications of

the pattern “Advanced Search” in the formal notations UIML

and UsiXML. From the resulting possibilities and limitations

in identification, selection, instantiation and integration of user

interface patterns, we derive specifications for a sufficient

pattern description and development integration method: an

exact definition, a metamodel, a specialized language, and, in

practice, a repository or pattern management software.

Keywords — user interface patterns; user interface

development; pattern specifications; UIML; UsiXML.

I. INTRODUCTION

A. Motivation

The design and implementation of user interfaces is still a
complex and resource-consuming task. In general, pattern-
based software development is a means to more efficient
implementation by applying reusable solutions for
miscellaneous software design problem classes. In this
regard, the use of software patterns in user interface
development would offer generic solutions for recurring
components of a user interface, depending on a certain
interface paradigm. Navigation through tabs, for example,
would be a feasible solution for the need to switch between
complex sets of documents, websites, forms, etc. in graphical
and touch user interfaces.

Currently, the application of such user interface patterns
is situated only on an informal level with textual descriptions
of common design solutions [1]. There is only limited
research into generative, formalized user interface patterns,
which can be applied for the automation of re-use of design
solutions [1]. In this regard, methods for the development of
user interfaces were introduced, starting at the stage of task
or system models and matching user interface patterns with
parts of these models [2][3].

However, we found no consistent suggestion of a pattern-
based user interface design and implementation process,
which combines a sufficient pattern repository, consisting of
formalized user interface patterns, and an end-to-end solution
of model-based pattern matching, selection, instantiation,
and code generation. In addition, a generally accepted

notation for user interface patterns is missing, which allows
an abstract formulation of human-computer interaction
components. Being transferable into concrete user interface-
part descriptions and, finally, instantiable into source code,
these abstract components could be deployed to form
elements of real user interface patterns and thus facilitate
reuse in GUI development.

B. Objectives

The aim of this paper is the development of a
specification for a general analysis model that describes
generative user interface patterns so that their common
aspects can be identified and captured. This basic
specification and its understanding are needed for the
integration of methods that enable the matching and code
generation based on the application of these patterns. We
explicate how available methods and notations could be used
for a user interface pattern repository or pattern manager.
Moreover, we analyze the strengths and weaknesses of these
existing assets and point out what better suitable methods
and formats would have to be capable of. A sufficient
solution for pattern-based user interface development should
particularly meet the following criteria:

• reusability and variability of stored user interface
patterns

• ability of user interface patterns to be composed in
order to form a hierarchy of GUI components

• instantiation of user interface patterns into varying
interface paradigms and types

Based on these criteria, we review the state of the art and
describe a perspective on user interface patterns that paves
the way for the specification of a sophisticated metamodel
needed in model-based user interface development
environments.

C. Structure of the Paper

In Section II, we analyze existing methods of user
interface development and independent interface description
languages. We also outline the current status of the
application of user interface patterns in the development
process. In Section III, we propose a definition and
characterization of user interface patterns, their inclusion
criteria and dimensions. We use this definition to establish
and utilize a formalized pattern, advanced search, for the
application of current methods and notations in Sections IV
and V. We show the results and weaknesses of our work and
derive requirements for a fully applicable formal pattern
description language in Section VI. Finally, in Section VII

296Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

we conclude with specifications for formalized user interface
patterns, which will meet the three criteria mentioned in our
objectives.

II. RELATED WORK

A. User Interface Development and Description

Today, the design and implementation of a software user
interface mainly concentrates on the basic conditions and
abilities of the before-chosen programming language and
used software frameworks or libraries. After the general
design of a user interface, the implementation is in focus,
whether it is in Java Swing, HTML and CSS or C# and the
XAML, to name only a few examples. While there has been
a lot of research conducted on model-based user interface
development, only a limited number of generic model
concepts for a methodic interface design exist. One of these
can be found in [4], where common steps of a user interface
development process are explicated. Four model layers and
corresponding transformations to derive user interface
specifications from requirement models are proposed by
Ludolph.

Another approach relies on a UML-based design of user
interface software architecture [5]. Chlebek describes a
comprehensive process and provides several perspectives
onto the user interface development. Also, a special
description language for the development process, which is
independent from target source code, is used by him.

A greater number of platform-independent user interface
description languages do exist. These languages are often
XML-based and thus markup languages. Some of them have
been developed for certain software projects or company-
specific programming tools, such as XUL [6] and XAML
[7]. Others, like UIML [8][9] and UsiXML [10], are results
of research projects, but are rarely used in practice.

None of those generic concepts for interface development
processes we found enabled the application of user interface
patterns. Neither do independent user interface description
languages have sufficient capabilities to store user interface
patterns in their format. The GUI aspects described by these
languages tend to be invariant and too concrete in
specification [11] so that they do not provide any means to
adapt the user interface to varying contexts. However,
several special approaches for an integration of patterns into
user interface development exist, which are outlined in the
following subsection.

B. Pattern-based User Interface Development

Currently, there is no generally accepted definition of
software patterns for user interface development. Instead,
different concepts and terms exist, such as user interface
patterns, user interface design patterns, or human-computer
interaction patterns. Most of them refer to textual and
graphical descriptions as solutions of a user interface design
problem concerning mostly visual aspects and interaction
concepts. These are termed descriptive user interface patterns
[1]. Several libraries of descriptive patterns exist, such as
[12][13][14]. Rarely do such descriptive pattern collections
provide implementation details [15].

For a direct integration of reusable patterns for the user
interface into a development environment, formal models or

notations are needed, which enable a certain functionality
and can be instantiated into certain model stages or source
code, like design patterns. This variant is called generative
pattern [1].

Generative patterns can be applied in a pattern-based user
interface development process. One example of such a
development process has been created by the University of
Rostock in Germany [3][16][17][18][19][20]. Therein,
model-based and pattern-driven design has been integrated
by using several model layers (task, dialog, presentation and
layout) to perform an identification and a selection, an
instantiation and an integration of user interface patterns
during the generation of the used models [3]. A tool has been
developed, which supports this integrated development [3].
The user interface patterns are stored as fragments of the
used models (“patterns in modeling”). They are used for
more efficient modeling steps (“accelerating the design”)
[18]. In a similar approach, an enhanced CASE tool was
suggested, where user interface patterns are stored as class
diagrams [2]. The static description of classes is then
matched with the existing patterns, enabling a high level
design of systems and their user interface. Identified classes
can be replaced by the corresponding stored pattern, which is
again a contribution to efficiency of the interface
development process at the modeling level.

Other approaches go further to the generation of formal
user interface description or source code [16][17]. Here,
XUL is used to store formalized patterns, or a combination
of PLML [21], UsiXML and additional components [22].

However, due to the used description languages, only one
interaction paradigm is supported — the so-called WIMP
(windows, icons, menus and pointer) interface typical for
modern desktop computer and notebook operating systems.
Furthermore, a major issue of the suggested integration of
patterns in the development process is the need for manual
retouching work. In this respect, the pattern instances have to
be created manually by adapting them to their application
context. In addition, not all kinds of patterns are supported.
The occurrence of sub-patterns is the only relation between
user interface patterns, which is dealt with in detail.

Starting with the definition itself, currently there is no
consent to the arrangement of software patterns for the
development of user interfaces, their structure and
characteristics, as well as their relations among each other
and to other software patterns.

III. USER INTERFACE PATTERNS: DEFINITION AND

CHARACTERISTICS

A generally acceptable definition of software patterns in
user interface development should not only describe
precisely what a pattern is and how it can be reused and
adapted. Additionally, it should combine the several
dimensions these patterns can be classified with. Thus, we
propose the following definition:

In general, user interface patterns are software patterns,
which can be applied for the specification, description and
development of user interfaces.

As there is no common basis in literature for user
interface pattern characteristics, the definition above is to be
refined by our findings and arguments focused on the

297Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

compositional view on user interface patterns we gathered
during our observations in an industry project. The
argumentative perspective presented here leads to
requirements for a formal definition of user interface patterns
that can be implemented by a metamodel in future work. To
establish a more detailed clarification we describe the aspects
a user interface pattern basically consists of in the following
sub-section.

A. User Interface Pattern Aspects

Firstly, a user interface pattern incorporates a stereotype
but abstract view. This aspect defines the selection,
arrangement and types of user interface controls. Regarding
this aspect, the user interface pattern does not refer to certain
GUI frameworks so that the view can be implemented using
different languages and technologies. In addition, the view is
abstract in order to allow its application in various contexts.
The abstract manner of view is backed by other user
interface pattern specification language sources. For
instance, the “facets” and “Abstract Interaction Objects” of
the “abstract UI model” in [1] imply a view that has to be
refined and transformed to certain platforms and renderings
[10]. Besides UsiXML, UIML [8] specifications can be used
to define a view composed of abstract elements in its
structure section, which will be refined by a peer section to
translate the view elements to certain GUI framework
components or user interface controls.

Many user interface pattern libraries like [12][13] only
focus on the view aspect. Metaphors [4][11] like trash bins
and shopping carts may represent the foundation for the
views of user interface patterns, but they also drive the
aspect of interaction.

Secondly, a user interface pattern embodies a stereotype
interaction. An interaction between a user and several user
interface pattern instances of a certain type is always
perceived and performed in the same way by the user. For
example, each time a user interacts with a “Search Box”
[12], he inputs the search string, selects the search category
using the list box and finally triggers the actual search with
the button. The options and sequences of interaction along
with related behavior are defined independently from the
context the pattern is being used in. Another example
underlines that: A set of checkboxes is used to select only
two options out of many available. The user interface pattern
has to enable this constraint in its definition, regardless of the
actual number of checkboxes within the possible pattern
instances. Forming a unit of general purpose and
applicability together with the view aspect, the interaction
aspect adds essential value to the user interface pattern
definition, which is reusable in many contexts, accordingly.
The interaction strongly relies on and refers to the view
aspect. This unity of view and interaction primarily forms the
reusable entity and distinguishes the user interface pattern
from ordinary GUI framework components and composite
user interface controls.

Thirdly, besides the first two mandatory aspects, a user
interface pattern may define an optional context dependent
control. This aspect is primarily needed for user interface
patterns that are composed of several user interface controls
or even other user interface patterns. These composite

patterns react on the context they are applied to by selecting,
instantiating and configuring their child elements. An
example for such a pattern is given by the “Advanced
Search” [12], which enables the user to select search criteria
depending on the object to be searched. This particular
pattern offers “a special function with extended term
matching, scoping and output options”, when “users need to
find a specific item in a large collection of items” [12]. A
possible interface of an advanced search pattern instance is
drawn in Figure 1.

Figure 1. Interface example for an advanced search dialog

Each search criterion line refers to one of the object
attributes’ data type and thus can be regarded as a smaller
user interface pattern that is instantiated on demand. For all
money types, as shown in Figure 1, two values can be
entered as search parameters. Each time a money type
occurs, the same view and behavior are to be instantiated,
hence this type of search criterion line is defined as a user
interface pattern.

Another example is depicted in Figure 2. This dialog is
composed of several user interface patterns working
together. A “Data Table” [13], which is configured
according to the object to be displayed, is arranged on the
right hand side. On the left hand side, a search refinement
can be specified using the given criteria, which are derived
from the objects’ attributes and their data. The main user
interface pattern defines the entire “Search Results” tab,
configures and instantiates its child patterns depending on
the object and its attributes to be searched. Eventually, the
interaction aspect of the dialog is distributed along the
pattern instances. The controlling aspect of the main pattern
handles the lifecycle of each child pattern instance and
queries their interaction events in order to complete its own
interaction sequence. For example, only the activated search
criteria in Figure 2 are considered for compiling search data,
when the button “Refine Search” is activated. Thus, the
second aspect of user interface patterns provides the input for
the controlling mechanism of more sophisticated or
hierarchical user interface patterns. The need for a
controlling aspect depends on the structure and purpose of
the pattern itself. The simple search box does not need the
third aspect, since it always features the same visuals,
configured data and output events or data. Its behavior is
limited to states that can be determined at design time easily.
In contrast, the states of the “Advanced Search” or “Search
Refinement” can be determined only at runtime, with

298Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

knowledge about the application context, and finally, user
inputs.

Figure 2. Interface example for a search results dialog

According to the need for the controlling aspect, more
examples of user interface patterns are “Wizard” [12] or
reusable dialog types like the “Search Refinement” that may
act as templates for several dialog instances. The context the
controlling aspect of the pattern relies on can be embodied
by a static artifact, e.g., an object and its attributes, or
dynamic artifact, e.g., a state machine or task model. By
referring to the latter, an implicit connection to the dialog
controller of the software architecture can be established.

B. Variability Perspective on User Interface Patterns

The instantiation of a user interface pattern for varying
contexts will result in implementations of given architectural
components that differ in certain aspects. That is why we
refer to the common architectural pattern MVC [23] as a
perspective for discussing the adaptability, variability and
reuse of user interface patterns in different contexts.

Firstly, the easiest way of applying a user interface
pattern in various contexts can be established by adapting it
to accept a range of data types for its defined view aspect
elements. For instance, a “Data Table” [13] being part of a
user interface pattern view aspect will be instantiated for
displaying a variety of business objects with different data
types in their attributes. Another example is given by “Event
Calendar” [12] or similar patterns, which interpret the given
values within the model by proving an appropriate display of
data. This kind of reuse would only affect the model part of
the architecture.

Secondly, user interface patterns need to be adapted to
the actual dialog layout. A “Double Tab Navigation” [12]
needs to be shaped to the actual menu contents and layout to
be displayed, for example. This results in a change of the
presentation (view) component and related events, where the
number, ordering and layout of required user interface
controls have to be determined and implemented
accordingly. Consequently, user interface patterns act as
templates for the static and dynamic aspects of the view
component and its presentation control. Therefore, the view
and its related controller have to be adapted.

Thirdly, besides the prior concerns, composite user
interface patterns have to feature variability regarding their
controlling aspect. The controller of an MVC triad can be
considered to be acting on two different levels. One part of
the controller is responsible for the visual event handling
only and is closely related to the view aspect of a user
interface pattern instance. Due to cohesion and coupling
concerns, the scope of this controller should be limited to
one visual design unit, meaning one user interface pattern
instance and its specified behavior at a time. The other part
of the controller should handle the application related or
logical behavior. Since user interface patterns can be
composite, controllers should follow the same structure and
be assigned to the individual pattern instances. With this
compositional structure of the patterns and the controllers
accordingly, the reuse of certain combinations of patterns
will be facilitated.

An example depicting the variability of user interface
patterns is given in Figure 3. On each side of the upper half a
visual representation of a user interface pattern specification
is shown. The first dialog sketch defines the view used for a
business object and the tabs, which establish the navigation
structure a user might interact with. The second dialog sketch
above visualizes a sub-pattern that is used for the
“Properties” tab. Therefore, the example consists of a
composite user interface pattern. Possible instances of the
two patterns are shown below. Concerning variability of
model data and presentation (view), the specific dialog on
the lower right hand side shows that displayed data and
corresponding user interface controls are chosen dynamically
for the object the pattern instance is assigned to.

Figure 3. User interface pattern templates (above) and instances (below)

Especially the “Search Term” attribute is to be mentioned, as
there is a distinction between text fields and list boxes
regarding the data type. The lower left hand side dialog
sketch has fixed visuals and data assignments, but it is
variable, as it considers the actual type and number of
associations an object may possess. For each association, an
assignment dialog is presented that can be accessed by the
dynamically instantiated tab. In the example, “Products” and
“Quotes” tabs refer to the associations of the object
“Supplier”.

299Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

To conclude, a user interface pattern specification has to
enable the definition and distinction of all three aspects in
order to provide the preconditions for effective reuse and
variability. User interface patterns are meant to be adapted to
different data types to be displayed. In addition, they need to
be aware of the number and layout of their view components.
Lastly, user interface patterns do not only need to adapt to
their own variable interaction, which depends on actual view
component instances, furthermore they need to define a
variable control to enable the collaboration of and interaction
with their child elements.

C. Classifying Dimensions for User Interface Patterns

We refer to the following dimensions to classify user
interface patterns:

The degree of formalization distinguishes between
descriptive and generative patterns [1]. The argument has
been raised that a user interface pattern needs a rich human
understandable specification. The latter resembles merely a
description in prose and represents descriptive patterns,
which cannot be processed by generators and other tools of
the development environment. Thus, a machine-readable
form amends the user interface pattern entity to a generative
pattern [1].

The user paradigm reflects how the users’ tasks will be
supported by the entire user interface. Ludolph [4] mentions
the design of object-oriented user interfaces, which enable
the user to manipulate only one object in a dialog at once, as
well as the procedural paradigm, which allows the user to
accomplish a complete process consisting of several steps in
a defined sequence. These options are complemented by the
function-oriented paradigm, which provides a dialog for
completing a certain step or complex task out of a process
working with more than one object. The user interface
patterns vary in their capability to support the three
paradigms. For instance, the “Wizard” [12] is intended to
build a procedural user interface. Other user interface
patterns can be compiled to display the data of several
business objects and form a collaboration to support the user
concerning a certain function.

The variability of the user interface pattern can also
serve as a dimension. There are patterns, which hardly
feature any variability between their instances. For instance,
“Breadcrumbs” [13], an “Event Calendar” [12], or a “Date
Selector” [12] always feature the same abstract visuals and
interactive behavior. So these patterns are called static or
invariant patterns, with respect to the visual and interaction
aspects. The other patterns with true variability in view,
interaction and even control can be called dynamic user
interface patterns.

A final dimension can be proposed with the application
area: Firstly, user interface patterns can be interface-specific
(graphical user interfaces — GUI, text-based interface or
spoken dialog systems, etc.). Secondly, paradigm-specific
(WIMP or touch-based interface, etc.) patterns can be
differed. Thirdly, some system-specific patterns (Windows,
MacOS, Android or iOS, etc.) have emerged from the
appropriate GUI specification guidelines. Finally, user
interface patterns can be closely associated with a certain
domain (eBusiness, simulation systems, etc.). Remarkable

reuse across different systems in similar use cases of a
domain may be driven by a stable set of user interface
patterns.

Finally, user interface patterns within the given
dimension can be related to each other. For example,
interface-specific user interface patterns often do have
different system-specific appearances. Particularly for
descriptive and generative descriptions of one pattern, we
suggest that they should be made available in a linked form
in future user interface pattern libraries in order to facilitate
the understandability of both human and machine involved
in the same development process. In this context, current
(descriptive) patterns libraries also have to be checked if all
containing pattern descriptions fulfill the aforementioned
definition and criteria of a user interface pattern.

IV. FORMAL DESCRIPTION OF GUI PATTERNS

In the following two sections, we describe an assessment
of the capabilities of pattern-based user interface
development with respect to the application of current
methods and notations. To accomplish this, we outline two
practical examples of formalizing and utilizing patterns from
general description to their application in source code. Since
the state of research in generative user interface patterns
mainly focuses on the WIMP paradigm, we also concentrate
on that area.

GUI patterns are generative user interface patterns with
an application area in WIMP software. Formal notations are
necessary to implement generative GUI patterns. Since there
is no generally used pattern language, independent user
interface description languages are widely applied for
formalizing GUI patterns (see Section II). In our prior work,
we conducted an extensive investigation on formal graphical
user interface specification languages and their applicability
for GUI patterns. Such languages offer elements like
templates (UIML) and abstract as well as concrete models
(UsiXML). Both have been developed further by extensive
work of research and have reached a high level of maturity.
Therefore, we used UIML and UsiXML for the formalization
of exemplary GUI patterns. For our analysis, we focus on the
GUI pattern “Advanced Search” (Figure 1).

For a formalization of the advanced search pattern in
UIML and UsiXML, at first we analyzed the components
and dynamics of the pattern and found the following
contents:

Advanced search view aspect:

• User interface controls: text field, dropdown list,
checkbox, button

• Possible sub-pattern: „Date Selector“ [12] for date
data types within the objects

• Layout: four-column grid with a dynamically
varying number of rows (search attribute, search
criterion or value, logical conjunction, add or
remove function)

Advanced search interaction aspect:

• Input parameters consisting of attributes and their
values of searchable objects

• Output result: logical conjunction of search clauses

300Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Advanced search control aspect:

• 1. Selection of search criteria from dropdown list
determines input form of search value,

• 2. Click on plus button adds another search clause,

• 3. Click on minus button deletes last search clause,

• 4. Click on search button sends finished search
clauses

These results can be used as specifications for a formal

notation of the advanced search pattern. In UIML, a static
interface part (view aspect) is described in structure tags,
while changes in this part during runtime, which are
triggered by user interaction, can be described in behavior
tags (Figure 4). By implementing certain rules of changing
structural code depending on input, the interface can be
manipulated in various ways. These rules contain the
condition they are triggered by and the specific action, which
is performed. Through the application of parameter-driven
templates, parts of structural code, and thus portions of the
view aspect, can also be reused. By implementing these
UIML concepts, the view and interaction aspects of an
advanced search can be represented.

u im l

head

in te rfa ce

stru c tu re

behav io r

con ten t

pa rt

pa rt

va r iab le

ru le

ru le

co nd it ion

act ion

..... .

.. .

Figure 4. UIML structure for advanced search description

The UsiXML language relies on more complex and
methodic specifications. Here, different kinds of models in a
model-based interface development process are proposed.
The most important are the following: The abstract user
interface model (AUI), where a user interface can be
described independently from the type of interface,
paradigm, system or software (see Section III, application
area of user interface patterns). Such abstract models can be
concretized in the concrete user interface model (CUI),
which relies on GUI description, much like UIML. Other
models describe the processes of interaction with the planned
interface (task model), static data and functions of it (domain
model) or show connections between the different models
(mapping model) [10]. For our description of an advanced
search GUI pattern we focused on the CUI, where a GUI part
can be differentiated into several windows with their own
user interface controls and behaviors (Figure 5). However,
UsiXML does not allow the use of variables or dynamic
manipulations of already described window contents, like
UIML does. Therefore, a complete advanced search with a
potentially unlimited number of search clauses could not be
implemented.

u iM ode l

head

cu iM ode l

w indow

w indow

......

com boBox

inputText

buttonVU I

...

content

behav io r

behav io r

Figure 5. UsiXML structure for advanced search description

While XML is a good format for the view aspect of
machine and human readable user interface patterns and
therefore, in a way, generative as well as descriptive patterns,
major problems of the use of interface description languages
arise from the nature of patterns: Those languages are not
created for the storage of incomplete, template-like interface
descriptions, which are missing all concrete specifications,
e.g., of user interface controls. This incomplete description
often cannot be fully linked to the interaction or control
aspects of the pattern. Certain limitations of the description
languages, especially in UsiXML, also prevent the complete
implementation of the interaction or control aspect.
Furthermore, most of the languages are adapted to graphical
user interfaces under the WIMP paradigm and do not allow
the description of other interface types (an exception is the
UsiXML AUI model). To achieve a full variability, which
supports all mentioned aspects and dimensions outlined in
Section III, the option to describe other interface types would
be necessary. Finally, code in independent user interface
description languages is built to be rendered in the user
interface programming language, once the development is
nearing completion. Here, several renderers for UIML and
UsiXML already exist. The integration of user interface
patterns into the code generation process, however, is not
comparable to a rendering, since these patterns need to be
instantiated first. The following subsection deals with a
concept for these necessary development steps.

V. INSTANTIATION AND CODE GENERATION

Necessary for the application of existing generative user
interface patterns is their procedural and technical integration
into user interface development. This includes the steps of
identification, selection, instantiation and integration of user
interface patterns [3].

An identification of patterns in a planned user interface
can take place at the modeling stage. The occurrence of user
interface patterns can be identified in dynamic descriptions
of a desired interaction process, namely in task models, or in
static model components, like class diagrams. This part of
pattern-based development is well-researched (see
Subsection II.B for references to examples).

Also, the selection of patterns can be accomplished
easily. Formalized and generative user interface patterns
have to be stored in a pattern repository. Upon identification
of patterns in a model, a list of suggestions with identified
patterns should be displayed and desired patterns can be
selected. Again, suggestions for pattern storage and selection
have been made in the references in Subsection II.B.

Identification and selection of patterns are part of system
interface modeling. Thus, the described technical solutions

301Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

can be plugins or special applications for the integration of
patterns in this process.

The next necessary step is the instantiation of patterns.
Since software patterns are general descriptions, which are
independent from a concrete modeling or implementation
scenario, specific details are missing. For this reason, the
user interface descriptions outlined in Section IV are
incomplete, template-like. For example, in the advanced
search pattern, as described above, the content and layout of
the dropdown list a user selects attributes of the searchable
objects with is missing, since these objects and their
attributes vary in each specific implementation of an
advanced search (searching in emails, products, pictures,
etc.).

The instantiation fills these gaps in a user interface
pattern with specific values. Thus, the result of an
instantiated user interface pattern is a complete description of
this special part of the user interface. For the use of
independent interface descriptions, like UIML and UsiXML,
that means a complete description and a valid XML-based
document is achieved only after instantiation. An instantiated
user interface pattern in UIML or UsiXML can be rendered
in the final interface language. Therefore, the general process
of generating source code from user interface patterns will be
as depicted in Figure 6.

Figure 6. User interface pattern instantiantion and rendering

The next step is the integration of instantiated patterns in
the interface implementation. Besides rendering, the main
task of the integration is the establishment and application of
a relation between selected patterns or patterns and other
parts of the source code. The key to these relations is the
existence of defined input parameters and output results for
each pattern. For the advanced search pattern as an example,
input parameters and output results are defined in Section IV.
The output result of a user interface pattern, e.g., a set of
found objects from an advanced search, can serve as an input
for another pattern, in this case a search results pattern [12].
Or, input parameters and output results of interactions in user
interface patterns can be used to connect the integration of
patterns in components of finished source code manually.

For XML-based user interface description languages,
renderers can be applied to get source code from instantiated
patterns. Since for our example, advanced search, no
sufficient renderer was available, we implemented XSLT
scripts for the transformation of UIML and UsiXML patterns
into JavaScript and HTML code.

VI. RESULTS AND DISCUSSION

Through the exemplary formalization, instantiation and
code generation of the user interface pattern “Advanced
Search”, we could assess the possibilities and limitations of
current methods for pattern-based user interface
development. Basically, a formal description of GUI patterns
is possible, and after that, they can be instantiated and
transformed into source code.

The application of UsiXML shows that, while it supports
abstract user interface models, it does not allow dynamic
creation and manipulation of interface parts in a UsiXML
document yet. Therefore, UIML is better suited to store user
interface patterns in an existing XML-based interface
description language.

However, user interface description languages are not
exactly suitable for the storage of user interface patterns, as
shown in the previous sections. They are missing options of
template-like interface descriptions without layout or content
specifications, so that only after instantiation, valid
descriptions are established. Thus, the first of our criteria for
the analysis of current pattern-based interface development
methods from Section I.B, the variability and reusability of
stored patterns, is not met through the use of general XML-
based description languages.

A composition of user interface patterns and their
integration into the source code is also possible through the
steps outlined in Section V. A full composition ability of
user interface patterns to form a hierarchy of GUI
components, however, fails with current established methods
because there is no standardized functionality of pattern
storage, instantiation and code integration. Such a part of
development tools could be called pattern manager and
should be able to suggest, instantiate, connect and generate
source code of user interface patterns, which are stored in a
pattern repository. A standard exchange format of
communication between patterns is also missing, since our
definition of input parameters and output results is
applicable, but arbitrary and not further developed. Thus, the
second criterion of our objectives is also not met.

A pattern instantiation into varying interface paradigms
and types as named in our last criterion is not possible with
the application of GUI-specific description languages.
UsiXML supports an abstract user interface model, but only
as a component of a GUI description, not as a separately
usable model. The degree of abstraction of the AUI is too
high; it does not contain a complete interaction or
communication model, so that it is not sufficient for the
storage of a complete user interface pattern.

An implementation of variability, hierarchy and
interaction of a composition of user interface patterns with
the application of current notations is a very difficult task.
Moreover, a pattern lifecycle with independent
formalization, instantiation and code generation is very
extensive and could be less complex.

In our conclusion we will use the developed criteria and
found shortcomings of current pattern-based interface
development to define first specifications of improved
methods and notations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown that current solutions for
pattern-based user interface development do not meet the
criteria of a complete and efficient design method for any
kind of user interface.

Based on the results of our practical formalization,
instantiation and code generation of the advanced search user
interface pattern, we propose the following specifications of

302Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

a sufficient pattern description and development integration
method:

• An exact definition of generative user interface
patterns: inclusion and exclusion criteria,
characteristics, adaptability and composition ability
should be established to describe them as artifacts in
the development process. We proposed a first
version in Section III.

• A metamodel for the structure and behavior of user
interface patterns, which reflects the defined aspects.
It would serve as a guideline for a standardized
pattern implementation, as well as a method for
traceability of certain aspects between different
phases of the interface development.

• A specialized pattern language, which allows an
exact and formal representation of patterns according
to the definition and their metamodel.

And, as a practical addition:

• A development tool or module for user interface
development, which contains the pattern repository
and the pattern manager and offers the
functionality described in Section VI. Here, it should
be resorted to implementation and storage standards
to assure the availability of such a tool in different
development environments. The full lifecycle of user
interface patterns, from their creation to their
application and further development, should be
supported.

Based upon these specifications, a practical solution can

be approached. In our further research, we plan to
concentrate on proposing a metamodel for generative user
interface patterns as well as a first draft for a special
description language for user interface patterns.

REFERENCES

[1] J. Vanderdonckt and F.M. Simarro, “Generative pattern-based
Design of User Interfaces,” Proc. 1st International Workshop
on Pattern-Driven Engineering of Interactive Computing
Systems (PEICS '10), ACM, June 2012, pp. 12-19, doi:
10.1145/1824749.1824753.

[2] R. Beale and B. Bordbar, “Pattern Tool Support to Guide
Interface Design,” Human-Computer Interaction (INTERACT
2011), LNCS Vol. 6947, 2011, pp. 359-375.

[3] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. the 5th International Conference on Task
Models and Diagrams for Users Interface Design
(TAMODIA'06), LNCS Vol. 4385, 2006, pp. 82-96.

[4] M. Ludolph, “Model-based User Interface Design: Successive
Transformations of a Task/Object Model,” in User Interface
Design: Bridging the Gap from User Requirements to Design,
CRC Press, Boca Raton, Ed.: L.E. Wood, 1998, pp. 81-108.

[5] P. Chlebek, “User Interface-orientierte Softwarearchitektur,”
Mainz: Vieweg, 2006.

[6] Mozilla Developer Network, “XUL,” https://developer.
mozilla.org/en/XUL 25.06.2012.

[7] Microsoft, “XAML in WPF,” http://msdn.microsoft.com/en-
us/library/ms747122.aspx 25.06.2012.

[8] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Proc. Eighth
International World Wide Web Conference (WWW’8),
Elsevier Science Pub., May 1999.

[9] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml 10.05.2012.

[10] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D.
Trevisan, and M. Florins, “UsiXML: a User Interface
Description Language for Specifying multimodal User
Interfaces,” Proc. W3C Workshop on Multimodal Interaction
(WMI'2004), 19-20 July 2004.

[11] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. PATTERNS 2012, 22-27 July 2012.

[12] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 10.05.2012.

[13] Open UI Pattern Library, http://www.patternry.com
10.05.2012.

[14] A. Toxboe, “User Interface Design Pattern Library,”
http://www.ui-patterns.com 10.05.2012.

[15] J. Engel, C. Herdin, and C. Maertin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. PATTERNS
2012, 22-27 July 2012.

[16] A. Wolff, P. Forbrig, and D. Reichart, “Tool Support for
Model-Based Generation of Advanced User Interfaces,” Proc.
MoDELS'05 Workshop on Model Driven Development of
Advanced User Interfaces, Montego Bay, Jamaica, 2 October
2005.

[17] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using Patterns,”
Proc. Workshop on Multi-channel Adaptive Context-sensitive
(MAC) Systems: Building Links Between Research
Communities, Glasgow, 15 May 2006.

[18] M. Wurdel, P. Forbrig, T. Radhakrishnan, and D. Sinnig,
“Patterns for Task- and Dialog-Modeling,” J.A. Jacko (ed.)
HCI International 2007, Beijing, 22-27 July 2007, pp. 1226-
1235.

[19] D. Reichart, A. Dittmar, P. Forbrig, and M. Wurdel, “Tool
Support for Representing Task Models, Dialog Models and
User-Interface Specifications,” Interactive Systems, Design,
Specification, and Verification (DSVIS'2008), LNCS Vol.
4323, 2008, pp. 92-95.

[20] A. Wolff and P. Forbrig, “Deriving User Interfaces from Task
Models,” Proc. the 4th International Workshop on Model
Driven Development of Advanced User Interfaces (MDDAUI
2009). Sanibel Island, USA, 8 February 2009.

[21] S. Fincher, “PLML: Pattern Language Markup Language,”
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html
25.06.2012

[22] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” M. Winckler, H. Johnson, P. Palanque
(Eds.): Proc. 6th International Workshop on Task Models and
Diagrams for User Interface Design (TAMODIA'07),
Toulouse, France, 7-9 November 2007.

[23] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, A System of Patterns, New York: Wiley, 1996.

303Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

