
Lowering Visual Clutter of Clusters in Component
Diagrams

Lukas Holy, Jaroslav Snajberk, and Premek Brada
Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Pilsen, Czech Republic
{lholy, snajberk, brada}@kiv.zcu.cz

Abstract—Nowadays, component applications can easily con-
sist of hundreds or thousands of components and it is thus
difficult to understand their structure. Diagram visualization does
not help much because of visual clutter caused by big amount
of elements and connections. This paper describes an approach
of removing a large part of connections from the diagram while
preserving the information about component interconnections. It
also describes a viewport technique for showing all information
about interfaces for selected group of components right in the
diagram area. After that it presents novel integration of above
mentioned techniques which maps a group of components to the
content of a viewport. These techniques are among other benefits
useful in the reverse engineering process. The main idea of this
technique can be used in a similar way to reduce the clutter in the
node-link graphs. To show the effect of this technique, example
reduction of lines is discussed. So the better understanding of a
diagram is also shown on preliminary results.

Keywords-software visualization; component; visual clutter.

I. INTRODUCTION

Software applications become more and more complex and
although there are lots of tools, which help the development
process, they are still limited in helping human understanding
of the application structure. Software components are one of
the ways to handle this complexity as they encapsulate parts
of functionality to unified components. Even with the usage
of components, applications can easily consist of hundreds
or thousands of them. It is therefore difficult to explore the
structure of the application and create a mental model of the
whole system.

One of the ways how to get an insight into a compo-
nent application structure can be UML (Unified Modeling
Language) component diagram. When the diagram becomes
large there are many problems with exploring it. One is the
contradictory need of providing enough details and showing
the complete diagram (application structure) at the same time.
Another question is how to reduce visual clutter caused by
the large number of elements and connections between them.
This visual clutter makes tracing of dependencies difficult and
hinders orientation in the diagram. Current tools do not offer
features designed for work with such large diagrams, as we
have shown in our previous paper [1]. In this work, we present
several techniques to reduce visual clutter in UML component
diagrams and help user to form clusters of components.

A. Structure of the Paper

In the following section, a problem of visual clutter is de-
fined first. After that, a related work is described in Section III.
Then, in Sections IV and V a SeCo (Separated Components)
technique and its implementation is presented. This technique
helps to reduce the visual clutter in large graphs. Also, another
technique called viewport is shown in Section VI ,which helps
to form component clusters. After that, the novel integration
of SeCo and viewport techniques is proposed in Section VII.
Finally, our contribution is discussed in Section VIII and
summarized in Section IX.

II. PROBLEM DEFINITION

Developers face multiple challenges in large diagrams visu-
alization such as difficult orientation, limited amount of visible
elements on the screen while showing its details, insufficient
details when showing overview or the visual clutter [2].

This paper focuses on the problem with highly connected
components and the clutter caused by their connection visual-
ization as well as the component clusters visualization.

Very often, only a small amount of components is connected
to a large number of other components. Such components are
often, among developers, informally called “God Objects”. It
is difficult to trace the connections in the surrounding area of
these objects. Another problem in visualization is forming and
working with clusters of components, which usually represent
one feature or logical unit of the system. These problems cause
exhausting space, which is one of the essential resources in
the visualization and can be used for easing the work with
large component diagrams.

III. RELATED WORK

Visual clutter can be reduced by many techniques. The
whole taxonomy of these techniques has been described by
Ellis and Dix in [3]. A short description of those techniques
related to our work is provided.

The clutter caused by the lines is often reduced by edge
bundling [4]. Although this approach reduces the clutter, it
can be difficult to trace the dependencies between connected
nodes leading through the edge bundles.

The visual clutter can be also lowered by using node clus-
tering, where one cluster usually represents multiple nodes.
The overview of clustering algorithms can be found in [5].

304Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Fig. 1. Complex Component Application Explorer tool demonstration

Another influencing factor is the chosen layout algorithm,
which can ease orientation in both clustered graphs [6] and
a non-clustered ones [7]. In the following section, our visual
clutter reduction approach is described.

IV. THE SEPARATED COMPONENTS AREA TECHNIQUE

The technique proposed in [8] reduces the visual clutter by
removing the components with a large number of connections
from the main diagram into a so called separated components
area (abbreviated to SeCo) placed on the border of a window
(right sidebar in Figure 1).

When a user moves components from the main diagram to
this area, the lines between these components and remaining
components are elided. SeCo consists of a list of items. Each
item consists of clustered interfaces (indicated with mark (T)
in Figure 1), components (U) and one corresponding symbol
(S). Interfaces are clustered into two sets (T): all provided
interfaces (displayed as “lollipops”) and all required interfaces
(displayed as “sockets”). Numbers inside the clustered inter-
faces represent the number of elements clustered in the given
symbol.

The purpose of symbols is to create clear and easily
recognizable key, which uniquely identifies one item within
SeCo. Then, these symbols can be used in the diagram area
to represent connection between a given component and the
corresponding item placed in SeCo. They are shown as small
rectangles neighboring the displayed components (K) and
containing the symbol, which corresponds to the connected
item (S).

It is possible that a particular functionality of the system is
implemented by several components. When this functionality
is used by a large number of other components in the system,
it is beneficial to represent them as a group in SeCo (M).

V. THE SEPARATED COMPONENTS AREA TECHNIQUE’S
IMPLEMENTATION

SeCo technique implemantation is called CoCA-Ex (Com-
plex Component Applications Explorer). CoCA-Ex works on
the ComAV platform (Component Application Visualizer) [9],
so it could use ComAV’s reverse-engineering and manage-
ment features. ComAV can automatically reverse-engineer the
whole component-based application of a supported component
model. Further component models can be easily added using
an extension mechanism offered by RCP (Rich Client Plat-
form). ComAV is also able to add other visualization styles.
It means that CoCA-Ex is only one way how structures of
applications can be visualized on ComAV platform.

The CoCA-Ex tool can be used via desktop application
interface or web interface. In a desktop interface version,
structure of all analyzed applications is saved for future visu-
alization. Such structure is handled as a project by the ComAV
– it is shown in a project view with other projects (structures),
it can be renamed, deleted or updated. Such project oriented
approach is known from Eclipse IDE (Integrated Development
Environment). In a web interface version the user starts the
visualization process by picking desired components from
the local machine and uploading them to the server. The
ComAV platform creates the model of the application and the
CoCA-Ex shows the application diagram in the web page. The
demonstration of the CoCA-Ex’s interface is shown in Figure
1.

CoCA-Ex use servlets from the JEE technology, as the
back-end technology. Servlets are used mainly because of the
Java implementation of the ComAV tool. HTML5, JavaScript,
jQuery framework and CSS3 (Cascading Style Sheets) were
used for the front-end. Canvas and SVG (Scalable Vector
Graphics) elements from HTML5 (Hypertext Markup Lan-
guage) are used to represent the nodes of the diagram. Al-
though the HTML5 technology is still not fully supported by

305Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

all main browsers, its current state is sufficient for CoCA-
Ex purposes. Also desired features such as SVG support or
Canvas are likely to be stable in the near future.

The tool provides standard features such as panning and
zooming. There are two modes of manipulating the compo-
nents with appropriate icons in the toolbar. First mode is
for moving components (A) where the user can manually
adjust the layout of the diagram. Second mode (B) serves
for removing components from the diagram area to the SeCo
area simply by clicking on the desired components, which
should be removed. Last two icons in the toolbar serve for the
automatic removal of a configured amount of components from
the diagram to the SeCo area. The tool is currently configured
to remove 15% of most connected components. The icon (C)
is used for removing these components and adding them to
SeCo area as individual items. The next icon (D) creates one
group for all of them.

CoCA-Ex offers a fulltext search in components’ names. In
Figure 2, one can see the search for a word “relations”. Seven
components in the diagram contain this word as indicated by
the number seven (F). Matching components are highlighted
by orange color (E).

If one clicks on the provided interfaces of a component
in SeCo, these interfaces and connected components become
highlighted by green color. An example is shown on de-
pendency between the Nuxeo Common component’s provided
interfaces (Y) and Nuxeo Platform Imaging API component
(G). Similarly, for interfaces required by components in SeCo
highlighting by yellow color is used. It is demonstrated on
dependency between Nuxeo URL API component (H) and
Nuxeo ECM Web Platform UI component’s required interfaces
(Y).

For several components from the SeCo area (those with
symbols’ background highlighted by different colors (S)) there
are delegates shown in the diagram area, e.g., (K). For inspect-
ing interfaces, the tool offers highlighting of a connection by a
red color and showing the interfaces involved in the connection
(P), as shown in the green tooltip. Each individual component
shown in SeCo has its own button (R) to remove it back to
its original position in the diagram area.

VI. VIEWPORT FOR COMPONENT DIAGRAMS

The viewport technique shows the diagram zoomed-out to
provide the appropriate overview of the complete architecture,
with elements displayed without details. Besides that it shows
selected components in detail inside a viewport area plus all
their relations with other components in the diagram in an
interactive border area (see gray area marked with (11.) in
Figure 2). These relations are clustered into two sets for each
component: all provided interfaces (displayed as ”lollipops”)
and all required interfaces (displayed as ”sockets”).

These interfaces are then connected to clustered proxy
components, visually represented as rectangles with rounded
corners. Each rectangle represents one or more components.
Numbers inside the clustered interfaces and proxy components
represent the number of elements clustered in a given symbol.

VII. VIEWPORT FOR GROUPS OF COMPONENTS

This section presents the novel integration of viewport
and SeCo technique. For showing groups of components (as
described in Section IV) in the diagram area a viewport can
be used. A group of components shown in the SeCo can be
moved to the diagram area and shown as a viewport. Similarly
the viewport and its content can be moved from the diagram
area to the SeCo.

According to level of details of a viewport, it is possible to
show:

1) a viewport as a symbol belonging to a group only,
2) a viewport with all details for all components and their

relations in given group.
These possibilities are described in following sections.

A. Viewport with Details

For moving a group from SeCo to the diagram area there
is an icon (indicated with mark (1.) in Figure 2). After a user
clicks on this icon the group will disappear from the SeCo
and will be shown in the diagram area as a viewport.

Each viewport has its small toolbar, which contains a
symbol representing a group (2.) and icons for important
actions. The symbol has similar meaning as symbols used in
SeCo. In Figure 2 there is the icon for canceling the viewport
(4.). It releases the components from the viewport to the
diagram area and deletes the viewport itself. Also there is the
icon (3.) for moving a whole viewport to SeCo, which removes
the viewport from diagram area and shows its contents in the
SeCo as a group. Finally one can see icon (6.) for minimizing
viewport to be represented as a icon only, which is described
in following section.

B. Viewport as a Symbol

One of the viewport’s important features is its ability to
be collapsed into an symbol (7.). It is very important part
of visible elements reduction process as well as visual clutter
reduction. Viewport symbol represents the whole viewport and
its content. It means that components included in the viewport
are not visible at the time the viewport is collapsed into the
symbol. When a user hovers a mouse over the this symbol a
small toolbar appears. There are icons for following actions:

• showing viewport in full details (8.), which shows view-
port in a way described in previous section,

• moving viewport from diagram area into a SeCo (5.),
which creates a group in SeCo from components con-
tained in viewport,

• releasing components from given viewport and removing
the viewport itself (9.).

VIII. DISCUSSION AND EXAMPLES

In a lot of situations one can use the SeCo features to
form groups of components. These groups can serve as named
categories according to, which the user can classify the rest of
the components in the diagram area and thus form a logical
units of an investigated system.

306Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Fig. 2. Viewport with SeCo

A viewport gives an alternative to form groups in the
diagram area. Its benefit is also the ability to be moved to
the place in the diagram where a user forms the group. It
should enable to explore and understand the dependencies in
large diagrams by showing the context of a selected diagram
subset. The proxy elements should reduce the need for the
disorienting pan&zoom otherwise necessary while exploring
dependencies and provide user relevant information in one
place. The viewport is placed on a given position in the
diagram, thus there can be more viewports in a diagram. At
the moment when a group inside a viewport is not important,
it can be collapsed into a viewport symbol. It gives a user a
possibility of showing several groups and still have enough
space in diagram area to work with rest of the components.

Several experiments using the proposed technique were
performed. In one of them only 7 Nuxeo components have
been removed from the diagram area into SeCo leading to
241 of 698 interface connection lines remaining in the graph.
Therefore, the graph was reduced of about 65% of lines.

It shows that by using the proposed technique, significant
visual clutter reduction may be achieved.

IX. CONCLUSION AND FUTURE WORK

In this paper, an advanced technique was described. This
technique helps to reduce the amount of lines in UML
component diagram of large applications, by removing the
selected components from the diagram area. It uses SeCo
where the selected components are shown, and symbolic
delegates, which represent the connections instead of lines. A
viewport technique was also described. This technique is used
for showing all the information about interfaces for selected
group of components right in the diagram area. The novel
integration of above mentioned techniques was proposed.
These techniques maps a group of components to the content
of a viewport. Viewport symbols for graphical representation
of groups were also described. These symbols saves a space
in the diagram area. Appropriate interactions were proposed
for all these techniques.

These techniques are, among other benefits, useful in the

reverse engineering process when the user is interactively get-
ting familiar with the whole diagram. It helps with creating the
mental model of the application by easing the process of clus-
ters creation. Which is the reason why these techniques will
be part of a ComAV platform, that already supports reverse-
engineering of applications of various component models.

Preliminary evaluation shows that the presented ideas are
helpful in large graph visualization, where one suffers from
visual clutter caused by the large number of connection lines.

Implementation of viewport technique is scheduled for
integration into CoCA-Ex application to enable users to form
relevant clusters comfortably and validate the ideas on con-
crete tasks. We also plan to evaluate above mentioned ideas
by users or case study.

ACKNOWLEDGMENT

The work was supported by the UWB grant SGS-2010-
028 Advanced Computer and Information Systems. Authors
would like to thank Jindra Pavlikova for the work on the
implementation.

REFERENCES

[1] L. Holy, J. Snajberk, and P. Brada, “Evaluating component architecture
visualization tools - criteria and case study,” 2012.

[2] R. Rosenholtz, Y. Li, and L. Nakano, “Measuring visual clutter,” Journal
of Vision, vol. 7, no. 2, August 2007.

[3] G. Ellis and A. Dix, “A taxonomy of clutter reduction for information
visualisation,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 13, no. 6, pp. 1216 –1223, nov.-dec. 2007.

[4] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, Sep. 2006. [Online].
Available: http://dx.doi.org/10.1109/TVCG.2006.147

[5] S. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1,
pp. 27–64, 2007.

[6] Q. Feng, “Algorithms for drawing clustered graphs,” 1997.
[7] S. Hachul and M. Jnger, “Large-graph layout algorithms at work: An

experimental study,” http://jgaa.info/ vol. 11, no. 2, pp. 345369, 2007.
[8] L. Holý, K. Ježek, J. Snajberk, and P. Brada, “Lowering visual clutter in

large component diagrams,” in 16th International Conference Information
Visualisation, 2012.

[9] J. Snajberk, L. Holy, and P. Brada, “Comav - a component application
visualisation tool,” in Proceedings of International Conference on Infor-
mation Visualization Theory and Applications. SciTePress, 2012.

307Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

