
A Multilevel Contract Model for Quality-Driven Service Component Architecture

Maryem Rhanoui

IMS Team, SIME Laboratory

ENSIAS

Rabat, Morocco

mrhanoui@gmail.com

Bouchra El Asri

IMS Team, SIME Laboratory

ENSIAS

Rabat, Morocco

elasri@ensias.ma

Abstract—Service Component Architecture (SCA) is a recent

approach and an industry standard for developing complex

and distributed systems. Despite the growing research work it

still lacks a formal basis for handling trust and reliability of

quality-driven systems. In this paper, we present main

techniques and models for assuring quality and

trustworthiness of component-based systems in general, and

then we present our contract-aware service component meta

model. We propose a multilevel contract model that aims to

address reliability and quality issues for service component

oriented systems by expressing a set of its properties and

constraints.

Keywords-Service Component; Service Component

Architecture; Quality-Driven System; Contract; Aspects.

I. INTRODUCTION

Service Oriented Architecture (SOA) is a promising
paradigm for developing complex systems that utilizes
services as fundamental elements for developing
applications. In this perspective, Service Component
Architecture (SCA) is a new concept that offers a component
model for building SOA architecture.

In the context of a growing interest in reuse of business
components, the development of critical and complex
systems is confronted with limitations and challenges as
service assembly difficulties and the complexity related to
numerous SOA standards, therefore SCA emerged as a
unifying response.

Official SCA specification document includes SCA
assembly model specification [1] and SCA policy framework
[2]. However, as an expanding approach, it still needs more
formal models and frameworks for modeling and verifying
systems.

In spite that the main purpose of software engineering is
to find ways of building quality software [3], our literature
review shows that most research efforts have focused on
technical aspects of Service Component Architecture,
leaving aside the treatment of quality issues and extra-
functional properties of service component.

In this scope, our fields of research focus on the design
and development of complex and safety-critical systems.
Critical systems [4] are systems whose failure could cause
loss of human lives, cause property damage, or damage to
the environment, such as aviation, nuclear, medical
applications, etc.

As a matter of fact, dependability [5], which is the
property that allows placing a justified confidence in the
quality of the delivered service, is becoming increasingly
important in complex systems design.

In this paper, we remind the definition of Service
Component Architecture and present main techniques and
models for handling quality and trustworthiness of
component-based systems.

Among the presented approaches, we are interested by
the contract-based approach [6], which is a light-weight
formal method for designing quality-driven systems by
specifying its non-functional and quality properties. Despite
the fact that the concept of component contracts was
formerly proposed, it still not commonly used in software
development.

Our contribution is as follow: we propose a multilevel
contract model for modeling both functional and non-
functional / quality properties of service components, this
model covers different levels of systems, that is the
component, composite and final system. Furthermore, it will
allow the verification and validation of the constraints
outlined in the contract.

In this article, we propose a meta-model for multilevel
contracts for service component architecture.

The remainder of this paper is organized as follows:
Section II will be dedicated to the presentation of the concept
of service component and a survey of main techniques and
models for assuring trustworthiness and quality of
component-based systems.

Section III will present and justify the choice of our
proposed multilevel contract model. In Section IV we will
present a meta-model for contract-aware service component
architecture. Finally in Section V we illustrate our approach
with a case study.

II. QUALITY-DRIVEN SERVICE COMPONENT

ARCHITECTURE

Service-oriented computing (SOC) is the computing
paradigm that utilizes services as fundamental elements for
developing applications [7]. Service Component
Architecture (SCA) proposes a programming model for
building components based applications following the SOA
paradigm.

The purpose of SCA is to provide a model for creating
service-oriented component independent of any specific
programming language and to unify the methods of

314Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

encapsulation and communication in service-oriented
architectures by providing a component model.

In this section, we describe, at a glance, the SCA
architecture, present the component model and survey the
main quality approaches for component-based systems.

A. Service Component Architecture

1) Architecture

An SCA application consists of one or more components

that can be implemented in different languages.

A component is a software entity and the basic element

of a business function that contains zero or more services

and / or reference. A component may have properties and

can be either an implementation itself, or a composite. Fig. 1

shows an example of SCA component.

2) Benefits
SCA had emerged as a new architecture for addressing

complexity issues of developing SOA solutions. Its offers
many advantages:

 Simplify the development of business component
and assembly and deployment of business solutions
built as networks of services;

 Increase agility and flexibility and protects business
logic assets by shielding from low-level technology
change and improves testability.

3) Component Model
Various component models of Service Component

Architecture were proposed in literature.
For Ding [8] proposed component model, a service

component provide and require services. A service can be
described by operation activities as by well-defined business
function. A component provides and consumes services via
ports.

A port p is a tuple (M,t, c), where M is a finite set of
methods, t is the port type and c is the communication type.

A component Com is a tuple (Pp, Pr,G,W), in which Pp
is a finite set of provided ports, Pr is a finite set of required
ports, G is a finite sub component set.

Figure 1 - SCA Component [10]

Moreover, Du et al [9] included contract concept in the
Service Component meta-model.

A contract Ctr is a quadruple (P, Init, Spec, Prot) where

 P is a port;

 Spec maps each operation m of P to its

specification (am,, gm , pm) where:

 am contains the resource names of the port P

and the input and output parameters of m.

 gm is the firing condition of operation m,

specifying the environments under which m can

be activated.

 pm is a reactive design, describing the

behaviour of m.

 Init identifies the initial states.
Prot is a set of operations or service calling events.

B. Quality Approaches

There are a wide variety of works and techniques to

ensure systems quality, we have identified the main

techniques used for component-based systems during all

phases of the system’s life-cycle as shown in Fig. 2.

Hence, in design phase, functional and extra-functional

requirements (as reliability, availability…) are defined and

expressed. For this, Design by Contract [6] is an approach

and method of software design. It is based on the legal

definition of contracts which binds both parties and

highlights the interest to precisely specify the interfaces

behavior of a software component in terms of pre-

conditions, post conditions and invariants.
Subsequently, the reliability of the components and the

composite system is evaluated and predicted.
The evaluation and prediction of reliability is to predict

the failure rate of components and overall system reliability.

They can be used in the operational phase and the early

stages of system design software.

Figure 2 - Quality efforts in CBSs

315Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

In addition, the system should continue to operate even in

the presence of a failure of one of its components; fault

tolerance is the techniques and mechanisms that allow a

system to be reliable, available and secure despite the

presence of failures.

Furthermore, the development and build process should

conform to quality standards; quality assurance is a planned

and systematic pattern of all necessary actions to ensure that

the item or project conforms to technical requirements [11].

Finally, the achieved quality and trustworthiness is

certificated and asserted. Third-party certification is a

method to ensure software components are conform to the

defined standards; based on this certification, trusted

assemblies of components can be constructed [12].

III. MULTILEVEL CONTRACTS

A. Design by Contract

The contract-based approach provides proofs of non-

functional and quality properties without requiring the full

formality of proof-directed and mathematical development.

The requirements can be specified as preconditions, post

conditions and invariants.

 A precondition is a constraint that must meet a

client when calling a service.

 A postcondition is a constraint that must be met by

the supplier after use of the service.

 Invariants are constraints that must meet all

entities that fold to the contract.

This approach is particularly appropriate in the

component-based context. In fact, a pre-condition on the

parameters of an operation or a service defines a contract

that the required/given component agrees to respect.

Conversely, post-conditions on the return types of a required

component define the customer's expectation from the

service provider. Any violation of the contract is the

manifestation of a software bug; a pre-condition violation is

a bug in the client side and a post condition violation a bug

in the supplier side.

It is important that quality is considered during all stages

of the development lifecycle of the software. In fact, the

contract-based approach allows both defining the desired

quality properties and verifying and validating their

accuracy.

B. Why Contracts?

Dependability is a major requirement of modern systems
which consists of the system's ability to offer a trusted
service. It is important to be able to affirm the respect of
quality assertions of these systems.

To meet these requirements, we choose a contractual
approach [13]. Indeed, within the component and service
paradigms, contracts have become an integral part of their
definition [14]:

A software component is a unit of composition with
contractually specified interfaces and explicit context

dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

A contract defines the constraints between components
that is to say, the rights and obligations between the service
provider and the client. It has the advantage of expressing the
conditions of use of a service by clarifying the obligations
and benefits of stakeholders.

We believe that design by contracts can address some of
the quality problems of large and complex systems
development by explicitly specifying functional and non-
functional properties of its components.

Unlike mathematical evaluation and prediction
techniques, the contract-based approach is a light-weight
formal method for specifying and designing quality-driven
systems, it can be introduced in an early stage during the
design phase.

To our knowledge, there is still no research work for
introducing the concept of contract in service component
based systems in order to manage and handle quality
requirements.

C. Contracts Levels

Beugnard [15] proposed a classification of contracts into
four categories:

 Basic contracts that ensure the possibility of
running the system properly;

 Behavioral contracts that improve trust in the
system functionalities;

 Synchronization contracts that specify
synchronization strategies and policies;

 QoS contracts which is the highest level and specify
quality of service attributes.

This classification has a good coverage of functional and

qualitative aspects of components, nevertheless, they don’t

handle trustworthiness of composition operations and

composite components, yet we have defined three levels of

component contracts:

 Intra-component contracts concerns the good
operations of the component and the respect of its
quality requirements;

 Inter-component / Compositional contracts ensure
the safe composition and trusted assembly of
components;

 System contracts concerns properties and
requirement of the whole system.

D. Contracts by Aspects

Separation of concerns is the process of dividing
software into distinct features that overlap in functionality as
little as possible, Aspect-Oriented Programming (AOP) [16]
aims at providing a means to identify and modularize
crosscutting concerns, by encapsulating them in a new unit
called aspect.

It was already stated that the design by contract
methodology is an aspect of the software system [17]. As
such, a contract can be expressed in AOP terminology.

Lorenz [18] classifies aspects for design-by-contract in
three types:

316Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 Agnostic aspects that don’t affect a method’s
assertions,

 Obedient aspects where the input and output states
remains unchanged

 Rebellious aspects which changes the behavior of
existing methods.

Our proposed solution is based on the aspect oriented
programming (AOP) for building contract-aware service
component based systems. The essential advantage of AOP
is the externalization and isolation of crosscutting concerns
so that requirement contracts will be expressed outside of the
business code of the system.

As AspectJ [19] is one of the first and best known
Aspect-Oriented Programming tools, we choose it to
implement our approach.

E. Constraint Specification Language

In addition, we formalize contracts in UML's Object
Constraint Language (OCL) [20], which is a concrete
specification language that will help improving the
expressiveness of the contracts.

IV. META MODEL

As part of the Model Driven Architecture [21], the Object

Management Group (OMG) has defined a meta-metamodel

called MOF (Meta Object Facility) [22]. MOF is a

specification that defines the concepts to be used to define

meta-models.

We propose a MOF compliant meta-model of quality-

driven service component architecture; we introduce

contract concept and a support of quality requirements as

shown in Fig 3.

The meta-model can be divided into two parts: the

service component meta-model and its extension with

multilevel contract.

A. Service Component

Component: A component is the unit of construction of
Service Component Architecture and an instance of an
implementation; it is characterized by services executing
operations, properties and references to other services.

Components can be combined into a composite.
Service: Services provided by the component for other

components. A Composite Service can promote a

Component Service.

Figure 3 - Service Component Meta Model

317Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Reference: Services required by the component from
other components. A Component Reference can promote a
Composite Service.

Property: External set values or attributes of a
component or composite.

Implementation: Implementation is a program code
implementing business functions; a component can
implement different implementation technologies such as
Java, C++, BPEL, etc.

Wire: Wiring that describes the connections between
services (source) and references (target) of components.

Composite: A composite contains assemblies of service
components. Composites also contain services, references
and properties.

B. Contract

Constraint: The expressed constraints of the system,
defines the obligations that must be verified by the software
components.

Contract: A contract specifies the interfaces behavior of
a component in terms of a configuration of pre-conditions,
postconditions and invariants.

A contract is associated to:

 Component element, to ensure the good operations
of the component and the respect of its quality
requirements.

 Composite element, to ensure the good operations of
the composite and the respect of its quality
requirements.

 Wire element, to define a contract on the binding of
two components.

A contract can express both functional and nonfunctional
requirements.

Requirement: Functional and non-functional
requirements expressed by the contract. The requirements
are described by a structure of boolean expressions and can
be constituted of a set of other requirements. A functional
requirement is a property related to the functionality of a the
service component. A non-functional requirement is the
quality or characteristics of a service component that
determines how and under which conditions the service will
be delivered. These requirements are not directly related to
the functionality provided by the component.

V. CASE STUDY

In this section, we present a simplified case study to

illustrate our multilevel contract approach and apply the

enunciated concepts. We consider an Airport Management

System. The airport has high reliability and dependability

requirements. Our system is composed of five components

as shown in Fig. 4.

BoardingComponent manage the boarding operations in

the airport, it has one service which is promoted by the

composite and has two references toward

CheckInComponent and

SecurityInformationComponent.

Figure 4 - Airport Management System

CheckInComponent manage the check in process of the

passengers, it has one service wired with

BoardingComponent and has a reference toward

LuggageComponent.

SecurityInformationComponent manage the security

information of the passengers. It has one service wired with

BoardingComponent.

LuggageComponent manage the luggage check and

control of the passengers.

FlightInformationComponent gives the necessary

informations of the flights in the airport. It has one service

wired with CheckInComponent.

To ensure the reliability of our system, we first identify

its requirements and then we define the corresponding

contracts.

To check in, the passengers must respect the check-in

deadline, that is to say, the time beyond which they cannot

not register or leave their luggage. Depending on the

destination and departure airport, the check-in deadline

varies from 15 to 90 minutes before departure time.

Moreover, the check in service has to be available 7d/7 at

any time of the day and respond within an acceptable period

of time. This represents the functional and non-functional

requirements of the check in component, then we define a

component contract.

Furthermore, the component has two references towards

luggage and flight information components; its good

operation depends on the correct assembly of these

components. Then we define an inter-component or

assembly contract.

Finally the airport management system should be reliable

and available, which correspond to a system quality

contract.

The functional and quality contracts are defined in the

design phase of the system development lifecycle, are

implemented in the construction phase and are verified

during the execution of the components, which allows us to

monitor and confirm the compliance with the formerly

defined requirements.

318Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

VI. RELATED WORKS

Some research works related to implementing contracts
by using aspects were proposed in the literature, as
Contract4J [23] and ContractJava [24].

Contract4J [23] is an open source tool that uses Java 5
annotations and AspectJ. Contract4J offers three annotation
types: pre-, post-conditions, and class-invariants. However,
although it is still functional Contract4J is no longer
maintained since 2007.

ContractJava [24] is a Java extension in which contracts
are specified in interfaces. However, class invariants and
“result” or “old” variables are not supported.

Handshake [25] is a Java extension that can be enabled
where contracts are specified in a separate file with special
syntax. However it is not compatible with recent JVM
releases.

CONA [26] is a tool that extends the Java and AspectJ
syntax with support for Design by Contract and enforces
their runtime validation. However its architecture is very
complex.

Besides they are not suitable for component-based
systems they are mostly limited and academic tools and do
not offer a complete and available framework.

Furthermore, our approach is more generic; it handles

both functional and non-functional properties of service

component, and covers the single component and the

composite levels.

VII. CONCLUSION

This work presented our proposed meta-model of
multilevel contract for service component architecture.

Based on a review of main techniques and models for
modeling and verifying quality-driven systems; we
concluded that contract-based approach is very suitable for
component-based systems in general and consequently for
service component based systems.

 Contracts is a design approach for describing both
functional and non-functional properties of complex and
quality-driven systems, it also involves synchronization and
Quality of Service (QoS) aspects. We will implement it
using aspect oriented programming.

We propose a multilevel contract model for expressing
and verifying functional and non-functional properties in all
levels of service component based systems.

As a continuation of this work, our objective is to
propose a modeling framework with a tooling environment
and adapt it to Service Component Architecture for safety-
critical and quality sensitive systems.

REFERENCES

[1] M. Beisiegel, “Service Component Architecture Specification.” 2007.

[2] G. Barber, “SCA Policy Framework Specification”, 2011, Available:
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html.
[Sep. 15, 2012].

[3] B. Meyer, Object-Oriented Software Construction. 1997.

[4] U. Isaksen, J. P. Bowen, and N. Nissanke, “System and Software
Safety in Critical Systems,” 1996.

[5] J.-C. Laprie, Guide de la sûreté de fonctionnement. 1995.

[6] B. Meyer, “Applying ‘Design by Contract’,” Computer, vol. 25, no.
10, pp. 40–51, 1992.

[7] M. P. Papazoglou and D. Georgakopoulos, “Introduction: Service-
Oriented Computing,” Communcications of the ACM - Service-
Oriented Computing, vol. 46, no. 10, pp. 24–28, 2003.

[8] Z. Ding, Z. Chen, and J. Liu, “A Rigorous Model of Service
Component Architecture,” Electronic Notes in Theoretical Computer
Science, vol. 207, pp. 33–48, 2008.

[9] D. Du, J. Liu, and H. Cao, “A Rigorous Model of Contract-based
Service Component Architecture,” IEEE Computer Society, vol. 2,
pp. 409–412, 2008.

[10] SCA Consortium, “Service Component Architecture - Building
Systems using a Service Oriented Architecture.” 2005.

[11] ANSI/IEEE Std. 730-1981, IEEE Standard for Software Quality
Assurance Plans, 1981.

[12] B. Councill, “Third-Party Certification and Its Required Elements,” in
Proceedings of the 4th Workshop on Component-Based Software
Engineering, 2001.

[13] M. Rhanoui and B. E. Asri, “Toward a Quality-Driven Service
Component Architecture, Techniques and Models,” in Proceedings of
the 14th International Conference on Enterprise Information System,
pp. 192–196, 2012.

[14] C. Szyperski, Component Software : Beyond Object-Oriented
Programming. Addison-Wesley, 2002.

[15] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making
Components Contract Aware,” Computer, vol. 32, pp. 38–45, 1999.

[16] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-Oriented
Software Development. Addison-Wesley, 2004.

[17] F. Diotalevi, Contract Enforcement With AOP. IBM, 2004.

[18] D. H. Lorenz and T. Skotiniotis, “Extending Design by Contract for
Aspect-Oriented Programming,” 2005.

[19] The AspectJ Team, “The AspectJ Programming Guide.” 2003.

[20] Object Management Group, “Unified Modeling Language (UML) 2.0
OCL Convenience Document.” 2005.

[21] Object Management Group, “Model Driven Architecture (MDA),”
2003.

[22] Object Management Group, “Meta Object Facility (MOF) V2.4.1.”
2011.

[23] D. Wampler, “Contract4J for Design by Contract in Java: Design
Pattern-Like Protocols and Aspect Interfaces,” in Proceedings of the
Fifth AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software, 2006.

[24] R. B. Findler and M. Felleisen, “Contract Soudness for Object
Oriented Languages,” in Proceedings of the 16th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, 2001.

[25] A. Duncan and U. Hoelzle, “Adding Contracts to Java with
Handshake,” 1998.

[26] T. Skotiniotis and D. H. Lorenz, “Conaj: Generating Contracts as
Aspects,” 2004.

319Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

