
Call for Software Tenders: Features and Research Problems

Jorge Hochstetter, Carlos Cares

Departamento de Ingeniería de Sistemas

Universidad de La Frontera

Temuco, Chile

jhoch@ufro.cl, carlos.cares@ceisufro.cl

Abstract— A relevant part of software industry deals with ad

hoc software solutions, which are externalized by software

consumers. The process of acquirment follows a public

procedure of requesting proposals. This procedure is based on

a call-for-tenders document that contains, at least, a software

specification and project constraints, such as budget and time.

The general assumption is that the requirements stage happens

prior to the call-for-tender process. However, public

documents of software tendering processes support the

contrary assumption. The aim of this paper is to sustain that

call-for-tender processes require additional study from an

empirical point of view in order to solve problems derived

from current industry practices. We have analyzed call for

tenders in relation to requirements engineering proposals and

also under a procedural approach. In order to sustain the

inclusion of call for tenders in the scope of software

engineering a set of different open problems is identified.

Keywords: call for tenders; software tenders; requirements

engineering; tendering process; software projects.

I. INTRODUCTION

Currently, organizations are increasingly becoming
acquirers of needed capabilities by obtaining products and
services from suppliers and the development of these
capabilities are diminishing in-house [1]. This scenario also
holds true for public institutions. In particular, organizations
in the public sector who are normally required by law to
make public bids for their purchases in order to achieve a
transparent process. In several countries, the government is
the main buyer of goods and services [2]. For this reason,
these countries have invested a great deal of money and
effort in defining purchasing policies [4],[5]. The Software
industry is a particular case where this has happened.

Therefore, organizations stimulate the competition in the
software industry by way of performing calls for tenders
(C4T). A call for tenders is the process where a company
invites the providers to satisfy particular needs, goods or
services. In this paper, we are considering the case of
software tendering processes that imply software
development, i.e., a software project.

The bidding process associated with a software product is
constituted by a set of common practices related to Software
Engineering (SE), which have been explored mainly from
the Requirements Engineering (RE) perspective. Indeed,
within the various problems and challenges of the
Requirements Engineering, there is improvement of the
quality associated with the specification process, as part of
the software process [6].

The literature about calls for tenders is contradictory to
the practice. On the one hand, Requirements Engineering
promotes a complete and consistent software requirements
specification (SRS) before starting the software process.
Thus, the theoretical suggestions and corresponding
assumptions indicate that the call to public notice phase
occurs after the ER stages. Therefore, an SRS becomes part
of the call-for-tenders document [6],[7],[8],[9]. On the other
hand, on the practice side, we have found that it is very
difficult to find a SRS as part of the call-for-tenders
document. What we find is that just some of these are
included as part of the bid, i.e., the need of including a
requirements elicitation and specification phase [10]. Other
sources confirm that call-for- tenders documents just include
a first approximation of Requirements Engineering’s stages
and products [9],[11],[12].

With this information, we can conclude that software
industry generates its offers for software development
projects in a scenario with uncertain and incomplete
information. Moreover, if we are aware that this phase is the
seed of a software project, then, it is obvious that uncertain
and incomplete information at the level of a call-for-tenders
document can imply a high frequency of two deviations: (a)
under the given budget, time and project conditions, the
software can be well developed, which probably also means
that projects conditions are relaxed, hence the customer is
losing efficiency, or (b) under the given scenario, the project
cannot be developed, which implies that the provider will
not accomplish the project goals, or should spend extra
money to achieve them. The worst case would reach a state
where the project results are aborted. These cases have been
illustrated by both theoretical simulations [13],[14] and
empirical findings [15],[16].

As a position paper, the goal of this essay is to sustain
that call-for-tenders processes require additional study and
research with respect to what is happens in industry today.
To cover this problem, we analyze the call-for-tenders
process stages comparing them to Requirements Engineering
stages, recognizing different research problems and
proposing research approaches to these sets of problems.

Furthermore, in Section II, we present the basics for
differentiating call-for-tenders documents and processes
from SRS documents and RE stages. In Section III, we
present a generic call-for-tenders process from both
customers’ and software providers´ perspectives, and we
argue about research problems associated to call-for-tenders
activities. To conclude, we summarize our point of view of
differentiating but, at the same time, integrating

320Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Requirements Engineering body of knowledge to call-for-
tenders processes, as a first step to covering call-for- tenders
problems.

II. DIFFERENTIATING REQUIREMENTS ENGINEERING

AND CALL FOR TENDERS

To our knowledge, public tender processes for software
products have been scarcely investigated in technical
literature. Normally, the problem is put in the context of RE
activities.

However, in Software Engineering, the acquisition
problem has already been recognized as an independent
process having its own stages and deliverable products. A
clear example is CMMI for acquisitions [1]. In this case, the
process view point is the customer´s; therefore, it includes
engaging and managing suppliers. Although it is not
common, the problem of Call for Tenders has been
separately analyzed. For example, Costa et al. [12] address
the problem of systematically performing the bidding phase
of the public tender process, and propose a multicriteria
socio-technical approach to increase the transparency and
efficiency of the process.

TABLE I. CALLS FOR TENDERS AND REQUIREMENTS ENGINEERING

DIFFERENCES

Requirements Engineering
Stage

Call-for-tenders Process

The product is a software

requirements specification.

The product is a call-for-tenders

document.

The software requirements
specification includes software

requirements.

The call-for-tenders document
includes managerial, economic,

budget and software requirements.

It is assumed that the list of

software requirements in the
software requirements

specification is complete.

It is assumed that the list of

software requirements in the call-
for-tenders document may be

incomplete.

Normally it occurs after a
contract.

Normally it occurs before a
contract.

The software developer may be

selected.

The software developer should be

selected.

Most of the time a software

requirements specification
constitutes a specific technical

solution.

Most of the time a call-for-tenders

document looks for a specific
technical solution.

Most of the time it´s focuses are

software requirements.

Most of the time it´s focuses are

business goals.

There are a set of modelling

languages for representing

Requirements Engineering
deliverables.

There are not modelling languages

for representing call for tenders’s

deliverables.

The involved actors are

requirements engineers and

stakeholders.

The involved actors are customers

and providers.

On the other hand, when practice and theory are
confronted, there is evidence that call-for-tenders processes
are not following literature recommendations [10],[17],[18].
Moreover, by analyzing different call-for-tenders documents
from public distributions [19],[20],[21] we can see that many
call-for-tenders documents include, as part of the project, the
requisite of formulating a Requirements Engineering stage
and a software requirements specification as a deliverable
product of the outsourced project.

We sustain that, from the perspective of Software
Engineering, i.e., from software production point of view,
the generation of a Call for Tenders is a completely different
stage from requirements engineering. For example, we have
detected a high dispersion of extensions, level of detail,
technical specifications, and business goals descriptions
among other differences. Moreover, a software requirements
specification is only part of the call-for-tenders document, if
at all, and there is a low and controlled interaction between
suppliers and customers. The detected differences are
presented in Table I.

III. CALL FOR TENDERS’ RELATED WORK

In spite of the already recognized differences, it is worth
mentioning that RE appears to be similar to the call-for-
tenders process and, most of the time, they even appear as
one phase in the software process. In order to describe
current proposals regarding Requirements Engineering and
Call for Tenders we summarize them.

Renault et al. [9] present the case of the elicitation and
selection of software components. These processes are
driven by public tender processes and the use of a
Requirement Patterns Catalogue is proposed to save time and
reduce errors. Carvallo & Franch [7] present a similar case
study where the activities undertaken to obtain, analyze and
structure the requirements to be included in a public tender
process for an ERP are analyzed.

Lauesen [17] provides a set of guidelines for the creation

of the call-for-tenders documents, i.e. the point of view is

from the customer, although it is also recognized that these

guidelines could also support the suppliers. In a practical

sense he affirms that customers do not normally apply these

guidelines.

Paech et al. [18] report a set of experiences of a supplier
company analyzing call-for-tenders documents for
generating technical proposals. They found that existing
challenges can be confronted by using requirements
engineering techniques.

Additionally, we have started a research line to analyze
call-for-tenders documents from the perspective of
requirements engineering metrics and it´s comparison to
software providers’ decision variables. Thus, on one hand
[10], we present an approach for analyzing call-for-tenders
documents adapting an ontology of speech from goal-
oriented requirements engineering to generate metrics. On
the other, [3] we describe the application of a focus group
technique that provides some clues to understand providers’
analyses for applying, or not, for a call-for-tenders process.
An initial set of variables are identified in order to describe
critical decision points.

From this review, our opinion is that the topic of Call for
Tenders is almost unmentioned in Software Engineering
literature, but, at the same time, is an underlying topic, i.e.,
it seems to be present, however, it is not referred to by it´s
name (or similar names). This way, several results from
Software Engineering research could be applied to different
stages of a call-for-tenders process.

321Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

In order to make these relationship explicit, i.e., between
call-for-tenders process and existing research approaches,
we offer an analysis which is based on call-for-tenders
stages. We consider the stages starting from the internal
requirements collection, to the software development stage
made by an external provider. In each stage we have looked
for existing software engineering approaches which support
it. In addition, we also identify specific problems at each
stage to which we have not found any approaches.
Therefore, we call them open problems.

IV. CALLS FOR TENDERS SUPPORT AND OPEN

PROBLEMS

In this section, we present the general stages of a call-
for-tenders process. In the left part of Table 1 we have
summarized these stages from both customer´s and
provider´s perspectives. Further on, we describe each stage
and we analyze how existing software engineering
approaches support the technical task at each stage.
However, it is necessary to consider that different referred to
authors, most of the time, do not distinguish if they are
assuming the existence of a call-for-tenders process.

1) Gather organizational needs. We assume that an
organization can have a set of planned systems to develop.
Requirements Engineering’s proposals adopt a top-down
focus, i.e. they can conceive software systems from Business
strategies [22],[23] or from Business goals [6],[24]. These
systems should accomplish specific functionalities and
quality attributes in order to deliver business goals. However,
there are two processes to which we have not found
approaches. Firstly, computational units collect requirements
as part of a day-to-day routine. Therefore, the process is not
exclusively top-down. Thus, here is an open problem: given
a set of already gathered requirements, how could the
parameters of future computational systems be established in
order to get convenient bids? Although the “natural” answer
seems to be hybrid approaches (top-down and bottom-up
together) we have found neither hybrid approaches
considering bottom-up requirements, nor the way of
combining requirements to conceive a set of future software
systems.

2) Estimate budget and time for conceiving systems. To
trigger a system development process it is necessary to have
a good estimation of both the business value of the system
and the cost of the system (including software and
organizational adoption). Regarding the business value there
are several approaches [13],[25]. In the case of estimating
the software development effort, in spite of it being a
familiar topic in software engineering [26],[30] the methods
require a previous estimation of software size (measured by
lines of code, function points or use case points), most of
these methods consider particular features of software teams.
Therefore, from the perspective of a call-for-tenders process,
an early estimation method is required for a generic team
which considers the current context. Thus, these methods
consider special requirements such as interoperability of
existing systems and the reuse of existing libraries or
software components, but overall, an incomplete
requirements specification. Thus, an open problem here is

how budget can be better estimated to incentivize providers
to apply and, at the same time, to pay the “fair” price.

3) Specify a call-for-tenders document. At this stage, the
customer should produce the document which will be
published. Although components of a call for tenders could
be well-established, [1] it is necessary to reach an
equllibrium between collecting enough information for
providers, in order that they formulate good solutions to the
problem, and the cost of collecting this information. A
related problem is how much detail should the specified
solution have (if any) because, on one hand, an open
perspective should enable creative and unexpected technical
solutions, and at the same time present new organizational
challenges to adopt them. On the other hand, a closed
perspective allows for the presentation of tailored solutions
but, at the same time, reduces the amount of providers,
hurting the competitiveness of call-for-tenders process.

4) Search and select requests for proposals. Now, from the
perspective of providers, several calls could be available in a
specific time period. The providers must decide from a set of
call-for-tenders documents which of them they will apply
for. Normally, just to study one call-for-tenders document
could take too much time. We have not found approaches to
make the decision, about how to select calls to evaluate nor
how to evaluate them. Derived problems are: how to promise
proper software functionality if this has been (normally)
poorly specified. A particular problem detected by
Hochstetter et al. [3] is how to match the specified problem
to existing software assets in order to apply with a
competitive offer.

5) Questions and answers. Normally, a public call-for-
tenders process considers a public questions and answers
process where providers can resolve doubts emerging from
the interpretation of call-for-tenders documents. Questions
and answers are published, thus, new variables are added to
the process. For example, the number of questions should be
an indicator of providers’ interest in applying and hence an
indicator of process` competitiveness which could imply that
more than one potential provider may abandon the process.
At the same time a resolved doubt, also resolves any doubt
regarding competition. Therefore, the open problem for
providers is to achieve an equilibrium between resolving
uncertainness to the public and resolving uncertainness over
competitiveness. From the perspective of a public-sector
customer, answers should show an efficient use of public
resources and a transparent way of spending them.

6) Prepare a proposal. Once a provider has decided to
apply, the next problem is how to build a “good” proposal.
Some work has been done about how to present requirements
in a clear and structured way [9],[26] However, the problems
seem wider. We have detected that multiple applications
from the same organization is normal practise. Therefore, we
can even consider the problem about how many proposals
can be made and then answer how to make them. Therefore,
“good” proposals should consider not only technical content,
but available time, assets and team among internal resources
and existing systems, standards, assets and stakeholders
availability among the external ones. Also, it is necessary to

322Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

achieve an equilibrium between the cost of preparing the
offer and the probability of losing it. We formulate the
problem of how to build an offer considering socio-technical
constraints from the customer and provider.

7) Select an offer (provider). Following providers’
applications, a selection process is initiated. Normally, this
process has an administrative stage where legal constraints
are verified. Only then is a technical evaluation begun. It
seems to be a stage where different approaches from
Software Engineering have been proposed: quality models
including non-technical factors [7], framework for selecting
COTS [28], particular suggestions from acquisition standards
[1], and other contemporary approaches such as trust
relationships [29]. In order to acknowledge this stage as an
already addressed topic, we do not add open problems here.

8) Negotiate the contract. The main goal of this stage is to
sign the final contract. In the case of call for tenders from the
private sector, it could imply an opportunity to detail some
“risky sentences” from both, call for tenders and the bid.

However, in the case of government calls, bureaucracy
should seriously delay the starting of the process, which
would mean changes of socio-technical conditions under
which the offer was formulated. To start, or not to start, the
project without a contract could be a relevant decision to
make. Therefore, trust is a variable key here. There are no
studies showing a complete set of variables and how to deal
with them. Thus, intermediate payment, engineering
deliverables, intellectual property and exploitation of it,
stakeholders’ availability, post-end availability from the
provider, and associated penalties are variables to consider
and balance in order to reach a final agreement.

9) Develop Software. At this stage, the traditional software
life cycle is activated. As we have sustained, most of the
time it involves requirements elicitation and specification.
Therefore, traditional approaches can be applied regarding
additional aspects, such as imposed project milestones,
external monitoring, programming practices and technology
imposed by the contract and other considerations derived
from a supervised project.

TABLE II. CALL FOR SOFTWARE TENDERS, EXISTING APPROACHES AND OPEN PROBLEMS

Customer Supplier Approaches Open Problems

Gather

organizational
needs

Top-down proposals from Requirements
Engineering e.g. goal-oriented requirements

engineering [23],[31] and strategic IT

alignment [32] produce systems to-be.

How to combine incomplete requirements
to conceive systems which could be,

moreover, separately developed even by

different external teams.

Estimate budget

and time

Traditional software engineering economics
considers software size metrics and team

features as part of estimation models [25].

How to calculate early software projects
estimations under incomplete and

uncertain information.

Specify a call-

for-tenders

document

There are some proposed standards for
software acquisition processes including topics

to include in call-for-tenders documents [1].

Additionally, other Requirements Engineering

approaches results are useful for call-for-

tenders specifications [9],[10],[11].

How to aid the writing of call-for-tenders

documents balancing detailed information
and enough space for creative solutions.

Search and

select call for
tenders

No accessible approaches

How to select calls for tenders and how to

efficiently evaluate them in order to build
competitive bids with low effort.

Ask for doubts
in tender process

No accessible approaches

How to select what doubts to address or

what kind of questions or answers could

lose other competitors.

Answer

questions

No accessible approaches

How to show, in answers, high
consistency to call-for-tenders document,

a transparent process and efficient use of

public resources (if it corresponds).

Prepare a

proposal

The challenges can be confronted by using
requirements engineering techniques for

generating technical proposals [14],[18].

How to generate a bid regarding the cost

of prepare it, the probability of losing it

and the involved risks coming from
incomplete information.

Select an offer
(provider)

There are studies for applying techniques to

select software components and providers [12],

[26], [27].
 .

Negotiate the contract

No accessible approaches

 How to handle and balance variables such
as changing requirements, stakeholders’

availability, penalties, post-sale service at

contract time.

Develop

Software

It corresponds to the classical scope of
Software Engineering; therefore, its results are

applicable to this stage.

How to develop software under a scenario

of external supervising, monitoring and

even, sometimes, under different
developing conditions.

323Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

V. CONCLUSIONS AND FURTHER LINES OF RESEARCH

In this paper, we have presented the problem of
producing and applying to a public call for software tenders
as a Software Engineering problem which requires additional
approaches. Because it appears to be closely related to
Requirements Engineering Stages, we have presented a set of
differences among them. Moreover, we have sustained that
the common theoretical assumption regarding to call for
tenders happening after the requirements stage is not
necessary true, therefore, a set of new problems are derived
from actual practices. In order to analyze this situation we
have followed call-for-tenders phases under the perspective
of a customer-supplier interaction. In each phase, we have
identified current Software Engineering approaches but we
have also obtained a list of open problems corresponding to
the different call-for-tenders phases.

Therefore, we have provided enough arguments to sustain
that the call-for-tenders process is a different Software
Engineering stage and deserves additional research attention,
especially in the way that it takes place in industry.
Particularly, we propose to focus on the set of problems
partially treated which seem to have a high impact on
software projects. After all, the call-for-tenders process is the
seed of software process.

ACKNOWLEDGMENTS

This work has been sponsored by the Investigation
Direction, University of La Frontera, Temuco, Chile,
DIUFRO DI11-0015 Project.

REFERENCES

[1] C. Team, "CMMI for acquisition, version 1.3," Technical Report,
Carnegie Mellon University, Pitts burgh, 2010.

[2] T. P. Hill, "On goods and services," The Review of Income and
Wealth, vol. 23, no. 4, pp. 314-339, 1977.

[3] J.Hochstetter, C. Cachero, C. Cares, and S. Sepúlveda, "Call for
Tender Challenges in Practice: a Field Study," in Proc. XV Congreso
Iberoamericano en Software Engineering, Buenos Aires, Argentina,
2012.

[4] C. C. Pimenta, "Gestión de compras y contrataciones
gubernamentales," RAE-electrónica, vol. 1, no. 1, pp. 1-12, 2002.

[5] S. Lauesen and J. P. Vium, "Communication gaps in a tender
process," vol. 10, no. 4, pp. 247-261, Nov. 2005.

[6] A. v. Lamsweerde, "Requirements engineering: from craft to
discipline," in Proc. of the 16th ACM SIGSOFT Int. Symposium on
Foundations of software engineering, Atlanta, Georgia, 2008, pp.
238-249.

[7] J. P. Carvallo and X. Franch, "On the Use of Requirements for
Driving Call-for-Tender Processes for Procuring Coarse-grained OTS
Components," in Proc. Requirements Engineering Conference, 2009.
RE '09. 17th IEEE International, pp. 287 - 292, 2009.

[8] S. Biffl, D. Winkler, R. Höhn, and H. Wetzel, "Software process
improvement in Europe: potential of the new V-modell XT and
research issues," Software Process Improvement Practice, Wiley
2006, vol. 11, no. 3, pp. 229–238.

[9] S. Renault, Ó. Ménez-Bonilla, X. Franch, and C. Quer, "A Pattern-
based Method for building Requirements Documents in Call-for-
tender Processes," International Journal of Computer Science and
Applications, vol. 6, no.5 pp. 175 -202, 2009.

[10] J. Hochstetter, C. Díaz, and C. Cares, "Licitaciones Públicas de
Software: Métricas Basadas en Actos de Habla," in Proc. Information

Systems and Technologies (CISTI), 2012 7th Iberian Conference on,
Madrid, España, 2012, pp. 451-456.

[11] J. Brender and P. McNair, "User requirements specifications: a
hierarchical structure covering strategical, tactical and operational
requirements," International Journal of Medical Informatics, vol. 64,
pp. 83-98, 2001.

[12] C. B. e. Costa, E. Corrêa, J.-M. D. Corted, and J.-C. Vansnickd, "
Facilitating bid evaluation in public call for tenders: A socio-technical
approach," Omega, vol. 30, no.30, pp. 227-242, 2002.

[13] B. A. Aubert, S. Rivard, and M. Patry, "A transaction cost approach
to outsourcing behavior: some empirical evidence," Information and
Management, vol. 30, no. 2, pp. 51-64, 1996.

[14] S. Whang, "Contracting for software development," Management
Science, vol. 38, no.3, pp. 307-324, 1992.

[15] D. Gefen, S. Wyss, and Y. Lichtenstein, "Business familiarity as risk
mitigation in software development outsourcing contracts," MIS
Quarterly, vol.32, no.3, pp. 531-551, 2008.

[16] R. T. Nakatsu and C. L. Iacovou, "A comparative study of important
risk factors involved in offshore and domestic outsourcing of
software development projects: A two-panel Delphi study,"
Information & Management, vol. 46, no. 1, pp. 57-68.

[17] S. Lauesen, "COTS tenders and integration requirements," In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), 2004, pp. 166-175.

[18] B. Paech, R. Heinrich, G. Zorn-Pauli, A. Jung, S. Tadjiky, B. Regnell,
and D. Damian, "Answering a Request for Proposal – Challenges and
Proposed Solutions Requirements Engineering: Foundation for
Software Quality," in Proc. REFSQ, Essen, Germany, 2012, pp.16-29.

[19] ChileCompras, "Website. http://www.mercadopublico.cl (04 2012)."

[20] Comprasnet, "Website. http://www.comprasnet.gov.br (04 2012)."

[21] Compranet, "Website. http://www.compranet.gob.mx (04 2012)."

[22] E. J. Braude and M. E. Bernstein, "Software engineering: Modern
Approaches," J. Wiley & Sons. Second Edition, 2011. ISBN 978-0-
471-69208-9.

[23] E. Yu, "Modelling Strategic Relationships for Process
Reengineering," Ph.D. thesis, also Tech. Report DKBS-TR-94-6,
Dept. of Computer Science, University of Toronto, 1995.

[24] P. Keil, "Principal agent theory and its application to analyze
outsourcing of software development," in ACM SIGSOFT Software
Engineering Notes, vol. 30, pp. 1-5, 2005.

[25] B. W. Boehm, "Software Engineering Economics," Software
Engineering, IEEE Transactions on, vol. 10, no. 1, pp. 4-21, 1984.

[26] N. Aissaoui, M. Haouari, and E. Hassini, "Supplier selection and
order lot sizing modeling: A review," Computers \& operations
research, vol. 34, no. 34, pp. 3516-3540, 2007.

[27] D. Lowe, "A framework for defining acceptance criteria for web
development projects," Web Engineering, pp. 279-294, 2001.

[28] H. C. Esfahani, E. Yu, and M. C. Annosi, "Strategically balanced
process adoption," in Proc. of the 2011 International Conference on
Software and Systems Process, Hawaii, USA, pp. 169-178, 2011.

[29] A. Heiskanen, M. Newman, and M. Eklin, "Control, trust, power, and
the dynamics of information system outsourcing relationships: A
process study of contractual software development," The Journal of
Strategic Information Systems, vol. 17, no. 4, pp. 268-286, 2008.

[30] H. Erdogmus, B. W. Boehm, W. Harrison, D. J. Reifer, and K. J.
Sullivan, "Software engineering economics: background, current
practices, and future directions," in Proc. of the 24th International
Conference on Software Engineering, 2002, pp. 683-684.

[31] A. v. Lamsweerde, "Goal-oriented requirements engineering: A
guided tour," in Requirements Engineering, 2001. Proceedings. Fifth
IEEE International Symposium on: IEEE, 2001, pp. 249-262.

[32] S. J. Bleistein, K. Cox, J. Verner, and K. T. Phalp, "B-SCP: A
requirements analysis framework for validating strategic alignment of
organizational IT based on strategy, context, and process,"
Information and Software Technology, vol. 48, no. 9, pp. 846-868,
2006.

324Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://www.mercadopublico.cl/
http://www.comprasnet.gov.br/
http://www.compranet.gob.mx/

