
Predicting Risky Program Source Files

Syed Nadeem Ahsan, Syed Haider Abbas Naqvi and Kamran Raza
Faculty of Engineering Sciences and Technology

Iqra University, Karahi, Pakistan
sn ahsan@yahoo.com, {haider0202, kraza}@iqra.edu.pk

Abstract—Change in source codes is an essential and
routine activity of software development and maintenance. It
has been observed that this activity might result in faults that
might harm the use of the software. Therefore, it is always
useful for software managers and programmers that before
making any changes in source files, they should know the
degree of risk associated with changing source files. In this
paper, we present our approach to identify source files, which
are risky or at least sensitive to new changes. We defined a
set of metrics to compute the degree of risk associated to a
source file. To validate our approach, an experiment has been
performed by using Mozilla project’s data. The experimental
results show that the source files having higher risk values are
more risky when applying the next change and thus should
be tested more thoroughly.

Keywords-Software evolution; code metrics; risk estimation;

I. INTRODUCTION

In the field of software engineering, research studies
reveal that over 90% of the software development cost
spends on software maintenance and evolution. Moreover,
software testing consume most of the development time
and money [6]. Therefore, in today’s software industry,
software quality assurance personnel need those techniques
which predict risky source code modules, so that more
thorough testing can be performed for risky source code
modules. Moreover, a developer can use such predictions
to focus quality assurance activities.

In recent years, much research work has been performed
to build models to predict risky or faulty source code
modules. Mostly, researchers extract knowledge from the
repository of software evolution [3][14]. This knowledge
have been used to build models to predict faulty source
code modules in the new release of a software product
[2][7][9]. Therefore, the goal of our research work is to
use the software evolution data, and define a new set of
metrics to compute the degree of risk associated to the new
changes in the source files. Such information is not only
useful for developers but also for software managers in
order to assign resources, e.g., for testing.

It has been found that the history of software change
patterns might be used for the analysis of risky or faulty

program files [1][10]. Therefore, in our research work,
we first classify the changes in the source code into four
well known types of software changes i.e., clean-changes,
bug-introducing changes, bug-fix and introducing changes,
and finally bug-fix changes [7]. Then, we define a set of
metrics using the four different types of software changes.
Finally, we derive an empirical relation for the risk model.
To validate our research approach, we performed an
experiment by extracting the change history data of source
files from the software repository of Mozilla Project. After
extracting the data, we applied an approach that allows
us to identify the different types of code changes like,
bug fixing, clean, bug introducing, and bug fix-introducing
transactions [7]. We used the data of software changes and
computed a set metrics. Finally, we used these metrics in
our propose risk estimation model and obtained the degree
of risk associated to source files.

The paper is organized as follow: In Section 2, we
discuss related work. In Section 3, we describe the types of
software changes. In Section 4, we describe our approach.
In the next sections, i.e., Section 5 and 6, we discuss the
obtained empirical results and conclude the paper.

II. RELATED WORK

Software evolution data have been used to construct
models for the classification of clean and faulty source
code [3][14]. Asundi [8] highlight the importance and the
major challenges of the risk estimation model of program
source files. Whereas, most of the research works are
based on data driven techniques and used machine learning
algorithm to build model for the prediction of faulty source
code modules [13]. It has been observed that very few
attempts have been made to build empirical models for the
computation of risk factor associated with the new changes
in source codes [1][2].

Porter and Selby [4] used classification trees based on
metrics from previous releases to identify components
having high-risk properties. Mockus and Weiss [2]
presented a model to predict the risk of new changes,
based on previous information. The authors modeled
the probability of causing failure of a change made to

348Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

software, using properties of a change as model parameters.
Sliwerski et al. [7] analyzed the CVS repository of Mozilla
and Eclipse together with the information stored in the
corresponding Bugzilla bug reporting system to identify
fix inducing changes. Robert et al. [10] used code churn
metrics (metrics which are based on addition, subtraction
and modification of source code lines) for predicting faults
in software. They found that change in the prior release
is an essential component of fault prediction method.
Similarly, our research work is focused to use the source
code modification data, but instead of using direct code
churn metrics, we used a new set of metrics, and derived
a relation for the risk model of program source file.
The research work present in this paper is the further
enhancement in our previous risk model [12].

III. TYPES OF CHANGES IN SOURCE CODE

In this paper, we propose an approach to build model for
the prediction of risky source code module. Our approach is
based on software repository data, i.e., version controlling
system (CVS) and bug tracking system (Bugzilla) [14].
First, we process the software repository data, and compute
a set metrics using the following four types of source
code changes: clean, bug introducing, bug fixing and bug
fix-introducing changes. To obtain these types of source
code changes, we used an approach which was given by
Sliwerski et al. [7]. After obtaining the metrics data, we use
these metrics in our risk model, and compute the risk factor
associated to each source files. In the following paragraph
we briefly describe the four different types of changes in
source code (for details see [3][7]).

1) Bug Fixing Change: This type of changes are oc-
curred when developers want to change the source
code to fix a bug.

2) Bug Introducing Change: Once we identify that the
change is a bug fixing change in the source file, then
it is required to locate those changes in the source file
revisions, which actually introduced the bug.

3) Bug Fix-Introducing Change: After identifying all
the Bug-Introducing and the Bug-Fixing changes, then
the next step is to list all those source file changes,
which have both type of changes, i.e., Bug Fixing and
Bug Introducing Changes.

4) Clean Change: Finally, the set of source file changes,
which are not identified as bug fix or bug introducing
or bug fix-introducing, are listed as clean changes.

IV. OUR APPROACH TO BUILD A RISK MODEL

Our approach is based on a mathematical model, which
can be derived using the definition of risk. In engineering
risk corresponds to the costs in case of an accident [5],

and according to IEEE, the standard definition of risk is:
“An expression of the impact and possibility of a mishap
in terms of potential mishap severity and probability of
occurrence (MIL-STD-882-D, IEEE 1483).” Whereas, in our
approach, “accident” or probability of “mishap” is basically
the probability of faulty change in source code, which may
introduce one or more bugs in a software, and “costs” is the
time or effort needed to fix those bugs. Therefore, we process
the data of source code’s change history, and compute the
probability of faulty change of each source file. Finally,
to obtain the risk value, we multiply the probability of
faulty/buggy changes with the costs factor, and compute the
risk value. Hence, in our case, risk can be defined as:

Risk = (Prob. of Bug)× (Bug Impacts/Costs) (1)

Riskj = pBUG × Cj (2)

where, Riskj is the risk that a change in a source file could
be a faulty change, and it could introduce j number of
bugs. pBUG is the probability that a new change could be a
faulty change, and Cj represent the expected impact/costs
of that faulty change. Cj represent the impact in term
of an estimated costs that need in fixing the introducing
number of faults. A faulty change in a program file may
introduce j number of faults into a software system. Cj

is the costs of fixing j faults. Therefore, the risk that a
faulty change may introduce j faults is given by equation (2).

The probability of a change to lead to a bug (or
accident), i.e., pBUG can be obtained from the history of
bug introducing and bug fix-introducing changes of a source
file. For this purpose, the number of bugs introducing (nI)
and bug fix-introducing changes (nFI) has to be divided by
the number of all changes (nC), e.g.,

pBUG =
nI+ nFI

nC
(3)

Now, to find the risk value of a source file, we have
to know the expected costs of the bugs that could
be generated. Let, pj be the probability of introducing
j bugs by a faulty change, and cj is the costs of fixing j bugs.

Cj = pj × cj =
nj
nC
× cj (4)

Riskj =
nI+ nFI

nC
× nj

nC
× cj (5)

where, nj is the number of changes that introduced j bugs per
change. Its value can be obtained from the previous history
of source file. If we consider the costs of each bug as a
constant value, i.e., c, then Eq. (5) can be written as,

349Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Riskj =
nI+ nFI

nC
× nj

nC
× j× c (6)

In case of Open Source Software (OSS), there is no
information regarding the costs for correcting a fault in
terms of amount of work necessary, and moreover there
is no information available about costs related to the bug
when the program is executed. Hence, we might assume
unit costs for each fault, i.e., c=1.

Riskj =
nI+ nFI

nC
× nj

nC
× j (7)

Equation (7) can be used to find the risk associated with
source files, which could generate j faults. Every change
might lead to several bugs. Hence, the expected costs can
be estimated by averaging the costs of correcting “k” faults
multiplied with the probability that a change causes “k”
faults, i.e.,:

Riskavg(j) =
nI+ nFI

nC
× 1

k

k∑
j=1

nj

nC
× j (8)

Riskavg(j) =
nI+ nFI

nC
× 1

k
× 1

nC
×

k∑
j=1

(nj × j) (9)

where,
k∑

j=1

(nj × j) = nB , and nB is the total number of

bugs occurred during the life of a source file. Its value can
be obtained by adding the value of bug counts nBI , which
is generated by bug introducing changes and bug count
value nBFI , which is generated by bug fix-introducing
changes (nB=nBI+nBFI).

Riskavg(j) =
nI+ nFI

nC
× 1

k
× nB

nC
(10)

where, “k” is the maximum number of faults introduced by
a single change in a source file. Furthermore, equation (10)
can be used to compute the maximum risk instead of an
average risk.

Riskmax(j) =
nI+ nFI

nC
× nB

nC
(11)

Equation (11) may be used to measure the maximum
risk associated with the new changes in a source files.
In equation (11), nB

nC
is the average number of faults per

change. It may be written as Cmax(j). In our experiment,

we used equation (11) to measure the risk value. In equation
(11), we considered unit cost i.e., c=1, if we do not consider
unit cost then equation (11) may be written as,

Riskmax(j) =
nI+ nFI

nC
× nB

nC
× c (12)

Equation (12) is the main equation to compute the
maximum risk factor associated with source file. The major
challenge is to compute the cost value, i.e., “c” in equation
(12). Since, in case of open source, the costs related to
software change is not recoded, therefore, it is difficult to
compute the costs value of software changes. However, we
can make some assumption for costs value, like we did in
equation (7). Moreover, it has been found in literatures that
some attempts have been made to compute the effort or costs
value of software changes [8] [11]. We are still working to
find some better technique to compute the costs value of
software changes. Now, In the next section, we discuss some
experimental results, which are based on Eq. (1) to Eq. (11).

V. RESULTS AND DISCUSSION

In order to validate our approach, we performed an
experiment by downloading source files and bug reports
data from the Mozilla project (evolution data is freely
available on website). After downloading, we used an
approach to process the downloaded data, and find the
distribution of four different types of changes in source
codes (for details see [7] [12]). Our experimental results
are shown in Table I.

Table I depicts the obtained results of risk associated with
7 different source files of Mozilla project. For example,
consider a source file, i.e., CBrowserShell.cpp from Table
I. The number of fault-introducing changes and the number
of fault-fix-introducing changes are 17 and 49 respectively.
Hence, the probability of a change to introduce at least
one bug in this example is: pBUG = (nI + nFI) / nC =
(17+49)/93= 0.71. Moreover, the data of Table I, can easily
be used to compute the expected cost of fault fixing in
source file. Like in case of CBrowserShell.cpp source file,
the cost is Cmax(j) =nB

nC
= 69

93 = 0.74. From this, the risk
factor associated with the new changes in the source file
CBrowserShell.cpp can be computed as follow: Rmax(j) =
pBUG × C = 0.71 × 0.74 = 0.53.

Similarly, the risk can be computed for each source
files. The results of this computation on sample data set
of seven source files are given in Table I. Figure 1 shows
the normalized risk factor associated with each source files.
In our sample data set, the source file calDateTime.cpp is

350Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table I
COMPUTATION OF RISKY SOURCE FILES USING THE DISTRIBUTION OF FOUR DIFFERENT TYPES OF SOURCE FILE CHANGES

Mozilla
Source Files
(.cpp)

Four types of changes Total
Change

Total
Faults

Total
Faulty
Changes

pBUG =
(nI+nFI) /
nC

Cmax(j) =
nB / nC

Riskmax(j)
= pBUG ×
Cmax(j)

(sample data) Clean Fix nI nFI nC nB nI+nFI

calDateTime 2 5 21 82 110 112 103 0.94 1.02 0.95
calICSService 1 6 9 60 76 73 69 0.91 0.96 0.87
CBrowserShell 11 16 17 49 93 69 66 0.71 0.74 0.53
CNavDTD 42 46 147 263 498 418 410 0.82 0.84 0.69
COtherDTD 8 20 57 65 150 128 122 0.81 0.85 0.69
dlldeps 32 44 35 92 203 132 127 0.63 0.65 0.41
EmbedPrivate 15 33 20 84 152 110 104 0.68 0.72 0.50

Figure 1. Risk factor associated with seven source files of Mozilla project

the most risky source file for further changes. Whereas,
the source file dlldeps.cpp is the less risky file for further
changes. A graph which is similar to Figure 1 can be used
during software maintenance phase to identify those source
files which have a high risk factor. Such information helpful
to perform software maintenance task.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our approach to build a
mathematical model, which computes the risk factor
associated with the new changes in source codes. Our risk
model is based on a set of metrics. We obtained these set
of metrics by using the evolution data of source codes.
Furthermore, to validate our risk model, we performed
an experiment by using the software evolution data of
Mozilla project. We found that our model successfully
measured the risk factor associated with source files. The
source files which have higher risk factor values are more
risky when applying the next change and thus should
be tested more thoroughly. Currently, we are working
to develop a method which can be used to compute the
actual costs/impact value of a bug. Moreover, in future, we
will further enhance our risk model by adding more metrics.

REFERENCES

[1] A. A. Phadke and E. B. Allen, “Predicting Risky Modules in
Open-Source Software for High-Performance Computing,” In
proceeding of IWSEHPCS, 2005.

[2] A. Mockus and D. M. Weiss, “Predicting risk of software
changes,” Bell Labs Tech., vol. 5, Apr-June 2000, pp 169-180.

[3] M. Fischer, M. Pinzger, and H. Gall, “Populating a release his-
tory database from version control and bug tracking systems.”
In Proceeding of the International Conference on Software
Maintenance (ICSM), 2003, pp 13-23.

[4] A. A. Porter and R. W. Selby, “Empirically Guided Software
Development Using Metric-Based Classification Trees,” IEEE
Software, volume 7(2), 1990, pp 46-54.

[5] E. Addison, “Managing Risk: Methods for Software Systems
Development(Sei Series in Software Engineering),” Addison
Wesley, February 28, 2005.

[6] L. Erlikh, “Leveraging legacy system dollars for e-business,”
IT professional, volume 2(3), 2000, pp 17-23.

[7] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?,” Proceedings of the 2005 international workshop
on Mining software repositories, 2005, pp 1-5.

[8] J. Asundi, “The need for effort estimation models for open
source software projects.” In Proceedings of the fifth workshop
on Open source software engineering (5-WOSSE), ACM, New
York, NY, USA, 2005, pp 1-3.

[9] K. A. Gunes and L. Hongfang, “Building Defect Prediction
Models in Practice,” IEEE Software, 22(6), 2005, pp 23-29.

[10] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does measuring
code change improve fault prediction?,” In Proceedings of the
7th International Conference on Predictive Models in Software
Engineering (Promise), 2011.

[11] S. N. Ahsan, J. Ferzund and F. Wotawa, “Program File Bug
Fix Effort Estimation Using Machine Learning Methods for
OSS,” 21st Int. Conference on Software Engg. and Knowledge
Engg. (SEKE), Boston, USA, July 1-3, 2009, pp 129-134.

[12] S. N. Ahsan, J. Ferzund, and F. Wotawa, “A Database for
the Analysis of Program Change Patterns,” In proceeding of
the 4th International conference on Networked Computing and
Advanced Information Management, 2008.

[13] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying Software
Changes: Clean or Buggy?,” IEEE Transactions on Software
Engineering, March/April, 2008, pp. 181-196.

[14] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, “Mining
Version Histories to Guide Software Changes,” In Proceedings
of the 26th International Conference on Software Engineering,
May 23-28, 2004, pp 563-572.

351Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

