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Abstract—Model-based testing (MBT) focuses on the gener-
ation of test suites, using models of system requirements and
behavior. In order to get full benefits from model-based testing
and to drive its adoption by practitioners, automation support
is required. Spec Explorer 2010 is an MBT tool that offers
a rich set of features allowing for modeling and analyzing
software behavior using graphical visualization and automatic
generation of test code from models. In this paper, we propose
and discuss a set of guidelines to map the core Abstract State
Machines (ASM) concepts and constructs into Spec Explorer
2010. We illustrate our mapping approach using examples
and features from ASM-based formal specification languages
CoreASM and AsmL. Furthermore, we discuss the benefits,
the challenges and the limitations of our proposed mapping
guidelines. Finally, we illustrate our approach using a case
study of the well known dining philosophers problem.

Keywords-Model-based testing; Spec Explorer 2010; Abstract
State Machines (ASM); CoreASM; AsmL

I. INTRODUCTION

Model-based testing (MBT) is a variant of testing that
relies on explicit behavior models that describe the intended
behaviors of a System Under Test (SUT) and/or the behavior
of its environment. Test cases are then generated from one
of these models or their combination, and then executed on
the SUT [1]. MBT offers significant promise in reducing the
cost of test suite generation, increasing the effectiveness of
the produced test cases, and shortening the testing cycle.

Driven by technological advances and by the ever-growing
need for producing high quality software, model-based test-
ing (MBT) has emerged as a potential research domain.
Given the popularization of models in software design and
development, MBT has moved from a research topic [2],
[3] to an emerging practice in the industry [4], [5], with
increasing commercial tool support [6]. Dias-Neto et al.
[2] have performed a systematic review of MBT research
literature and have proposed a classification of the MBT
approaches. A recent systematic review of state-based MBT
tools by Shafique and Labiche [6] provides a detailed
classification of nine commercial and research MBT tools.
In a more recent work, Utting et al. [1] have developed a
taxonomy of six dimensions that covers the key aspects of
MBT approaches.

Model-based testing relies on three key aspects - the mod-
eling notation, the algorithms used to guide test generation

and the tools supporting on-the-fly generation or off-line
realization of executable tests.

Many different notations and languages, with different
expressive power, have been used for modeling the behavior
of systems for test generation purposes. Many of these
languages are discussed and classified by Hierons et al. [3]
and, more recently, by Utting et al. [1]. Examples of such
notations classification include state-based Notations (e.g.,
Z, B, etc.), transition-based Notations (e.g., FSMs, state-
charts, etc.), history-based notations (e.g., temporal logics,
MSC, etc.), operational notations (e.g., process algebra such
as CSP and CCS).

Many test generation algorithms have been proposed
[1], [2], [3]. Examples of such test generation approaches
include Random generation (achieved by sampling the input
space of a system), Search-based algorithms (e.g., graph
search algorithms), Model Checking (for checking system
properties), Symbolic execution (generating symbolic traces
that should be instantiated to obtain test cases), Deductive
theorem proving (used to check the satisfiability of formu-
las), Constraint solving (useful for selecting data values from
complex data domains), etc.

Utting et al. [1] have proposed a classification of MBT
tools [6] according to which kinds of test selection criteria
they support (e.g., structural model coverage, data coverage,
requirements-based coverage, fault-based criteria, etc.). Mi-
crosoft’s Spec Explorer 2010 [7], is one of the commercial
tools that have led the MBT scene. The new release of Spec
Explorer 2010 [7], version 3.5 and integrated within Visual
Studio 2010, offers a rich and powerful set of features for
modeling and analyzing system functional behavior, as well
as automatically generating test code.

The widespread interest in model-based testing techniques
and tools provides the major motivation of this research. In
particular, this paper serves the following purposes:

• Bridge the gap between ASM-based languages (e.g.,
CoreASM [8], AsmL [9], etc.) and the new release
of Microsoft Spec Explorer 2010 [7], where the SUT
model is specified using .NET C#. The previous
version, Spec Explorer 2006 [10], accepts models writ-
ten in AsmL (Abstract State Machines Language) [9],
which is no longer supported in Spec Explorer 2010
[7]. To bridge this gap, we propose a set of guidelines
to map ASM core concepts and constructs into Spec
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Explorer 2010 modelling notation (i.e., C# program
models and Cord scripts [11]).

• Allow for ASM model exploration and analysis. Indeed,
Microsoft Spec Explorer 2010 [7] provides several
strategies for managing the exploration of a model,
including data coverage of parameter values and struc-
tural model criteria [1]. Furthermore, the resulting Spec
Explorer 2010 models can be used to automatically
generate test cases.

• Discuss the benefits, the challenges, and the limitations
of the ASM to Spec Explorer 2010 mapping approach.

The remainder of this paper is organized as follows. The
next section presents some related work. A brief introduction
to Spec Explorer 2010 and an overview of its specification
language are presented in Section III. Section IV represents
the core of our paper, where we describe and discuss the
ASM to Spec Explorer 2010 mapping guidelines. In order
to demonstrate the applicability of our proposed mapping
approach, a case study of the well known Dining Philoso-
phers problem is presented in Section V. A discussion of
the challenges and the limitations of our proposed approach
is presented in Section VI. Finally, conclusions are drawn
in Section VII.

II. RELATED WORK

Several approaches have been proposed to translate ASM
specifications to languages and notations in order to enable
testing and verification. Winter [12] has proposed a schema
for transforming ASM models into the language of SMV. A
similar approach has been implemented in AsmetaSMV by
Arcaini et al. [13] for mapping and verifying ASM models,
written in AsmetaL, into NuSMV notation. Gargantini et al.
[14] have introduced an algorithm to automatically encode
an ASM specification in Promela, the language of the model
checker SPIN.

Grieskamp et al. [15] have proposed an algorithm that
derives a finite state machine (FSM) from a given abstract
state machine (ASM) specification. The generated ASM
states, often infinite, are grouped into hyperstates which are
the nodes of the FSM. The links of the FSM are induced by
the ASM state transitions. This transformation allows for the
integration of ASM specifications with the existing tools for
test case generation from FSMs. In a related work, Barnett et
al. [16] have presented a tool environment for model-based
testing with the Abstract State Machine Language (AsmL)
[9]. The environment supports semi-automatic parameter
generation, FSM generation from ASMs [15], call sequence
generation and conformance testing.

The most closely related work to ours is the one by
Veanes et al. [17]. The authors have provided a symbolic
analysis of model programs written in AsmL [9], in terms of
a background T of linear arithmetic, sets, tuples and maps.

III. OVERVIEW OF SPEC EXPLORER 2010

Spec Explorer 2010 [7], which we simply refer to as Spec
Explorer, provides a model editing, composition, explo-
ration, and visualization environment within Visual Studio,
and can generate on-line and off-line test suites. A Spec
Explorer model consists of a set of rules, written in C#,
expressed in a model program (i.e., the .cs file) combined
with behavioral descriptions coded in a scripting language
called Cord [11] (i.e., the .cord file). The model program
and the Cord script work together to make a testable model
of the SUT.

Using myNameSpace

config Main 

{

action abstract static void RuleAdapter.Rule1();

action abstract static void RuleAdapter.Rule2();

}

machine Program() : Main

{

construct model program from Main

}

machine Interleaving() : Main

{

Rule1() ||| Rule2()

}

machine TestSuite() : Main

{

construct test cases where Strategy = 

"ShortTests" for Interleaving

}

Coordination Script (.cord)

// importing libraries

using System;

using System.Collections.Generic;

// / other libraries

namespace myNameSpace

{

public static class myClass

{  // Defined state variables

static int x, y;

[Rule(Action = "Rule1()")]

static void Rule1()

{ // Rule1 body

}

[Rule]

static void Rule2()

{ // Rule2 body

}    

}

}

Model (.cs)

Spec Explorer 2010 Specification

Figure 1. Structure of a typical Spec Explorer specification

Figure 1 illustrates a typical structure of a Spec Explorer
specification. The model program (.cs) defines the classes
of the system (e.g., myClass), the fields used to hold state
data (e.g., x, y), and the rule methods for the actions (e.g.,
Rule1 and Rule2) already declared in the Cord configuration.
The model program is joined by a Cord script that defines
the context signature (e.g., Main) and action machines (e.g.,
Program) expressing behaviors that further constrain the
model for purposes of exploring submodels and generating
practical test cases. A machine is based on one or more
configurations and represents the unit of exploration. Many
operators can be used to compose machine behavior from
configurations and other behaviors. For example, the parallel
behavior operator ||| is used in machine Interleaving to
construct the interleaved parallel composition of Rule1 and
Rule2. Cord scripts also provide the means to generate test
cases from the model. For a detailed description of Spec
Explorer, we refer the reader to [7].

IV. ASM TO SPEC EXPLORER MAPPING GUIDELINES

In this section, we present a brief overview of the basic
ASM concepts and we provide a set of guidelines for trans-
lating them into Spec Explorer. For a detailed description of
Abstract State Machines concepts and features, an interested
reader is referred to [18].

381Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Table I
EXAMPLES OF MAPPINGS OF ASM BUILT-IN TYPES

CoreASM [8] AsmL [9] Spec Explorer [7]

Boolean Boolean bool
enum/universe enum enum
String String string
Number Integer/Byte/short int/byte/short

Long/Float/Double long/float/double
Set Set of T SetContainer<T>
List Seq of T SequenceContainer<T>
Map Map of T to S MapContainer<T,S>

Although we illustrate the mapping guidelines using
features and examples from CoreASM [8] and AsmL [9]
languages, our proposed mapping guidelines can be applied
to any ASM-based language, thus maintaining the generality
of the discussion.

A. Mapping of States

Abstract State Machines (ASM) [18] define a state-based
computational model, where computations (runs) are finite
or infinite sequences of states {Si} obtained from a given
initial state S0 by repeatedly executing transitions δi:

S0
δ1 // S1

δ2 // S2
. . . δn // Sn

The states of an ASM are multi-sorted first-order struc-
tures, i.e., domains of objects with functions and predicates
defined on them.

1) Domains:: A domain consists of a set of declara-
tions that establish the ASM vocabulary. Each declaration
establishes the meaning of an identifier within its scope.
Spec Explorer is based on C# language and it offers a
rich set of data types covering almost all domains of ASM-
based languages. Hence, the mapping of domains into their
corresponding Spec Explorer data types is straightforward.
Table I shows some examples of supported ASM-based
built-in types and their corresponding Spec Explorer data
types.

In order to match the mutable nature of ASM sets,
sequences, and maps, we use the Spec Explorer muta-
ble containers types: SetContainer, SequenceContainer and
MapContainer.

2) Function Names:: Each function name f has an arity
(number of arguments that the function takes). Function
names can be static (i.e., fixed interpretation in each com-
putation state) or dynamic (i.e., can be altered by transitions
fired in a computation step). Static nullary (i.e., 0-ary)
function names (i.e., called constants) and dynamic nullary
functions (i.e., called variables) are mapped respectively into
Spec Explorer constants and variables of the types presented
in Table I.

ASM n-ary functions (i.e., f : T1 x T2 x . . . ... Tn → T),
may be described using the Spec Explorer MapContainer
construct. The same mapping applies to the ASM monitored,

public enum T1 {A1, B1};

public enum T2 {A2, B2};

public enum T {A, B};

public class T1T2

{

public T1 p1;

public T2 p2;

public T1T2(T1 Param1, T2 Param2)

{

this.p1 = Param1;

this.p2 = Param2;

}

}

public class MyModelProgram

{

public static MapContainer<T1T2, T> foo = new MapContainer<T1T2, T>();

}

Model.cs

Figure 2. Implementing n-ary functions in Spec Explorer

controlled and shared functions. For example, the following
CoreASM code defines three enumeration domains T1, T1
and T, each having 2 elements, and a 2-ary function foo
defined over T1 and T2 and returning a value of type T:

enum T1 = {A1,B1}
enum T2 = {A2,B2}
enum T = {A,B}
foo: T1 * T2 -> T

Figure 2 illustrates its corresponding Spec Explorer model
implementation. A new class T1T2 is created to map func-
tion foo input types T1 and T2. The arity of the function
defines the number of the new class attributes. The function
name foo is mapped to a MapContainer object having keys
of type T1T2 and values of type T. It is worth noting that the
new class T1T2 could have been created as CompoundValue
(i.e., public class T1T2 : CompoundValue), which is mutable
but it cannot be updated outside of the constructor.

Another possible solution, proposed by Arcaini et al. [13],

is to create
n∏

i=1

|Di| variables to cover all combinations of

the domains elements. Considering the example above, four
variables of type T can be created to cover the product
of enumerations T1 and T2: public static T foo A1 A2,
foo A1 B2, foo B1 A2, foo B1 B2; This solution does not
scale well in presence of domains with large sets of ele-
ments.

B. Mapping of Transition Rules

The transition relation is specified by guarded function
updates, called rules, describing the modification of the
functions from one state to the next. An ASM state transition
is performed by firing a set of rules in one step.

1) Conditional Rule:: Typically, an ASM transition sys-
tem appears as a set of guarded rules:

if cond then RuleThen else RuleElse endif

RuleThen and RuleElse are transition rules and cond, the
guard, is a term representing a boolean condition. The ASM
conditional rule can be implemented using Spec Explorer
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Condition class, which provides conditions that can control
the exploration of a rule. Spec Explorer does not generate
a transition for a rule if it encounters in the execution
path of the rule any condition that is not satisfied. The
Condition class contains a rich set of methods for con-
trolling exploration (e.g., IsTrue(Boolean), IsFalse(Boolean),
IsNull(Object), etc.

Figure 3 illustrates the mapping of the ASM condi-
tional rule. Condition Condition.IsTrue(cond) enables the
exploration of RuleThen() if cond evaluates to true, while
condition Condition.IsFalse(cond) enables the exploration of
RuleElse() if cond evaluates to false.

static class ModelProgram

{

static bool cond=true;

static int stateVar;       

[Rule(Action = "RuleThen()")]

static void RuleThen()

{

Condition.IsTrue(cond);

// update state Variables

}

[Rule(Action = "RuleElse()")]

static void RuleElse()

{

Condition.IsFalse(cond);

// update state Variables

}

}

Figure 3. Implementation of the conditional rule in Spec Explorer

2) Update Rule:: The basic form of a transition rule is a
function update:

f(t1,t2,. . .,tn):= value

(f, (t1,t2,. . .,tn)) represents the location and value is its
content. An update can be implemented in Spec Explorer
as a rule containing simple assignment statements in the
case of dynamic nullary functions (e.g., var = value) or as
an update of a MapContainer in case of n-ary functions,
where an update results in adding a new element to the
MapContainer (if the key does not exist), or as an up-
date of a MapContainer element (if the key does exist).
Figure 4 illustrates the mapping of the ASM update rule
to Spec Explorer using the data structures introduced in
Figure 2. The MapContainer class method ContainsKey(D)
returns whether the key exists in the MapContainer (e.g.,
foo.ContainsKey(key)), while the method Add(D, R) adds
a key-value pair to the MapContainer (e.g., foo.Add(key,
value)).

public static MapContainer<T1T2, T> foo = new MapContainer<T1T2, T>();

[Rule]

public static void UpdateRule(T1T2 key, T value)

{

if (foo.ContainsKey(key))

foo[key] = value;

else

foo.Add(key, value);

}

Model.cs

Figure 4. Spec Explorer implementation of the update rule

3) Sequence Rule:: The sequence rule aims at executing
rules/function updates in sequence:

seq Rule1, . . ., RuleN or seq Update1, . . ., Updaten

The resulting update set is the sequential composition of the
updates, generated by Rule1 . . . RuleN in case of rules and
generated by Update1, . . ., Updaten in case of function
updates. ASM sequential function updates can be mapped
into one single rule in Spec Explorer as described in Figure
5(a), while ASM sequential rules can be implemented using
the Cord composition operator “;” as described in Figure
5(b).

[Rule]

static void SequentialUpdates()

{ // Update1

var1 = v1;

// UpdateN

varN = vN;            

}

Model.cs

(a) Model program for sequential function updates

config Main 

{

action abstract static void RuleAdapter.Rule1();

action abstract static void RuleAdapter.Rule2();

action abstract static void RuleAdapter.Rule3();

}

machine Program() : Main

{

construct model program from Main

}

machine Sequence() : Main

{

Rule1() ; Rule2() ; Rule3()

}

Config.cord

(b) Cord file and generated FSM for the sequential rules

Figure 5. Spec Explorer implementation of the sequence rule

4) Choose Rule:: The choose rule consists in selecting
elements (non deterministically), from specified domains,
satisfying the guard φ, and then evaluates Rule1. If no such
elements exist (i.e., ifnone), Rule2 is evaluated.

choose x in D with φ(x) do Rule1 ifnone Rule2

[Rule(Action = "ChoiceRule()")]

static void ChoiceRule()

{

Predicate<int> P = (y => (y >= 1 && y <= 4));

if (x == Choice.Some<int>(P))

Rule1(x);

else

Rule2();              

}

Model.cs

Figure 6. Spec Explorer implementation of the choose rule

The choose rule may be implemented in Spec Explorer
using the non-deterministic method Some of the Choice class
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(i.e., Choice.Some<T>(Predicate<T> predicate)), which
selects a value from a range of a specific type T, that satisfies
a certain condition: predicate. If such an element exists,
it will be passed to Rule1, otherwise a call to Rule2 is
performed. Figure 6 illustrates an example of a mapping
of the ASM choose rule to Spec Explorer. The predicate P
corresponds to the guard φ, while the selected value, if any,
is stored in variable x. An integer value is selected randomly
from the range 1 . . . 4, then passed to Rule1.

5) Extend Rule:: The extend rule is used to construct new
elements and add them to a specific domain. The resulting
update set is the updates generated by Rule1.

extend D with x1, . . ., xn do Rule1

In Spec Explorer, the extend rule may be implemented
by adding new elements to a mutable container such as
SetContainer, SequenceContainer, MapContainer, etc., then
call Rule1. As shown in Figure 7, a new integer x1 is added
(using the Add method) to the existing SetContainer D, then
Rule1 is called on the new added element.

static SetContainer<int> D= new SetContainer<int>(1,2); 

[Rule]

static void ExtendRule(int x1)

{

D.Add(x1);

Rule1(x1);            

}

Model.cs

Figure 7. Spec Explorer implementation of the extend rule

It is worth noting that the CoreASM [8] extend rule has
different semantics depending on whether D is a background
(e.g., Collection, List, Set, etc.) or a universe. Such distinc-
tion is not made at the Spec Explorer level.

6) Block Rule:: If a set of ASM transition rules have to
be executed simultaneously, a block rule is used:

par Rule1 . . . Rulen endpar

CoreASM uses the par. . . endpar syntax, while AsmL
uses step Rule1 . . . Rulen syntax to describe parallel
updates. The update generated by this rule is the union of all
the updates generated by Rule1 . . . Rulen. A set of ASM
updates is called inconsistent, if it contains updates with the
same locations, i.e., two elements (loc,v) and (loc,v’) with
v̸=v’. In the case of inconsistency, the computation does not
yield a next state. For example, Figures 8(a) and 8(b) show
respectively CoreASM code for (1) a rule (rule1) having a
conflicting parallel function update of variable x, and (2) one
block rule (InitRule) firing conflicting parallel updates from
rule1 and rule2. Both examples do not yield a next state.

Since Spec Explorer is based on .NET, a rule method
code is not different from an ordinary sequential C# code.
Hence, statements within a rule are executed in sequence,

// Two conflicting 

// parallel updates

rule rule1 =

par

x := 1 

x := 5

endpar

(a) Inconsistent set of
function updates

rule rule1 = x := 1 

rule rule2 = x :=5 

// Conflicting call to rule1 and rule2 

rule InitRule =

par

rule1

rule2

endpar

(b) Inconsistent set of rule up-
dates

Figure 8. Inconsistent ASM updates

not concurrently. At every step, Spec Explorer enables all the
rules satisfying their respective preconditions, leading to a
non-deterministic interleaving of rule executions. Therefore
the parallel update semantics, previously supported in Spec
Explorer 2006 [10]), is abandoned because it conflicts with
the default sequential semantics of C#.

If we consider rules updating different locations (i.e.,
consistent updates), Spec Explorer parallel execution of
the selected rules can be reduced to a non-deterministic
interleaving (with extra created transitions and states). It
can be achieved using the Cord composition operator ||| as
shown in Figure 9.

config Main 
{
action abstract static void RuleAdapter.Rule1();
action abstract static void RuleAdapter.Rule2();
action abstract static void RuleAdapter.Rule3();
}
machine Interleaving(): Main
{
Rule1() ||| Rule2() ||| Rule3();
}

Config.cord

(a) SpecExplorer implementation of the block Rule

(b) Block rule associated FSM

Figure 9. Spec Explorer implementation of the block rule and its
corresponding FSM

A possible work-around for detecting inconsistent updates
is to design a wrapper method to check and analyze whether
there are any inconsistencies between the different update
statements.

7) Let Rule:: The let rule assigns a value of a term t to
the variable x and then executes the rule Rule. The syntax
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of a Let rule is:

let (x = t) in Rule endlet

The let rule may be implemented in Spec Explorer using
the LetBehavior construct. This construct introduces a set of
local variables with an optional associated constraint. The
scope of the declared variables is the given behavior. Figure
10 shows an example of a Cord configuration relative to a
machine that produces a transition of Rule1 on x equal to 2.

config Main 

{

action abstract static void Implementation.Rule1(int x);

}

machine LetMachine() : Main

{

(let int x where (. x == 2 .) in Rule1(x))

}

Config.cord

Figure 10. Spec Explorer implementation of the let rule

Other ASM rules such as forall rule, iterate rule, etc., are
not covered in this work due to the lack of space.

V. CASE STUDY: THE DINING PHILOSOPHERS PROBLEM

The dining philosophers problem is a classic problem in
concurrent programming invented by E. W. Dijkstra. Con-
sider five philosophers who spend their lives thinking and
eating. The philosophers share a circular table surrounded
by five chairs, each belonging to one philosopher. In the
center of the table there is a bowl of rice, and the table is
laid with five single chopsticks. In what follows, we map
the CoreASM specification of the Dining Philosophers [19]
into Spec Explorer.

CoreASM DiningPhilosophers

use Standard

enum Chopstick = {c1, c2, c3, c4, c5}

enum Philosophers = {Albert,Herbert,Fredrich,Sina,Juan}

function eating: Philosophers -> BOOLEAN

function hungry: Philosophers -> BOOLEAN

function leftChop: Philosophers -> Chopstick

function rightChop: Philosophers -> Chopstick

function chopOwner: Chopstick -> Philosophers

init initRule

DiningPhilosopher.casm

(a) Dining Philosophers CoreASM Declara-
tion

public enum Philosophers {Albert,Herbert,Fredrich,Sina,Juan};

public enum Chopstick { c1, c2, c3, c4, c5 };

public class DiningPhilosopher

{  

public static DiningPhilosopher I = new DiningPhilosopher();

public static MapContainer<Philosophers, bool> Eating;

public static MapContainer<Philosophers, bool> Hungry;

public static MapContainer<Philosophers, Chopstick> leftChop;

public static MapContainer<Philosophers, Chopstick> rightChop;

public static MapContainer<Chopstick, Philosophers> ChopOwner;

//...

DiningPhilosopher.cs

(b) Dining Philosophers Spec Explorer Declaration

Figure 11. Dining philosophers CoreASM declarations and their mappings
in Spec Explorer

Figure 11 illustrates the CoreASM declarations and their
mappings in Spec Explorer. Enumerations are mapped to
Spec Explorer enumerations and functions are mapped to
MapContainers. The creation of the set of philosophers
(through agents in CoreASM) is done implicitly through the
class constructor in SpecExplorer. In addition, there is no
need to initialize ChopOwner as undef in Spec Explorer
since its MapContainer is initially empty. Figure 12 illus-
trates the CoreASM init rule and its mapping as a constructor
of the class DiningPhilosopher.

/* ---- Initializing the Table ----- */

rule initRule = {

forall p in Philosophers do {

Agents(p) := true

program(p) := @PhilosopherProgram

eating(p) := false

hungry(p) := false

}

rightChop(Albert) := c5

leftChop(Albert) := c1

rightChop(Herbert) := c1

leftChop(Herbert) := c2

rightChop(Fredrich) := c2

leftChop(Fredrich) := c3

rightChop(Sina) := c3

leftChop(Sina) := c4

rightChop(Juan) := c4

leftChop(Juan) := c5

/* all chopsticks are intially free */

forall c in Chopstick do

chopOwner(c) := undef

print "TABLE:  c1  Herbert  c2  Fredrich  

c3  Sina  c4  Juan  c5  Albert  c1\n"

Agents(self) := false

}

DiningPhilosopher.casm

(a) CoreASM init rule

public DiningPhilosopher()

{

Hungry = new MapContainer<Philosophers, bool>();

Eating = new MapContainer<Philosophers, bool>();

leftChop = new MapContainer<Philosophers, Chopstick>();

rightChop = new MapContainer<Philosophers, Chopstick>();

ChopOwner = new MapContainer<Chopstick, Philosophers>();

foreach (Philosophers value in Enum.GetValues(typeof(Philosophers)))

{

Eating.Add(value, false);

Hungry.Add(value, false);

}

// Initialize leftChop      

leftChop.Add(Philosophers.Albert, Chopstick.c5);

leftChop.Add(Philosophers.Herbert, Chopstick.c1);

leftChop.Add(Philosophers.Fredrich, Chopstick.c2);

leftChop.Add(Philosophers.Sina, Chopstick.c3);

leftChop.Add(Philosophers.Juan, Chopstick.c4);

// Initialize rightChop

rightChop.Add(Philosophers.Albert, Chopstick.c1);

rightChop.Add(Philosophers.Herbert, Chopstick.c2);

rightChop.Add(Philosophers.Fredrich, Chopstick.c3);

rightChop.Add(Philosophers.Sina, Chopstick.c4);

rightChop.Add(Philosophers.Juan, Chopstick.c5);

}

DiningPhilosopher.cs

(b) Spec Explorer class constructor

Figure 12. CoreASM init rule and its mapping in Spec Explorer

Figure 13 describes the CoreASM derived functions and
their mappings in Spec Explorer.

Figure 14 shows the three rules of the system and their
mappings in Spec Explorer. CoreASM rules StartEating and
StopEating are called only from the PhilosopherProgram
rule. In Spec Explorer, these two rules are enabled at
every transition (see Figure 14(b)). To mimic the CoreASM
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/* ---- Derived Functions ----- */

derived canPickBothChopsticks =

(chopOwner(leftChop(self)) = undef) 

and (chopOwner(rightChop(self)) = undef)

// flip of a coin

derived flip = pick b in BOOLEAN

DiningPhilosopher.casm

(a) CoreASM Derived Functions

public static bool canPickBothChopsticks(Philosophers P)

{

if (!ChopOwner.ContainsKey(leftChop[P]) && 

!ChopOwner.ContainsKey(rightChop[P]))

return true;

else

return false;

}

public static bool flip()

{

return Choice.Some<bool>();

}

DiningPhilosopher.cs

(b) Spec Explorer Functions

Figure 13. CoreASM derived functions and their mappings in Spec
Explorer

behavior, two guard conditions StartEatingEnabled and Sto-
pEatingEnabled are added to protect the execution of rules
StartEating and StopEating respectively (see Figure 14(c)).

VI. ASM TO SPEC EXPLORER MAPPING CHALLENGES
AND LIMITATIONS

At first glance, the mapping seemed to be simple because
Spec Explorer supports the concept of rules with actions.
Later, it appeared that it was a challenging task from many
perspectives:

• The most important challenge was dealing with parallel
updates/rules generating a single next step when there
are no inconsistencies. Indeed, Spec Explorer 2010 is
based on .NET, so a rule method is not different from
an ordinary C# sequential code. Spec Explorer 2010
[7] differs from the original Spec Explorer 2006 [10],
where ASMs were supported directly through AsmL.
As a core difference, ASM parallel updates semantics
are not directly supported in Spec Explorer 2010 but
have to be encoded, if desired.

• A related challenge to encoding parallel updates, is the
detection of inconsistencies in updates. One possible
work-around for this limitation is to design a wrapper
method to check and analyze whether there are any
inconsistencies between the different update statements.

• An ASM-based language, such as CoreASM, may de-
fine a program rule from which all other rules are called
(see Figure 14(a)). Spec Explorer 2010 will fire all rules
whenever their preconditions are satisfied. To imple-
ment such behavior, the called rules can be guarded
with entry and exit boolean conditions (as described in
Figure 14(c) using variables StartEatingEnabled and
StopEatingEnabled).

• The proposed mapping guidelines represent a good and
direct translation of ASM constructs into Spec Explorer.
However, different mapping may also be valid. One
example is to map an ASM initialization rule as a
regular rule, as an event or as a class constructor.

VII. CONCLUSION AND FUTURE WORK

The general goal of this work is to apply advanced model-
based testing techniques to Abstract State Machines. More
precisely, this paper aimed to bridge the gap between ASM-
based languages and the new version of Spec Explorer.
It discussed the core aspects of ASMs and how one can
map them to Spec Explorer 2010, where modeling is done
through a special extension of C# and coordination lan-
guage Cord. The major limitation of the proposed mappings
is the implementation of ASM parallel updates semantics,
which are not directly supported in Spec Explorer 2010.
We believe, this was mainly due to the conceived ease of
adoption by testers, and therefore the parallel update se-
mantics was abandoned because it conflicts with the default
sequential semantics of C#.

As a future work, we are planning to extend this work to
cover more ASM constructs and to investigate the automa-
tion of the proposed guidelines in a target ASM language
such as CoreASM.
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/* ---- Program of Every Philosopher ---- */

rule PhilosopherProgram = {

if hungry(self) and (not eating(self)) then

if canPickBothChopsticks then

StartEating 

else

print self + " is hungry but can't eat."

if (not hungry(self)) and eating(self) then

StopEating

hungry(self) := flip

}  

rule StartEating = {

chopOwner(leftChop(self)) := self

chopOwner(rightChop(self)) := self

eating(self) := true

print self + " starts eating."

}

rule StopEating = {

chopOwner(leftChop(self)) := undef

chopOwner(rightChop(self)) := undef

eating(self) := false

print self + " stops eating."

}

DiningPhilosopher.casm

(a) CoreASM Rules

[Rule]

public static void

PhilosopherProgram(Philosophers P)

{

if ((Hungry[P]) && !Eating[P])

if (canPickBothChopsticks(P))

StartEating(P);

else

Console.WriteLine(P+" is hungry but 

can't eat !");

if (!Hungry[P] && Eating[P])

StopEating(P);

Hungry[P] = flip();

}

[Rule]

public static void

StartEating(Philosophers P)

{

ChopOwner[leftChop[P]] = P;

ChopOwner[rightChop[P]] = P;  

Eating[P] = true;           

Console.WriteLine(P+" starts 

eating."); 

}

[Rule]

public static void StopEating(Philosophers

P)

{

ChopOwner.Remove(leftChop[P]);

ChopOwner.Remove(rightChop[P]);   

Eating[P] = false;            

Console.WriteLine(P+" stops eating.");

}

DiningPhilosopher.cs

(b) Spec Explorer Rules

[Rule]

public static void

PhilosopherProgram(Philosophers P)

{

if ((Hungry[P]) && !Eating[P])

if (canPickBothChopsticks(P))

{

StartEatingEnabled = true;

StartEating(P);

StartEatingEnabled = false;

}

else

Console.WriteLine(P + " is hungry but 

can't eat !");

if (!Hungry[P] && Eating[P])

{

StopEatingEnabled = true;

StopEating(P);

StopEatingEnabled = false;                    

}

Hungry[P] = flip();

}

[Rule]

public static void StartEating(Philosophers P)

{

Condition.IsTrue(StartEatingEnabled);

...

}

[Rule]

public static void StopEating(Philosophers P)

{

Condition.IsTrue(StopEatingEnabled);

...

}

DiningPhilosopher.cs

(c) Spec Explorer Rules Adjusted

Figure 14. CoreASM rules and their mappings in Spec Explorer
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