
Specifying Class Hierarchies and MOOSE Metrics in Z

Younès El Amrani

LCS laboratory, faculty of Sciences

University Mohamed V-Agdal

Rabat, Morocco

e-mail: elamrani@fsr.ac.ma

Abstract—Metrics put into numbers the quality of software’s

design and contribute to reinforce an organization’s software

development competitive advantage. Ultimately, an

organization would gain impressive benefits in terms of

quality, costs, cycle time and productivity in using metrics to

quantify software artifacts. Metrics should be formally defined

to ensure every stakeholder understands what is measurable in

design, and what is actually measured. The formal

specification should be easily formulated. A short and concise

formal model is introduced in this article and is used to specify

the MOOSE metrics suite. The formal specification proposed

provides, for the first time, an unambiguous specification of

the LCOM metric.

Keywords-Metric; Design; Quality; Measure; MOOSE;

LCOM; Z; Formal Specification.

I. INTRODUCTION

Even though the main concern of this article is to
formally specify the MOOSE metrics suite [1], one should
put one’s mind to understand object-oriented terminology at
first place. This article reviews the basic concepts in object-
oriented terminology in the formal specification language Z
[2]. Z provides not only a means for formulating concise
specifications, but also an integrated framework for
conducting proofs. One of the advantages of using pure Z is
that one is unencumbered by many of the complications
evolved in syntax-extensions introduced to reflect object-
oriented concepts.

Section 2 is devoted to related works. Section 3 settles
notation for expressing object-oriented concepts and reviews
those features of object-orientation that will emerge again in
Section 4 later on. Many aspects of object-orientation, of
which there is abundance, are not covered. Only those that
are needed to specify the MOOSE metrics suite [1] are
covered. For fuller coverage, the reader is referred to the
standard reviews published on the subject, some of which are
mentioned in the references, such as [3]. Our main purpose is
to set landmarks that will help readers to navigate through
the concepts behind all object-oriented design metrics.
Section 4 is intended to specify formally the MOOSE
metrics suite [1] using Z. The remaining Section 5 is used to
conclude and to explore future works that extend this
research.

II. RELATED WORKS

It is vitally important to precisely specify the metrics used in

software engineering to gain confidence in obtained

measurements. Such precision is particularly important

since the object-oriented paradigm abounds in terms and

concepts. Introducing formalisms into the paradigm is

important to the establishment of a sound theoretical

foundation for the measurements in software engineering.

The reader is referred to existing surveys, such as [3], in the

combination of the object-oriented paradigm and formal

specification. Three combinations are possible [3]: the first

incarnates in a full transformation into an object-oriented

language, the second proposes extension to the syntax of the

formal language to cope with object-oriented concepts and

necessitates to set up a transformational semantic, and

finally, the third proposes to specify the system in an object-

oriented fashion to keep available the proof system. The

model proposed in the Section 3 belongs to the third

approach.
Most of the third approach’s specifications fall into two

basic styles, depending on whether the properties are
modeled as functions from identities to property values or
modeled by a value in the object state. Hall’s style [4-5] falls
in the latter approach, whereas France’s style [6-7] falls in
the former approach. Both styles specify functional
properties, called methods or function-members in object-
oriented jargon, using schema operation. This common
feature in both styles has tremendous consequences on the
expressiveness of the specifications. The first limitation is
that “there is no way of stating that a subclass must have all
the operations of its superclass” [4] and a second limitation,
in both styles, is that: “if the methods of different subclasses
are in fact different in any way at all, it is not possible to give
them the same name in Z” [4]. In the next section, the model
presented circumvents these two limitations and empowers
the object-oriented paradigm with an expressive formal
model. The MOOSE metrics suite [1] is formally specified to
illustrate the usefulness of the model. The MOOSE metrics
suite [1] is also formally specified using the formal language
Z in [8]; the main difference between our specification and
[8] is that they used a formal specification of the UML [9]
metamodel to express the same set of metrics, whereas in
this article a smaller and more concise model is achieving
more by adding several object-oriented consistency rules in
the inheritance tree specification. However, object-oriented

401Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

consistency rules are not the main target of this article; the
reader is referred to [10] for a devoted article to UML [9]
consistency rules using Z and Hall’s style. The scientific
contribution of this work is to formally define the object-
oriented concepts that could not be defined in other models
[14], notably the concept of virtual methods. The formal
definition of the MOOSE metrics is provided to illustrate
how the problem of a formal definition of some metrics, like
Lack of Cohesion Metric (LCOM), encountered when using
other models [14] is circumvented then overcome in the
model presented in this article.

III. FORMAL SPECIFICATION OF CLASS HIERARCHIES IN Z

At the heart of formal specification in Z is the ability to
introduce new datatypes and to define functions and
operations that manipulate their values. Datatypes can be
introduced as given sets. The model proposed, uses five
given sets: ID is the set of all identifiers, SIGNATURE is
used for method’s signature. NAME is the set of all names,
including methods’ names and variables’ names.
EXPRESSION defines the set of all expressions found in
methods’ bodies. Finally, the given set TYPE is the set of all
variable types in the specification.
[ID, TYPE, SIGNATURE, EXPRESSION, NAME]

Sets can also be defined using Z enumerated sets. Only

one enumerated set is used in this model. It is used to specify
the concept of visibility for properties (methods and
attributes)

Visibility ::public private protected package

Identifiers’ sets for the main set are specified as subsets

of ID: the set of all identifiers introduces earlier.

ClassID, ObjectID, AttributeID, MethodID, PropertyID:  ID


AttributeID MethodID partition PropertyID

The method and attributes are modeled as Cartesian
products. This specification allows different methods to
share the same name (this is commonly called operator’s
overloading)

Method MethodID  Visibility  NAME  SIGNATURE

Attribute AttributeID  Visibility  NAME  TYPE

Variable and attribute are the same in the model: they

define two syntaxic equivalences.

Variable Attribute

VariableID AttributeID

The method’s body is itself modeled, the state variables

is the set of all the variables used in the method’s body.

Whereas methods is the set of all the methods called in a

given implementation. A set of expressions is defined. To

specify a sequential execution, the power set can be

replaced by seq EXPRESSION. Finally, the complexity of

the method is provided as an instance variable.

MethodBody 
variables:  AttributeID

calls:  MethodID

expressions:  EXPRESSION

complexity: 



A small set is defined as a return value for get functions.

It can easily be replaced by a Boolean set.

YesNo ::Yes No

We use a forward declaration for a method that checks
whether a method is abstract in a class ancestry. The
method’s complete definition will be defined later on.

isMethodAbstractInParentClass: MethodID  ClassID  YesNo

The method getMethodID is used to obtain the method’s

ID.

getMethodID: Method  MethodID


 method: Method; methodid: MethodID; visibility: Visibility; name:

NAME;
 signature: SIGNATURE

 method = methodid visibility name signature
  getMethodID method = methodid

Now we can define a class. The defined attributes are

separated from the inherited attributes (iattributes) as well as
the defined methods are separated from the inherited
methods (imethods).

Class
self: ClassID

parents:  ClassID

children:  ClassID

attributes:  Attribute

methods:  Method

iattributes:  Attribute

imethods:  Method

isAbstract: YesNo

implementation:  MethodID  MethodBody

 m: methods getMethodID m  dom implementation isAbstract =

Yes

 m: imethods

 isMethodAbstractInParentClass getMethodID m self = Yes

  getMethodID m  dom implementation isAbstract = Yes



402Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The first predicate states that if a defined method (not

inherited) has no implementation then the class is abstract:

the condition is sufficient. The second predicate states that if

a method is abstract in class’ ancestry and has not been

attributed an implementation, then the class is abstract.

Inheritance is specified with a relation named

inheritFrom. When a class C1 inherits from a class C2, then

the pair (C1,C2) belongs to inheritsFrom. This relation is

sematically equivalent to the relation subSuper used in

Hall’s style.

inheritsFrom: Class  Class


inheritsFrom

 =  C1: Class; C2: Class C1  getClassFromID  C2.parents  C1
C2

Now, the inheritance tree can be formally specified.

InheritanceTree
children: Class   Class

parents: Class   Class

offspring: Class   Class

ancestry: Class   Class


 C: Class

 children C = inheritsFrom  C 
  C  children C

  children C = getClassFromID  C.children 
 C: Class

 parents C = inheritsFrom ~  C 
  C  parents C

  parents C = getClassFromID  C.parents 
 C: Class offspring C = inheritsFrom +  C   C  offspring C

 C: Class ancestry C = inheritsFrom ~ +  C   C  ancestry C



The first and the second predicate use the inheritsFrom

relation to specify the children and the parents of a class. The

third and the fourth predicate define respectively the

offspring as the transitive closure of the relation

inheritsFrom whereas ancestry is the transitive closure of the

inverse relation.

Two utility functions named getAncestryOf and

getOffspringOf are formally introduced now. Both functions

use relation inheritsFrom. This two functions are introduced

now because both are used in the next section introducing the

formal definition of the MOOSE metrics suite [1].

The first utility function getAncestryOf returns the

ancestry of the class provided as input.

The method isMethodAbstractInParentClass, previously

declared, can now be defined (Z does not allow using a

function before declaring it) The definition is provided in the

second predicate following the first predicate which defines

the function getAncestryOf.

getAncestryOf: Class   Class


 C: Class getAncestryOf C = inheritsFrom +  C 
isMethodAbstractInParentClass

 =  mid: MethodID; Cid: ClassID; C: Class; ancestry:  Class

 if C = getClassFromID Cid

  ancestry = getAncestryOf C

  mid    C1: ancestry dom C1.implementation
 then mid Cid  Yes

 else mid Cid  No

The second utility function getOffspringOf returns the

offspring of the class provided as input.

getOffspringOf: Class   Class


 C: Class getOffspringOf C = inheritsFrom ~ +  C 

The formal specification of the MOOSE metrics suite [1]

is now illustrated in Section 4.

IV. FORMAL SPECIFICATION OF THE MOOSE METRICS

SUITE

The MOOSE Metrics Suite defines a set of six metrics:

NOC is the total number of children in a class, DIT

measures the depth of the inheritance tree, LCOM measures

the lack of cohesion in the set of methods in a class, RFC

measures the response for a class, WMC is the weighted

methods per class it measures the complexity of the set of

methods of the class, finally CBO measures the coupling

between object. In the subsequent subsection, we define

formally and precisely this set of metrics.

A. The NOC metric

The NOC metric is defined informally as the number of

children of a given class. Its formal definition is

straightforward in the model introduced in section 3.

NOC: Class  


 C: Class NOC C = # C.children

B. The DIT metric

The DIT metric is defined informally as the longest path

from the input class to the inheritance tree root. Firstly the

formal specification of the set of all paths leading to the root

is provided, secondly the maximum length is specified and

that is DIT.

A function isRoot is used to check if a class is a root. A

class is a root when is has no parent.

isRoot: Class  YesNo


 C: Class if C.parents =  then isRoot C = Yes else

isRoot C = No

403Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The function getClassFromID returns the class
associated to the input ClassID

getClassFromID: ClassID  Class

The function allPathLengthToRoot returns the set of all

paths to root.

allPathLengthToRoot: Class   


 C: Class

 allPathLengthToRoot C

 =  path: seq Class; i: 

 i  1 .. # path

  path 1 = C

  path i  getClassFromID  path i - 1.parents 
  isRoot last path = Yes # path

The function maxi returns the maximum of a set of
Integers.

maxi:    


 I:    n: I 1 m: I m  n maxi I = m

The DIT metric is now straightforward to define
formally: it is the longest path to root.

DIT: Class  


 C: Class DIT C = maxi allPathLengthToRoot C

C. The LCOM metric

The LCOM metric comes also easily, the two sets P and

Q defined in [1] are formally specified as follow:
P: Class   Method  Method

 C: Class

 P C

 =  m1: C.methods; m2: C.methods

 C.implementation getMethodID m1.variables

  C.implementation getMethodID m2.variables = 

 m1 m2

P is the set of all methods couples that do not use any

variable (attribute) in common.

Q: Class   Method  Method

 C: Class

 Q C

 =  m1: C.methods; m2: C.methods

 C.implementation getMethodID m1.variables

  C.implementation getMethodID m2.variables  

 m1 m2

Q is the set of methods couples which implementations

have some attributes in common.

LCOM is equal to zero if there a more couples in Q than

in C, otherwise it is equal to the difference between the two.

LCOM: Class  


 C: Class

 if # Q C  # P C then LCOM C = 0 else LCOM C = # P C - #

Q C

D. The RFC metric

The RFC metric computes how many different calls can

occur as a response to a message received by a class. Of

course defined methods and inherited methods are counted

and added to the number of different calls that occur in

implementations.

RFC: Class  


 C: Class

 RFC C

 = # C.methods + # C.imethods

 + #   mob: MethodBody

 mob  C.implementation  getMethodID  C.methods  
 mob.methods
 + #   imob: MethodBody

 imob  C.implementation  getMethodID  C.imethods  
 imob.methods

E. The WMC metric

The WMC metric computes the sum of methods

complexities. The method complexity is a state variable of

the method’s body. A function that sums all the

complexities of a set of method’s bodies is defined and is

used to compute the complexity of a class.


sumComplexity:  MethodBody  


 B:  MethodBody

 if B = 

 then sumComplexity B = 0
 else  mb: B

 sumComplexity B = mb.complexity + sumComplexity B \

mb

WMC: Class  


 C: Class

  B:  MethodBody B = C.implementation  getMethodID 
C.methods  
 if B = 

 then WMC C = 0

 else  mob: B WMC C = mob.complexity + sumComplexity B \

mob

404Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

F. The CBO metric

The remaining metric from the MOOSE metrics suite [1]

is the CBO metric. This metric computes the coupling of a

class with all the other classes of a provided design.

First, the function useMethods is defined. It has the

value Yes if at least a method of one class uses one methods

of the other class:

useMethods: Class  Class  YesNo


 C1: Class; C2: Class

 if dom C1.implementation  getMethodID  C2.methods   

 then useMethods C1 C2 = Yes

 else useMethods C1 C2 = No

Second, the function useVariables is defined. It has the

value Yes if at least a method of one class uses some

attributes of the other class:

getAttributeID: Attribute  AttributeID


 attribute: Attribute; attributeid: AttributeID; visibility: Visibility;

 name: NAME; type: TYPE

 attribute = attributeid visibility name type
  getAttributeID attribute = attributeid

useVariables: Class  Class  YesNo


 C1: Class; C2: Class

 if   mob: MethodBody

 mob  C1.implementation  getMethodID  C1.methods  
 mob.variables
  getAttributeID  C2.attributes   

 then useVariables C1 C2 = Yes

 else useVariables C1 C2 = No

Then, the coupling between two classes is defined:

CBO1: Class  Class  0 1

 C1: Class; C2: Class

 if useVariables C1 C2 = Yes

  useVariables C2 C1 = Yes

  useMethods C1 C2 = Yes

  useMethods C2 C1 = Yes

 then CBO1 C1 C2 = 1

 else CBO1 C1 C2 = 0

An object oriented design is formally specified as a set

of classes.
Design  Class

And the coupling metric for a class is the sum of all

coupling with other classes except the class itself.

CBO: Class  Design  


 C: Class; design: Design

 if design \ C =   C  design

 then CBO C design = 0

 else  C1: design \ C
 CBO C design = CBO1 C C1 + CBO C design \ C1

All presented specifications have been thoroughly

checked using the Z/EVES [12] system.

V. CONCLUSION AND FUTURE WORK

This article provided a formal specification for object-

oriented concepts and illustrated the power of the proposed

specification by providing a complete and formal definition

of the MOOSE metrics suite [7]. A formal definition of the

MOOD metrics suite [11] and others metrics can be

specified with the model presented in Section 3. Additional

object-oriented consistency rules can be specified by adding

predicates in the inheritance tree. Concepts like the

overriding in object-oriented paradigm can easily be

specified with this framework. There are many object-

oriented concepts that could be clarified and put in a clear

mathematical predicate along the road. All the specifications

presented in this article have been thoroughly tested using

the Z/EVES [12] system. Because of its importance to the

subsequent development of software engineering, the

proposed formal specification of MOOSE metrics should be

extended, in future work, to the set of metrics reviewed in

[13].

[1] Chidamber S.R. and Kemerer, C.F.: A metric suite for Object

Oriented Design. J. Trans. on Soft. Eng. vol. 20. IEEE Press, New
York (1994)

[2] Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall
International, Oxford (1998)

[3] Ruiz-Delgado, A., Pitt, D., Smythe, C.: A Review of Object-oriented
Approaches in Formal Methods. J. Comp. vol. 38, pp. 777-784 (1995)

[4] Hall, J.A.: Specifying and Interpreting Class Hierarchies in Z. In:
Bowen J.P., Hall J.A. (eds.) Cambridge 1994. Z User Workshop, pp.
120-138. Springer, New York (1994)

[5] Hall, J.A.: Using Z as a Specification Calculus for Object-Oriented
Systems. In: Bjorner, D., Hoare, C.A.R., Langmaack, H. (eds.) VDM
and Z, Third International Symposium on VDM Europe Kiel, 1990.
LNCS, vol. 428, pp. 290-318. Springer, Heidelberg (1990)

[6] France, R.B., Bruel, J.M., Larrondo-Petrie, M.M., Shroff, M.:
Exploring the Semantics of UML Type Structures with Z. In:
Proceedings of the Formal Methods for Open Object-based
Distributed Systems. FMOODS, pp. 247-257. Springer, New York
(1997)

[7] Shroff, M., France, R.B.: Towards a Formalization of UML Class
Structures in Z. In: 21th Computer Software and Application.
COMPSAC, pp. 646-651. IEEE Press, New York (1997)

[8] Lamrani, M., El Amrani, Y., Ettouhami, A.: Formal Specification of
Software Design Metrics. In: Sixth International Conference
on Software Engineering Advances. Barcelona (2011)

[9] The Object Management Group: UML 2.3 superstructure
specification. http://www.omg.org/spec/uml/ (09/11/2012)

[10] El Miloudi, K., El Amrani, Y., Ettouhami, A.: An Automated
Translation of UML Class Diagrams into a Formal Specification to

405Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://www.omg.org/spec/uml/

Detect UML Inconsistencies. In: Sixth International Conference
on Software Engineering Advances. Barcelona (2011)

[11] Abreu, F.B.: The MOOD Metrics Set. In: Workshop on Metrics,
ECOOP. Aarhus (1995)

[12] 12. Saaltink, M.: The Z/EVES System. In: Bowen, J.P., Hinchey,
M.G., Hill, D. (eds.) Ten International Conference of Z Users
Reading 1997. LNCS, vol. 1212, pp. 72-85. Springer, Heidelberg
(1990)

[13] Xenos, M., Stavrinoudis, D., Zikouli, K., Christodoulakis, D.:

Object Oriented Metrics: A Survey. In: Proceedings of the

Federation of European Software Measurement Association.

FESMA 2000. Madrid (2000)

[14] Wieringa, R.: A Survey of Structured and Object-Oriented

Software Specification Methods and Techniques. In: ACM

Computing Surveys. Vol. 30, No. 4, pp. 459-527, New-York

(1998) doi=10.1145/299917.299919

406Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

