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Abstract—Metrics put into numbers the quality of software’s 

design and contribute to reinforce an organization’s software 

development competitive advantage. Ultimately, an 

organization would gain impressive benefits in terms of 

quality, costs, cycle time and productivity in using metrics to 

quantify software artifacts. Metrics should be formally defined 

to ensure every stakeholder understands what is measurable in 

design, and what is actually measured. The formal 

specification should be easily formulated. A short and concise 

formal model is introduced in this article and is used to specify 

the MOOSE metrics suite. The formal specification proposed 

provides, for the first time, an unambiguous specification of 

the LCOM metric. 
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I.  INTRODUCTION 

Even though the main concern of this article is to 
formally specify the MOOSE metrics suite [1], one should 
put one’s mind to understand object-oriented terminology at 
first place.  This article reviews the basic concepts in object-
oriented terminology in the formal specification language Z 
[2]. Z provides not only a means for formulating concise 
specifications, but also an integrated framework for 
conducting proofs. One of the advantages of using pure Z is 
that one is unencumbered by many of the complications 
evolved in syntax-extensions introduced to reflect object-
oriented concepts. 

Section 2 is devoted to related works. Section 3 settles 
notation for expressing object-oriented concepts and reviews 
those features of object-orientation that will emerge again in 
Section 4 later on. Many aspects of object-orientation, of 
which there is abundance, are not covered. Only those that 
are needed to specify the MOOSE metrics suite [1] are 
covered. For fuller coverage, the reader is referred to the 
standard reviews published on the subject, some of which are 
mentioned in the references, such as [3]. Our main purpose is 
to set landmarks that will help readers to navigate through 
the concepts behind all object-oriented design metrics. 
Section 4 is intended to specify formally the MOOSE 
metrics suite [1] using Z. The remaining Section 5 is used to 
conclude and to explore future works that extend this 
research. 

II. RELATED WORKS 

It is vitally important to precisely specify the metrics used in 

software engineering to gain confidence in obtained 

measurements. Such precision is particularly important 

since the object-oriented paradigm abounds in terms and 

concepts. Introducing formalisms into the paradigm is 

important to the establishment of a sound theoretical 

foundation for the measurements in software engineering. 

The reader is referred to existing surveys, such as [3], in the 

combination of the object-oriented paradigm and formal 

specification. Three combinations are possible [3]: the first 

incarnates in a full transformation into an object-oriented 

language, the second proposes extension to the syntax of the 

formal language to cope with object-oriented concepts and 

necessitates to set up a transformational semantic, and 

finally, the third proposes to specify the system in an object-

oriented fashion to keep available the proof system. The 

model proposed in the Section 3 belongs to the third 

approach.  
Most of the third approach’s specifications fall into two 

basic styles, depending on whether the properties are 
modeled as functions from identities to property values or 
modeled by a value in the object state. Hall’s style [4-5] falls 
in the latter approach, whereas France’s style [6-7] falls in 
the former approach. Both styles specify functional 
properties, called methods or function-members in object-
oriented jargon, using schema operation. This common 
feature in both styles has tremendous consequences on the 
expressiveness of the specifications. The first limitation is 
that “there is no way of stating that a subclass must have all 
the operations of its superclass” [4] and a second limitation, 
in both styles, is that: “if the methods of different subclasses 
are in fact different in any way at all, it is not possible to give 
them the same name in Z” [4]. In the next section, the model 
presented circumvents these two limitations and empowers 
the object-oriented paradigm with an expressive formal 
model. The MOOSE metrics suite [1] is formally specified to 
illustrate the usefulness of the model. The MOOSE metrics 
suite [1] is also formally specified using the formal language 
Z in [8]; the main difference between our specification and 
[8] is that they used a formal specification of the UML [9] 
metamodel to express the same set of metrics, whereas in 
this article a smaller and more concise model is achieving 
more by adding several object-oriented consistency rules in 
the inheritance tree specification. However, object-oriented 
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consistency rules are not the main target of this article; the 
reader is referred to [10] for a devoted article to UML [9] 
consistency rules using Z and Hall’s style. The scientific 
contribution of this work is to formally define the object-
oriented concepts that could not be defined in other models 
[14], notably the concept of virtual methods. The formal 
definition of the MOOSE metrics is provided to illustrate 
how the problem of a formal definition of some metrics, like 
Lack of Cohesion Metric (LCOM), encountered when using 
other models [14] is circumvented then overcome in the 
model presented in this article. 

III. FORMAL SPECIFICATION OF CLASS HIERARCHIES IN Z 

At the heart of formal specification in Z is the ability to 
introduce new datatypes and to define functions and 
operations that manipulate their values. Datatypes can be 
introduced as given sets. The model proposed, uses five 
given sets: ID is the set of all identifiers, SIGNATURE is 
used for method’s signature. NAME is the set of all names, 
including methods’ names and variables’ names. 
EXPRESSION defines the set of all expressions found in 
methods’ bodies. Finally, the given set TYPE is the set of all 
variable types in the specification. 
[ID, TYPE, SIGNATURE, EXPRESSION, NAME] 

 
Sets can also be defined using Z enumerated sets. Only 

one enumerated set is used in this model. It is used to specify 
the concept of visibility for properties (methods and 
attributes) 

 
Visibility ::public private protected package 

 
Identifiers’ sets for the main set are specified as subsets 

of ID: the set of all identifiers introduces earlier. 
 

ClassID, ObjectID, AttributeID, MethodID, PropertyID:  ID 


AttributeID MethodID partition PropertyID 

 

The method and attributes are modeled as Cartesian 
products. This specification allows different methods to 
share the same name (this is commonly called operator’s 
overloading) 

 
Method MethodID  Visibility  NAME  SIGNATURE 

Attribute AttributeID  Visibility  NAME  TYPE 

 

Variable and attribute are the same in the model: they 

define two syntaxic equivalences.  

 
Variable Attribute 

VariableID AttributeID 

 

The method’s body is itself modeled, the state variables 

is the set of all the variables used in the method’s body. 

Whereas methods is the set of all the methods called in a 

given implementation. A set of expressions is defined. To 

specify a sequential execution, the power set can be 

replaced by  seq EXPRESSION. Finally, the complexity of 

the method is provided as an instance variable. 

 
MethodBody 
variables:  AttributeID 

calls:  MethodID 

expressions:  EXPRESSION 

complexity:  


 

A small set is defined as a return value for get functions. 

It can easily be replaced by a Boolean set. 
 

YesNo ::Yes No 

 

We use a forward declaration for a method that checks 
whether a method is abstract in a class ancestry. The 
method’s complete definition will be defined later on.  

 
isMethodAbstractInParentClass: MethodID  ClassID  YesNo 

 
The method getMethodID is used to obtain the method’s 

ID. 
 

getMethodID: Method  MethodID 


 method: Method; methodid: MethodID; visibility: Visibility; name: 

NAME; 
  signature: SIGNATURE 

    method = methodid visibility name signature
       getMethodID method = methodid 

 
Now we can define a class. The defined attributes are 

separated from the inherited attributes (iattributes) as well as 
the defined methods are separated from the inherited 
methods (imethods). 

 
Class
self: ClassID 

parents:  ClassID 

children:  ClassID 

attributes:  Attribute 

methods:  Method 

iattributes:  Attribute 

imethods:  Method 

isAbstract: YesNo 

implementation:  MethodID  MethodBody

 m: methods getMethodID m  dom implementation isAbstract = 

Yes 

 m: imethods 

    isMethodAbstractInParentClass getMethodID m self = Yes 

       getMethodID m  dom implementation isAbstract = Yes 


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The first predicate states that if a defined method (not 

inherited) has no implementation then the class is abstract: 

the condition is sufficient. The second predicate states that if 

a method is abstract in class’ ancestry and has not been 

attributed an implementation, then the class is abstract. 

Inheritance is specified with a relation named 

inheritFrom. When a class C1 inherits from a class C2, then 

the pair (C1,C2) belongs to inheritsFrom. This relation is 

sematically equivalent to the relation subSuper used in 

Hall’s style. 

 
inheritsFrom: Class  Class 


inheritsFrom 

  =  C1: Class; C2: Class C1  getClassFromID  C2.parents  C1 
C2
 

Now, the inheritance tree can be formally specified.  

 
InheritanceTree
children: Class   Class 

parents: Class   Class 

offspring: Class   Class 

ancestry: Class   Class 


 C: Class 

    children C = inheritsFrom  C  
       C  children C 

       children C = getClassFromID  C.children  
 C: Class 

    parents C = inheritsFrom ~  C  
       C  parents C 

       parents C = getClassFromID  C.parents  
 C: Class offspring C = inheritsFrom +  C   C  offspring C 

 C: Class ancestry C = inheritsFrom ~ +  C   C  ancestry C 


 

The first and the second predicate use the inheritsFrom 

relation to specify the children and the parents of a class. The 

third and the fourth predicate define respectively the 

offspring as the transitive closure of the relation 

inheritsFrom whereas ancestry is the transitive closure of the 

inverse relation.  

Two utility functions named getAncestryOf and 

getOffspringOf are formally introduced now. Both functions 

use relation inheritsFrom. This two functions are introduced 

now because both are used in the next section introducing the 

formal definition of the MOOSE metrics suite [1].  

The first utility function getAncestryOf returns the 

ancestry of the class provided as input.  

The method isMethodAbstractInParentClass, previously 

declared, can now be defined (Z does not allow using a 

function before declaring it) The definition is provided in the 

second predicate following the first predicate which defines 

the function getAncestryOf. 

 

getAncestryOf: Class   Class 


 C: Class getAncestryOf C = inheritsFrom +  C  
isMethodAbstractInParentClass 

  =  mid: MethodID; Cid: ClassID; C: Class; ancestry:  Class 

         if C = getClassFromID Cid 

               ancestry = getAncestryOf C 

               mid    C1: ancestry dom C1.implementation
           then mid Cid  Yes 

           else mid Cid  No
 

The second utility function getOffspringOf returns the 

offspring of the class provided as input. 
 

getOffspringOf: Class   Class 


 C: Class getOffspringOf C = inheritsFrom ~ +  C  

 
The formal specification of the MOOSE metrics suite [1] 

is now illustrated in Section 4. 

IV. FORMAL SPECIFICATION OF THE MOOSE METRICS 

SUITE 

The MOOSE Metrics Suite defines a set of six metrics: 

NOC is the total number of children in a class, DIT 

measures the depth of the inheritance tree, LCOM measures 

the lack of cohesion in the set of methods in a class, RFC 

measures the response for a class, WMC is the weighted 

methods per class it measures the complexity of the set of 

methods of the class, finally CBO measures the coupling 

between object. In the subsequent subsection, we define 

formally and precisely this set of metrics. 

A. The NOC metric 

The NOC metric is defined informally as the number of 

children of a given class. Its formal definition is 

straightforward in the model introduced in section 3. 

 

NOC: Class   


 C: Class NOC C = # C.children 

 

B. The DIT metric 

The DIT metric is defined informally as the longest path 

from the input class to the inheritance tree root. Firstly the 

formal specification of the set of all paths leading to the root 

is provided, secondly the maximum length is specified and 

that is DIT.  

A function isRoot is used to check if a class is a root. A 

class is a root when is has no parent. 

 

isRoot: Class  YesNo 


 C: Class if C.parents =  then isRoot C = Yes else 

isRoot C = No 
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The function getClassFromID returns the class 
associated to the input ClassID 

 
getClassFromID: ClassID  Class 

 
The function allPathLengthToRoot returns the set of all 

paths to root. 
 

allPathLengthToRoot: Class    


 C: Class 

    allPathLengthToRoot C 

        =  path: seq Class; i:  

               i  1 .. # path 

                  path 1 = C 

                  path i  getClassFromID  path i - 1.parents  
                  isRoot last path = Yes # path
 

The function maxi returns the maximum of a set of 
Integers. 

 
maxi:     


 I:    n: I 1 m: I m  n maxi I = m 

 

The DIT metric is now straightforward to define 
formally: it is the longest path to root. 
 

DIT: Class   


 C: Class DIT C = maxi allPathLengthToRoot C
 

 

C. The LCOM metric 

The LCOM metric comes also easily, the two sets P and 

Q defined in [1] are formally specified as follow: 
P: Class   Method  Method

 C: Class 

    P C 

        =  m1: C.methods; m2: C.methods 

               C.implementation getMethodID m1.variables 

                    C.implementation getMethodID m2.variables =  

               m1 m2
 

P is the set of all methods couples that do not use any 

variable (attribute) in common. 

 
Q: Class   Method  Method

 C: Class 

    Q C 

        =  m1: C.methods; m2: C.methods 

               C.implementation getMethodID m1.variables 

                    C.implementation getMethodID m2.variables   

               m1 m2
 

Q is the set of methods couples which implementations 

have some attributes in common. 

LCOM is equal to zero if there a more couples in Q than 

in C, otherwise it is equal to the difference between the two. 

 
LCOM: Class   


 C: Class 

    if # Q C  # P C then LCOM C = 0 else LCOM C = # P C - # 

Q C
 

D. The RFC metric 

The RFC metric computes how many different calls can 

occur as a response to a message received by a class. Of 

course defined methods and inherited methods are counted 

and added to the number of different calls that occur in 

implementations.  

 
RFC: Class   


 C: Class 

    RFC C 

        = # C.methods + # C.imethods 

          + #   mob: MethodBody 

                      mob  C.implementation  getMethodID  C.methods   
                      mob.methods
          + #   imob: MethodBody 

                      imob  C.implementation  getMethodID  C.imethods   
                      imob.methods
 

E. The WMC metric 

The WMC metric computes the sum of methods 

complexities. The method complexity is a state variable of 

the method’s body. A function that sums all the 

complexities of a set of method’s bodies is defined and is 

used to compute the complexity of a class. 


sumComplexity:  MethodBody   


 B:  MethodBody 

    if B =  

      then sumComplexity B = 0 
      else  mb: B 

               sumComplexity B = mb.complexity + sumComplexity B \ 

mb
 
WMC: Class   


 C: Class 

     B:  MethodBody B = C.implementation  getMethodID  
C.methods   
          if B =  

            then WMC C = 0 

            else  mob: B WMC C = mob.complexity + sumComplexity B \ 

mob
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F. The CBO metric 

The remaining metric from the MOOSE metrics suite [1] 

is the CBO metric. This metric computes the coupling of a 

class with all the other classes of a provided design. 

First, the function useMethods is defined. It has the 

value Yes if at least a method of one class uses one methods 

of the other class: 

 
useMethods: Class  Class  YesNo 


 C1: Class; C2: Class 

    if dom C1.implementation  getMethodID  C2.methods    

      then useMethods C1 C2 = Yes 

      else useMethods C1 C2 = No 

 

Second, the function useVariables is defined. It has the 

value Yes if at least a method of one class uses some 

attributes of the other class: 

 
getAttributeID: Attribute  AttributeID 


 attribute: Attribute; attributeid: AttributeID; visibility: Visibility; 

  name: NAME; type: TYPE 

    attribute = attributeid visibility name type
       getAttributeID attribute = attributeid 

 
 
useVariables: Class  Class  YesNo 


 C1: Class; C2: Class 

    if   mob: MethodBody 

                mob  C1.implementation  getMethodID  C1.methods   
                mob.variables
            getAttributeID  C2.attributes    

      then useVariables C1 C2 = Yes 

      else useVariables C1 C2 = No  

 

Then, the coupling between two classes is defined: 

 
CBO1: Class  Class  0 1

 C1: Class; C2: Class 

    if useVariables C1 C2 = Yes 

          useVariables C2 C1 = Yes 

          useMethods C1 C2 = Yes 

          useMethods C2 C1 = Yes 

      then CBO1 C1 C2 = 1 

      else CBO1 C1 C2 = 0 

 

An object oriented design is formally specified as a set 

of classes. 
Design  Class 

 

And the coupling metric for a class is the sum of all 

coupling with other classes except the class itself. 

CBO: Class  Design   


 C: Class; design: Design 

    if design \ C =   C  design 

      then CBO C design = 0 

      else  C1: design \ C
               CBO C design = CBO1 C C1 + CBO C design \ C1
 

All presented specifications have been thoroughly 

checked using the Z/EVES [12] system. 

V. CONCLUSION AND FUTURE WORK 

This article provided a formal specification for object-

oriented concepts and illustrated the power of the proposed 

specification by providing a complete and formal definition 

of the MOOSE metrics suite [7]. A formal definition of the 

MOOD metrics suite [11] and others metrics can be 

specified with the model presented in Section 3.  Additional 

object-oriented consistency rules can be specified by adding 

predicates in the inheritance tree. Concepts like the 

overriding in object-oriented paradigm can easily be 

specified with this framework. There are many object-

oriented concepts that could be clarified and put in a clear 

mathematical predicate along the road. All the specifications 

presented in this article have been thoroughly tested using 

the Z/EVES [12] system. Because of its importance to the 

subsequent development of software engineering, the 

proposed formal specification of MOOSE metrics should be 

extended, in future work, to the set of metrics reviewed in 

[13]. 
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