ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Structuring Software Reusability Metrics
for Component-Based Software Development

Danail Hristov, Oliver Hummel, Mahmudul Huq, Werrdanjic

Software Engineering Group

University of
Mannheim,

Mannheim
Germany

e-mail: {dhristov, hummel, shuq, janjic}@mail.uniamnheim.de

Abstract — The idea of reusing software components has been
present in software engineering for several decadeélthough
the software industry developed massively in recerdecades,
component reuse is still facing numerous challengeand
lacking adoption by practitioners. One of the impednents
preventing efficient and effective reuse is the ditulty to
determine which artifacts are best suited to solve particular
problem in a given context and how easy it will beo reuse
them there. So far, no clear framework is describig the
reusability of software and structuring appropriate metrics
that can be found in literature. Nevertheless, a gml under-
standing of reusability as well as adequate and eapgo use
metrics for quantification of reusability are necesary to
simplify and accelerate the adoption of componenteuse in
software development. Thus, we propose an initialersion of
such a framework intended to structure existing resability
metrics for component-based software development & we
have collected for this paper.

Keywords- Software Reusability; Software Reusability
Metrics; Component-Based Software Development.

l. INTRODUCTION

The idea of software reuse [1] is not new: its soddte
back to 1968 when Mcllroy has presented his senviak
on reusable components [2] at the NATO Softwar
Engineering Conference in Garmisch, Germany. Howeve
there has only been limited practical experiencth weuse
until the late 1980s, when large-scale reuse prograere
adopted by companies, mainly in the US (e.g., by i&d

Hewlett Packard [3]) and Japan (e.g., by Toshibd an

Fujitsu); these efforts have also pushed forwaedrésearch
in the 1990s, and in turn created a growing inteies
systematic software reuse and reuse programs
organizations at that time [4]. After the turn offiet
millenium, widely available broadband internet cections
and the raise of the open source movement havelyclea
created opportunities for broader inter-organizetioreuse

f

[5] and resulted in a huge amount of source codég an

components that is freely available [6]. Even theently
rising popularity of agile methodologies and preesi has
created numerous interesting ideas on how to faiglreuse
in that context [7,8]. However, as stated by Fradms Kang,
there are still numerous open issues to be sol@d-[
including a better understanding of reusability.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Before being able to go into more details on the
challenges tackled in this paper, we have to ¢laxifiat is
not in its scope since reuse is a broad conceptctranot
only be applied on components, but also on humeother
artifacts necessary for software development. Sutifacts
are, for example, design structures [3,11,12], itectures
[1,11,12], or even documentation [12]. However, tbsults
presented in this paper will focus on software congmts, in
both source code and binary form or in other wamdshe
white- and black-box reuse of these software bugdi
blocks. In white-box reuse, the source code islaviai to the
developer and can be changed before it is intedjiate a
new context, while in black-box reuse this is e tase and
therefore only a component’s interface (contairtmgpublic
methods and attributes) and the documentation isibles
[13]. Services in Service Oriented Architecture®©£S$ [14]
are conceptually certainly similar, but researchsemnvice
reusability could not be considered in this puliimadue to
space limitations. Black-box reuse probably teniebe the
more facilitated approach in the past [15], howethes wide
availability of search engines for open sourcevearfe [7]
has certainly brought the possibility of white-b@xise back
into the center of interest .

It has been observed that software reuse resesarathier
scattered than focused and consecutive [9]. Iisis @vident

&hat — though the software industry has developassiely

in last decades — the paradigm of component reustilli
facing numerous issues and hence lacking adoptiom f
practitioners. One of the central impediments {hatvent
efficient and effective reuse today is the difftgulto
determine which artifacts are best suitable toes@vparti-
cular problem in a certain context and how easyilitbe to
reuse them. In other words, no comprehensive frarew

(Uescribing the reusability of software and struogr

appropriate metrics exists in literature so farvéitheless, a
good understanding of software reusability as wedl
adequate and easy to use metrics for its quariificare
crucial in order to facilitate the adoption of reus software
development. The focus of the research presentetthisn
paper is on the reusability of software componéntsn ad-
hoc reuse scenario. By “ad-hoc reuse scenario” e@nnthe
spontaneous decision of a developer to use a coenpon
repository or search engine [7], indexing e.g. openrce
software not specifically built for being reused,drder to
search for a component that might match the given
requirements. This type of software reuse is prigbabe of

421

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the most promising that does not require largemrampf

An important prerequisite for every kind of compohe

investments as for example the creation of a soffwa reuse is d‘repository for storing reusable assets, plus an

product line [17] or a planned reuse program [4gvéN-
theless, it is likely that the insights gained frthis work can
be transferred to the latter areas where a me&mujadging
the reusability of software artifacts is also intpat.

Hence, in this paper we are distilling an initi@rhework
for structuring software reusability metrics in qoonent-

interface for searching the repository[12]. In case of
planned reuse, companies need to implement andtaimin
an internal repository of reusable components ¢oesthe
assets produced and keep them ready for reuseH@8hd-
hoc reuse, the components are usually stored inbécly
available library, accessible over the Internet éof. [7] for

based software development based on a comprehensiaa overview). However, the issue with the efficiegttieval

survey of metrics proposed in the literature. éhainder is
organized in the following order: in Section Il @iscuss the
general concept of software reusability before wa to the
current state of the art in reusability metricSSiection lll. In
Section IV we propose our novel software reusabilit
framework for the context of ad-hoc reuse approsciibe
paper is finally concluded with a summary of itsdings and
an outlook on potential future work in Section V.

IIl. REUSE& REUSABILITY

Literature provides a significant number of deforits for
software reuse; probably the most popular one whfighed
by Krueger [1] who has defined software reuse asude of
“existing software artifacts during the constructiof a new

of components suitable for reuse is still not caatgly
solved. However, our screening of literature ditl umacover
sufficient empirical evidence of practitioners and
organizations actually experiencing the expectedefis.
Therefore, it should not be concluded that the mere
availability of prerequisites for reuse alone wiltrease pro-
ductivity and quality in software development athgaThe
characteristics of the available artifacts alsoehtavbe taken
into consideration.

As for software reuse, a large number of defingidor
software reusabilitycan be found in existing literature, e.g.,
Kim and Stohr [19] have defined software reusabdgis“a
measure for the ease with which the resource carebised
in a new situation” It is important to distinguish between

software system”Software reuse can be embraced in severgoftware reuse and reusability as the former isded on the

different ways: on the one hand, it can be pradtite a
structured and controlled manner inside organiratiohere
software artifacts are systematically designeddase when
created according to a software reusability po[itg]. In
this case, the artifacts can be usually reused irwith
particular domain, which is nowadays well-known the
paradigm of software product line engineering [4)8]is
based on the presumption that most software systeensot
new but rather a variation (or improvement) of athe exis-
ting systems in a domain [9]. For such softwaresability
policies to succeed, they have to be systematicdi8 well
planned. Thus, such a scenario of reuse is alsarkras
planned reuse which indicates that it requires roptf
investments by the organization implementing itr fo
example, designing the software for potential fetoeuse,
establishment of libraries of reusable componests,
[3,19]. Such systematic software reuse has beewrehtal
topic of a substantial amount of research papess €ay.,
[12]).

Another interesting scenario is ad-hoc reuse [3, b9
this case, the artifacts for reuse are taken fr@megc
libraries or search engines. This usually happemsao
individual basis (i.e., per developer) and not peject or
company. Here, the role of the libraries and red#iie
mechanisms is of high importance [20]. With the fgewth
of the World Wide Web and the possibility to staed
retrieve large amounts of data online, it has becomch
easier to distribute reusable assets over thenkttezven
between organizations [21,22]. According to the yoad
existing literature, practicing this kind of reusesoftware
development can bring substantial benefits to argéions
as well as the developers [9,19,23,24]. The mostelyi
expressed and discussed benefits of reuse aredaqivity
and quality increase, easier maintainability andhér
portability.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

practice of reuse itself while the latter tries rtake the
potential of artifacts for being reused measureabtzulin
[25] has stated in this context that knowing wheaikes
software reusable can help us learn how to build/ ne
reusable components and to identify potentiallyfuls@nd
thus reusable) modules in existing programs. Tteealiure
lists several characteristics of software, whiah lzelieved to
determine reusability and are therefore repeateddgrenced

in research papers [8,13,20,25]. Such factors are:
adaptability, complexity, composability, maintairigp,
modularity, portability, programming language, dtyal

reliability, retrievability, size and understandéii Further-
more, the reusability of a component in a certantext
should be comparable to the reusability of othpotentially
functionally equivalent — software components ia #ame
context. However, most of the existing researchather
incoherent and only covers one or a few of thepeds so
that to our knowledge there is no publication thed tried to
bring all these aspects together in a single model.

lll. EXISTING REUSABILITY DEFINITONS

In order to get an impression of reusability deioms
available in the literature, we performed a syst@na
literature review that identified a number of deg
proposing quantitative metrics for assessing theakility of
software. For that purpose, Google Scholar, |IEEEoDX)
ACM Digital Library, Citeseer and Springer Link wveer
searched with the keywords “software reusabilityitles
and abstracts of delivered publications were reagkrder to
determine whether they could contribute to the afmour
study, which resulted in a total set of 73 papbet tvere
deemed worthwhile to be more closely read and iigeged.
In general, we found that some of the metrics desdrwere
newly developed solely for the purpose of measuring
reusability, while others were modified or adapteom

422

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

other areas (such as maintainability measuremawt)have methods in the component that provide commonality
not been initially developed with reusability inmdi For the functions in the its domain, and the total numdanterface
sake of practicality, we have separated the resiltthis methods in the component. The more commonalitytions
survey, i.e., the discovered metrics, into two gaties: one a component provides, its reusability is considenegher.
for white-box (allowing to look into the code of eth Additionally to this metric, Cho et al. have suggesmetrics
components) and one for black-box (where usuallyelye for Component Customizability. They state that fifet
interface and documentation of a component arelala) possibility to customize a component is not givéme
reusability. This separation helps to distinguisé different reusability is low, since developers cannot adaptfonents
nature of metrics for these two paradigms. Withiese two for their purpose. Customizability is determined the
categories that are presented in the following twametric Component Variability, which is defined & tratio
subsections, the results of previous researchrasepted in of the number of customization methods to all méshim a
chronological order to illustrate the development o component’sinterfaces.
reusability measurement. Due to limited space, are anly Also in 2001 Etzkorn et al. [33] have published adel
briefly describe most of these contributions; theeiested capturing reusability of object-oriented legacy teafe.
reader is referred to the original sources for mietailed They suggest a comprehensive metric suite covering
information. different aspects of the reusability of individaddsses. It is

. . defined as the sum of metrics for Modularity, Ifdee Size,
A. White-Box Reusability Documentation and Complexity of a class, each égual

As early as in 1991, Caldiera and Basili [26] haveweighted.
defined three main (but still relatively abstraatiibutes for Four years later, Bhattacharya and Perry [34] Isaated
assessing the reusability of components — reusés,costhat the usefulness of a software component depantls
functional usefulness and quality of componentseseéh only on its internal characteristics, but also be tontext in
attributes were determined by factors, which areadly or which it should be integrated. Therefore, they ssted
indirectly measured by classic software metricshsas reusability metrics measuring how well a comporiggiin a
Halstead’s Volume [27], McCabe’s Cyclomatic Comjiex predefined architectural context. The prerequisitthat the
[28] or other metrics such as Regularity and Reusgpotentially reusable) components are adapted te th
Frequency [26]. Volume was used in order to esémta architectural description of the target system,civlincludes
important attributes, namely reuse costs and qualit a description of the services needed by the sysiéray
components. The Cyclomatic Complexity was usedss®ss have proposed two metrics for measuring software
all three reusability attributes introduced befoRegularity reusability, namely Architecture Compliance and @om
was used to assess the former two attributes, vikdlese nent Characteristics. The Architecture Complianagrim is
Frequency was merely used to assess functionallnses. measured by three different sub-metrics: Architedtu

Seven vyears later, Barnard [29] has suggested @omponent Service Compliance Coefficient, Architesit
composite metric for reusability of object-orienteaftware, Component Attribute Compliance Coefficient and Asch
which was derived from two empirical experimentss A tectural Component Behavior Compliance Coefficieft.
foundation, again a variety of readily availableftware higher value for the Architecture Compliance metric
metrics have been used. Based on the experimémise t indicates a more reusable component in a giveregarithe
metrics that were related best to reusability h&een Component Characteristics metric measures the ¢ancgl
selected (with corresponding confidence intervadls)order of a component with regards to the data and funatity
to come up with this relation, classes from C+walJand requirements of all attributes and services inattuhitectural
Eiffel libraries have been considered in the experits, description.
assuming that classes in libraries are more remsabl |n 2008, Gui and Scott [35] have suggested revised
Barnard's metric suite is focused on the Simplicity formulas for established coupling and cohesion ie®tin
Genericity and Understandability of classes’ irde€s, order to measure the reusability of Java compondittsy
methods and attributes. are proposing to measure to which extent classesaupled

Around the same time, Mao et al. [30] have invesd together and to which extend their methods are siobe
the effects of inheritance, coupling and complexity the Additionally, they have considered transitive relaships
reusability of classes in object-oriented softwdi@o years and finally defined two metrics for measuring saftes
later, Lee and Chang [31] proposed another setetfics for reusability, based on their own versions of Couplamd
measuring the reusability and maintainability ofjeab Cohesion. The authors admit that additional deteants of
oriented software. The determining criteria heree ara components’ reusability exist; however they am n
complexity and modularity. The corresponding metrize considered in their paper. Only very recently, Gild Sikka
Internal and External Class Complexity (for compii@x [36] have proposed five new metrics for better ssivg
and Class Cohesion and Class Coupling (for mody)ari reuse and reusability in object-oriented softwaevetbp-

In 2001, Cho et al. [32] have suggested metrics foment. The metrics are Breadth of Inheritance Tkéethod
component complexity, customizability, reusabilignd Reuse per Inheritance Relation, Attribute Reuse Per
reuse. Component Reusability is determined by thenheritance Relation, Generality of Class and Reuse
functionality that the software components providetheir Probability.
domain: it is the ratio between the number of iaie

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 423

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Black-Box Reusability

To our knowledge, the first set of metrics for meag
the reusability of black-box components was progolsg
Washizaki et al. [16] in 2003. They proposed to sider
three main factors that are expected to affectatslity:
understandability, adaptability and portability. rdhigh an
empirical analysis of Java Beans components, thieoes
have established thresholds for each proposed anétor
measuring the overall understandability, the metric

characteristics are sufficient. In other words,rehés no
common understanding of what software reusabitityand
how it can be best measured, yet.
Furthermore, as can be seen in the metric sets we

presented, they mainly focus on the technical cteristics
of software, which may be inconsistent with theestptions
of practitioners. Therefore, a more holistic apptoao
defining and measuring reusability is needed. Wenith to
address these issues in current research in thesaetion.

Existence of Meta-Information and Rate of Componenfollowing the Goal-Question-Metric (GQM) approad®],

Rate of
adaptability,

Observability are defined.

Customizability measures while Self-

Component@n initial proposal for a more structured and azjty

justified reusability model will be developed. Téby, the

Completeness of Component's Return Value and Selinderstanding of software reusability can be impdyv

Completeness of Parameter
portability.

In 2004, Boxall et al. [37] have proposed that theler-
standability of a software component’s interface isajor
quality factor for determining reusability. To maes this,
they have defined a set of metrics, including valsech as
Interface Size, Identifier Length or Argument Caoulhe
authors have selected 12 components from diffexafittvare
systems in C and C++ to empirically validate theitrics
and developed simple tools to automatically cateutaem.
The derived values have (merely) been comparechstgthie
expert knowledge of the authors judging the relibalnf
these components. Consequently, the authors hatesl $hat
more empirical research is necessary.

Again one year later, Rotaru et al. [24] have idiect
adaptability, composability and complexity of sodte
components as determinants for their measure shlglity.
The composability of a component is determined by t
complexity of its interface. Adaptability is theilily of a
component to handle environmental changes. Althoagh
preliminary metric specification is given for dfiree aspects,
the authors have stated that an empirical calimais
necessary to better understand its effects.

Only recently (in 2009), Sharma et al. [38] havepased
an Artificial Neural Network (ANN) approach to assethe

Component’s

measui¥

hich on the one hand should encourage resear¢bers
invest more effort in empirically validating thiar(d similar)
models and on the other hand should give practitethe
confidence they need for measuring reusabilityr&al life”.

IV. STRUCTURINGREUSABILITY METRICS

In this section, the reusability requirements foftwsare
components will be explained and structured inusability
requirements model. For this purpose the well-aecep
Goal-Question-Metric (GQM) paradigm [39], for deng
appropriate measurements and metrics for software
reusability will be used. Following this approache first
step is to define the goal of this research warkcain be
expressed as follows:

Improve the reusability assessment of software
components in an ad-hoc software reuse scenarin fitve
developer’s point of view.

The purpose here is improve the issue iseusability
assessmentthe objects aresoftware componentand the
viewpoint is that of the developer. Another elemeriat of
the context §d-hoc reusgis added to the goal definition. It
is not explicitly defined in the GQM approach, htitis
important for the research presented in this papdrwill be
relevant for the further elaboration. The next dtepseen in
the GQM approach is to define the questions resufiiom

reusability of software components. The authors ehavthe goal stated above. They can be expressedassol

considered determining reusability by four factors:
Customizability, Interface Complexity, Portabilityand
Understandability. However, only customizability ssguan-
titatively evaluated so far. The other three faxt@re only to
be assessed qualitatively, i.e. merely ranked oelative
scale by experts.

C. Open Issues

which are the requirements to the software
components that can determine their reusability in
an ad-hoc reuse scenario?

which are the characteristics of the software
component that determine their reusability in an ad
hoc reuse scenario?

Obviously, these questions are not trivial and sit niot
possible to give an answer to them directly through

For the metric suites reviewed and presented is thiidentifying the appropriate metrics and hence a emor

section so far, the most evident shortcoming beytbredr
quite limited scope is that almost all lack a suéfint
empirical validation of their prediction capabiis. Their
expressiveness originates mainly from expert opmiand
evidence mainly derived from small case studieshso it
seems that research on reusability is largely uagegsented
in empirical software engineering research soTfhere may
be many reasons for this situation: one possibjgaeation
is that there is no agreement in the research cantynu
which software characteristics provide a sufficibasis for
determining software reusability and which metfasthese

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

sophisticated elaboration is needed in this cakerefore, it
is helpful to look at the following common ad-hosuse
scenario (sometimes also called opportunistic ré8heto
better identify the needs of their users: usualygeveloper
(e.g., a software developer) would start thinkitpwt the
possibility to reuse a software component when hshe
receives a task to develop certain functionality tire
software system that she or he is working on. Heshw
would have two possibilities — (1) to develop this
functionality from scratch or (2) to reuse alreagkisting
code that provides as much of this functionalitypassible.

424

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

It is also necessary to stress that (2) would kelid option
only if there were no managerial, organizational otiner
company-internal obstacles preventing people fremsing
code [29] that might come from a 3rd party and ofirse
must be accessible in some kind of repository [L@pking
into these two alternatives, the developer is Vikel choose
alternative (2) — the reuse of a software comporeifithe
expected effort (or the corresponding costs) ire ¢a¥is less
than the effort (or costs) in case (1) [11]. Thetsan (1)
could be derived by monetizing the effort investedthe
short term and middle/long term activities perfodtsy the
developer, and the costs in (2) could be derivethbyeffort
invested in the short term and middle/long termiviies
(such as searching, integrating and testing a coed of
the developer plus possible royalties that needetpaid to
the creator or vendor of the component.a

To summarize, reusability requirements can be divid
into functional and non-functional requirementpessented
in the following. The functional requirement is thia order
to be considered for reuse in a particular contebg
component(s) need to provide the functionality e=ged by
the developer. There are two possibilities to askirthis
requirement. The first possibility is to consideista “hard” ,
i.e. a “yes or no” requirement. This means thabmmonent
would be considered for reuse only if it fully séitts all
needs specified by the developer. The second plitysto
consider the functional requirement as “soft”. histcase,
also components that do not fully satisfy the rstge: and
specified functionality are included in the consadi®n set.
In this case, the developer has to change/adjust
functionality of the component before reusing itti@find a
workaround, which clearly also influences the peex:
degree of reusability.

The non-functional requirements, which determine th
reusability of a software component, can be derfveah the
ad-hoc reuse scenario and the factors affectinglé¢oésion
on reuse just explained and can be structuredlasvéo
software component for reuse, it has first to hentb
by the developer. The easier and faster a compone
can be retrieved, the less effort it will take ¢oige it.
Licensed for reuse in the particular context: 1€ th

component is readily approved for reuse in the
context of the developer, she or he can directly

implement it and thus save time. If there are aggal
concerns, they have to be clarified and settlest, fir
which will require additional effort.

Usability: software components, which are more
usable from the viewpoint of the developer, will be
preferred. This can have several dimensions
satisfying quality of the software component, etsy
understand how it is built and structured, guarehte
maintenance of the component in the future etc.

will increase the overall costs (or their equivalen
effort expressed in the developer’s overall effarijl
thus make the reuse alternative unattractive.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

th

Fast and easy to retrieve: in order to consider a

Inexpensive: if a component is too expensive, this

Easy to adapt to a new usage context: The easer th
component can be adapted to the context of the
developer, the less effort it will take to implerhén
Overall it can be said that the better a softwamaponent
meets these requirements, the higher is the pritlyathiat

the developer will select it for reuse.

A. Core Elements of Reusability

Our reusability measurement model does not aim on
identifying new characteristics of software compuse
determining reusability while rejecting the exigtianes, but
rather focuses on structuring them better and iiyerg a
common superset of these characteristics to deterthie
reusability of software components. The match betwe
reusability requirements and characteristics isiaisly an
n-to-m relationship. This means that one characterisit c
address many requirements, and in the same time one
requirement can be addressed through various
characteristics. Therefore, the core measuremeitteimis
defined based on the following characteristicsiltéidt from
the reusability models presented in the last sectio
Availability: the availability of a software component
can determine how easy and fast (or hard and stow)
is to retrieve it, this is not to be confused witte
opertational availability often used in the contekt
long-running (server) systems.

Documentation: a good documentation can make the
software component more reliable since it makes it
easier to understand. Furthermore, it should contai
the legal terms and conditions and thus make dear
it is licensed for reuse in the context of the dever

or if any legal issues may arise.

Complexity: the complexity of a software component
determines how usable it is (i.e., if it possesses
satisfying quality, if it is easy to understand aod
maintain) and how easy it is to adapt the software
component in the new context of use. The rationale
behind this is that if there are two componentscivhi
provide the same functionality (which is the
prerequisite for assessing their reusability), tteen
lower component complexity would mean that func-
tionality is implemented more efficiently. Thus,ist
likely that the implementation of this functionglin

the component is of higher quality, is easier tdarn
stand by the developer and easier to maintainen th
future, and it will be easier to adapt in a newtest

Quality: the quality of the component directly
determines how usable it is in a given context. The
quality of a component is regarded as a charatiteris
which describes how good it fulfils its requirermsent
and also how error- and bug-free it is. This can
include a number of sub-characteristics, e.g . hdret

it often crashes when it is used, whether it is
thoroughly tested and whether it provides suitadxe
cases to be tested when integrated in a new context
Maintainability: The maintainability of a software
component directly determines how usable it is for
reuse. After the integration into the new systeme, t

nt

425

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

component should be able to adjust to the chamges
the system along with its evolution (e.g., in featur

versions of the system). This can be facilitated
through appropriate methods that the component

provides to the developer or simply through pravidi

changeable source code of the component (this is of

course only possible for white-box components).
e Adaptability: This characteristic directly determines

how easy it is to adapt a software component to the

context of the developer. Otherwise, the availgpbili

of compatible adapters will increase the ease of

i+ Reuse:The actual reuse of the component can also
be used to infer how usable and how easy it is to
adapt it. The amount and frequency of reuse,
especially in contexts similar to that of the
developer can serve as reference points and she or
he may select the component with the higher
amount and frequency of reuse.
e Price: the price of the software component
determines how expensive it is to reuse.

An illustrative overview of the elements influengin

adapting, compared to components for which suchieusability measurement as just discussed is pextémthe
adapters have to be developed from scratch. Apafbllowing figure, the concrete metrics containeerth are
from the programming language, the design of thériefly discussed afterwards as well as potentiaigessary
component and the availability of appropriatedistinctions between white- and black-box reuse. (for
methods and interfaces to modify, adapt and bied thsource and binary components).

component to the software landscape of the develope

are of high importance.

Amount of reuse [1
_— | Reuse ‘ nstant
Frequency of reuse | \ R T | Upon search
— | Availability } o
Fal Upon request
Programming language ‘ Unavailable
il 0 : Adaptability |
Appropriate methods S
and interfaces - oG
| Quality
| Reusablhty | Documentation | Someasne
. = | J
Monetar_y value | | Price ‘ = measurement e Existence of
—— legal terms and
conditions
i i ik ————a
Ad_}"Stab' ityto higher |Mainta|nablllty '
versions of the software | | |
- Size
e ——————— Coupling
Errors and bugs N i el
tolbabiilondo i / | Complexity [7] Cohesion
AEfeimed i i Quality ‘ Amount and complexity of
Availability of test cases methods and parameters
Independent rating and certification

Figure 1. Factors influencing reusability measurement.

In order to calculate the reusabilifir) of a software
component(c) in the context of the developdf), the
individual parts of the measurement model have ¢o
quantified through metrics first, and then thesdrite have
to be aggregated in a reusability calculation moflased on
the characteristics introduced above, it can béneefas
follows:

Rc. = w1 - Avail + ws - Doc + w3 - Compl + wy - Qual+
wb - Maint + we - Price + wy - Adapt + ws - Reuse

1)

w; - Wg are weights and the rest are composite metrics f

the attributes from the reusability measurement ehotio
facilitate the comparison of the reusability of felient

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

components in the same context, these values sHhmaild
adjusted to a common scale, e.g., normalized torahge

b[0..1] since this is common for software metricsit Imot

always done for the metrics presented before. Hheeg of
the weights determine the importance of each ctexatic
of the component for its reusability and have to be
determined empirically or through expert opinioheif sum
has to be equal to 1 (because of the normalizatAmsjo the
other metrics, their absolute values should beutatied first
and then normalized such that a minimal and a malxim
value need to be found for each metric [38]. Theslees
can be absolute min/max values found by analytiethods
ar empirical values derived from the components ilarge

0énough consideration set.

426

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Concrete Metrics Proposals

Based on the insights gained from surveying nungerou

reusability definitions, we have been able to Hisgtie
following preliminary suggestions for concrete rahitity
metrics within each characteristic as presenteovbel

Copyright (c) IARIA, 2012.

Availability : a generic, qualitative and subjective
metric can be used. The alternative values are:
instant search with automatic aide.g., an online
library), search manually (e.g., via manually
screening software systems for suitable components)
uponrequestandnot available These values have to
be placed on an ordinal scale (by, e.g., an expert
therefore the metric is subjective) and normalizesi

all other metrics) to fit in the overall calculatiof
reusability.

Documentation to be determined by four different
attributes amount, quality, completenessof
documentation andvailability of appropriate legal
terms and conditions. The amount is a generic,
objective and quantitative metric that can be
measured through its size, e.g. in kilobytes (kKBje
guality is a generic, subjective and qualitativetnme
that can be measured on an ordinal scale (from, e.g
poor to very good) set by an expert. The same
applies to the completeness. The existence of legal
terms and conditions is a boolean metric: either th
information is provided, or it is not.

Complexity: The complexity of software is a widely
researched topic and numerous metrics have been
suggested in the literature. Therefore, it makesese
to use some of them for assessing the complexity of
software components. The complexity intended here
is a composite metric of the size of the component
(e.g., in Lines of Code (LOC), excluding the LOC
containing only documentation, i.e. comments) and
complexity metrics for the classes, methods and
parameters of the component, as well as their
coupling and cohesion. It should be noted that the
application of these metrics will be different for
white-box and black-box components.

Quality: generally, it is difficult to assess the quality
of code in software engineering. This may often be
subjective and inaccurate. In the narrow under-
standing of quality in this first version, it care b
assessed via four attributes: tember of bugsthe
number of tests performe@nd their coverage and
outcome) availability of test casesprovided along
with the component, and andependent ratingnd
certification. The first two attributes can only be
collected through the lifetime of the component and
may not be available. They are generic, objectie a
quantitatively measurable values. The availabibity
test cases is a context-based, subjective and-quali
tative metric. The best option would be to provide
ready-to-use test cases which fit to the testing

ISBN: 978-1-61208-230-1

environment of the developer. An ordinal scale set
by an expert seems reasonable here. A rating can be
provided by experts or by other developers who have
already reused the component (“wisdom of the
crowd”). Such a rating can be an ordinal value,
which is subjective, context-based and qualitative.

Maintainability : The difference between maintain-
ability and adaptability of a component is basicall
the perspective, the former is more concerned with
the source code of the component while the laster i
focused on its interface. Otherwise, the idea dhbo
is how easy it is to adjust the component to a new
context and hence, metrics related to the
maintainability of the component are also included
the adaptability metric below. Therefore, the
preliminary maintainability metric presented here
will include only one additional aspect: the
availability of the source code (as available for
white-box components). A boolean metric is thus
sufficient for this calculation. In the long run it
makes sense to incorporate more detailed
characteristics such as changeability etc. from the
maintainability research community. However, the
effect of the metrics used there (such as LOC,
Cyclomatic Complexity, Volume etc.) are not yet
well understood so that their impact on reusabikty
also not clear.

Price: A generic, objective and quantitative metric,
expressed through a predefined currency (con-
versions between currencies are possible).

Adaptability: one important aspect of the
adaptability is the programming language, and
another is the availability of appropriate methads
interfaces for adapting the component [40]. Thst fir
aspect is context-dependent, subjective and
qualitative. The possible values are: same
programming language of the component and the
context of the developer, different language with
available and suitable component adapters, differen
programming language with no available suitable
adapters. Again, these values have to be placedh on
ordinal scale by an expert, while considering the
similarity of the programming languages (e.g., &m

be easier to adapt a C component to C++ then to
Java). The second aspect should be addressed by
some of the metrics in chapter 3 — the adaptability
metric Rate of Component Customizability (RCC)
from the metric suite of Washizaki et al. [16] ssem
useful in this case. The different applicability of
adaptability metrics to white-box and black-box
components has to be considered here, since the
latter lack the possibility to change their code.

Reuse can be determined by the amount and
frequency of reuse. Both are generic, objective and
guantitative metrics. The amount is the overall

427

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

number of reuses of the component,

and the Another issue arises from the white-box and blaok-b

frequency is the number of reuses for a certailoger nature of the components. If there is a mix of such

of time (e.g., the last week, month, year etcsince
it is available).

components in the consideration set, it might berom
difficult to compare their reusability. This is @&@sue of the
granularity of measurement — the object of measangrfor

As stated before, these metrics are currently onlypome of the component's characteristics (e.g.comeplexity

suggestions for quantifying the reusability measweet and
could be used as a starting point for quantitaéxgpirical
research. Their completeness and accuracy in niegshe
reusability characteristics have to be empiricalglidated
and synchronized with insights from other commaesiti
(such as those investigating software quality, demify or
maintainability).

C. Discussion

This chapter presented a holistic analytical apgrdar
assessing the reusability of software componentanirad-
hoc reuse scenario. The literature survey, which garied
out in the beginning of this research, did not tdgrany
other publication that has conducted such extereiadysis

or adaptability) is different. In the white-box easthese
metrics can be calculated on the basis of the whole
component, and in the black-box case, they caraloalated
based only on the parts of the components madéabieio

the developer — usually the interfaces with thedthnds and
attributes. Further research is needed to defiidetines for
comparing the reusability of white-box and blackbo
components.

In general, we believe that the reusability modietfned
here will bring more clarity and better structuser¢usability
research and have the potential to become a natingta
point when it comes to assessing reusability. Qhisefield
has made further progress, it becomes more likkbt t
practicing reuse of software components will inseeand be

of this topic. The GQM approach was used as anore efficient.

formalization technique for the analysis in orderiricrease
its expressiveness. It was argued that, in ordedeatify
appropriate and reasonable metrics, a reusabiituire-

V. CONCLUSION& FUTUREWORK
In this paper we have surveyed the current state of

ments model and a reusability measurement moded tav research on software reusability: available metfarsthe

be defined first. This also corresponds to the gjinds of
the GQM approach.

reusability assessment of code in the object-atkrand
component-based software development were presantéd

Clearly, the major drawback of this analysis is theevaluated. Moreover, a revised comprehensive diefinfor

missing empirical validation of the proposed measwents
and metrics, since the usefulness and practicahifitthe

the reusability of software components was propased
following a structured analytical approach.

suggested models can only be proven by conducting We have identified that the reusability of a softwa

empirical case studies and statistically signiftdasts using
real-life data from existing libraries for reusabtemponents.
Therefore, the next logical step would be to immema
reusability model based on these metrics by folgnihe
guidelines provided in the previous subsectiond,taradjust
the calculation model until it satisfies the needb
practitioners. It is also possible that the caltotamodel has
to be adjusted for different implementation scessar e.g.,
for implementation in a company-internal reusediigrand a
freely available online library. The metric suitdsscribed in
chapter Il should be the first source to look intden
searching for alternatives or extensions.

Additionally, empirical investigations need to ddish
thresholds that the reusability values of the comepts have
to beat. These thresholds should reflect the effiost a
developer is willing to invest in the case of depéhg the
functionality in-house (similar to the idea of Held's
Effort metric [16]). However, this is a non-trivitdsk, since
the abstract and technical characteristics of thiware
component (included in the reusability measuremeodel)
need to be translated into time, cost or efforussal (e.g.,
“How much effort will be needed to reuse a compadriera
particular context, if its complexity has the valxe”).
Obviously, a lot of further research is needechis &rea, but
since this clearly creates a considerable amoungffofit
(that has not even been spent for most other sodtwatrics
so far), we are forced to limit ourselves on mesgtching
the idea of this model for the time being.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

component is a context-specific characteristic tteat vary
in different application scenarios. This is an impot
aspect, which affects the definition of reusabiligd the
implementation of its measurement. The reusabibtya
software component depends on various non-fundtiona
characteristics while fulfilling functional requirents (i.e.
providing the desired functionality) is a preredeisfor
assessing the reusability at all. It has becomdeeatithat
reusability is a highly complex characteristic arsdquanti-
tative assessment is a non-trivial problem (afiésdase for
most other software quality characteristics). Itynmot be
possible to fully automate the calculation in theanfuture
so that human intervention may always be necessary.

The proposed software reusability measurement raodel
and metrics in this paper still lack empirical daliion so
that is a logical next step in reusability resedtdt should
be addressed in the future. Moreover, the speisiices of
setting practical threshold values when assessingability
and comparing reusability of different componenawéhto
be addressed by researchers. Otherwise, it williffieult to
implement the model in practice. If future reseasabceeds
to overcome these open issues in determining skdtwa
reusability, it is likely that it will be a majotep towards a
wider adoption of the component reuse paradigm dth b
academia and business, which in turn can be seen a

cornerstone for the further improvement of recently
spreading software search engines and component
marketplaces.

428

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

(1]
(2]

(3]
[4]
(5]

(6]

(71

(8]

[9]

(10]

(11]

(12]

(13]

[14]

[15]

(16]
[17]

(18]

[19]

Copyright (c) IARIA, 2012.

REFERENCES

C.W. Krueger, Software reuse, ACM Computing Suryeys
vol.24, June 1992, pp.131-183.

M.D. Mcllroy, Mass produced software components,
Software Engineering: Report on a conference byNA&O
Science Committee, Garmisch, Germany, 7th to 1Ttol&r
1968, Naur, P., Randell, B., Eds., NATO Scientiiffairs
Division, Brussels, Belgium, 1969, pp.138-150.

R. Prieto-Diaz, Status report: software reusabilitEEE
Software, vol.10, May 1993, pp.61-66.

M. Griss, Software reuse: From library to factoriBM
Systems Journal, vol. 32, 1993, pp. 548--566.

O. Hummel and C. Atkinson, Using the Web as a Reus
Repository, Reuse of Off-the-Shelf Components, wect
Notes in Computer Science, vol. 4039, Springer, 6200
pp.298-311.

A. Ampatzoglou, K. Apostolos, G. Kakaronzzos, and | (25]

Stamelos, An Empirical Evaluation on the Reusabilif
Design Patters and Software Packages, Journal siei8g
and Software, vol. 86, Dec. 2011, pp. 2265-2283.

O. Hummel, W. Janjic, and C. Atkinson, Code Conjure
Pulling Reusable Software out of Thin Air, IEEE Sdire,
vol.25, Sep./Oct. 2008, pp. 45-52.

G. Kakarontzas and |. Stamelos, Component Recydling
Agile Methods, Sev-enth International Conference tha
Quality of Information and Communications Technglog
(QUATIC), 29 Sept. 2010 — 2 Oct. 2010, pp.397-402.

W.B. Frakes and K. Kang, Software reuse reseatatusand
future, IEEE Transactions on Software Engineering,31,
July 2005, pp.529-536.

T.C. Jones, Reusability in Programming: A Surveyttoé
State of the Art, IEEE Transactions on Softwareikegring,
vol.SE-10, Sept. 1984, pp.488-494.

W.B. Frakes and C. Terry, Software reuse: metrind a

models, ACM Computing Surveys, vol. 28, June 1996,

pp.415-435.

A. Sharma, R. Kumar, and P.S. Grover, A Criticalv@y of
Reusability Aspects for Component-Based SystemstldVo
Academy of Science, Engineering and Technology, 88|
2007, pp.35-39.

A. Khoshkbarforoushha, P. Jamshidi, and F. Shamsgkic
for composite service reusability analysis, Progegsd of the

2010 ICSE Workshop on Emerging Trends in Software

Metrics (WETSoM '10), ACM, New York, USA, 2010,
pp.67-74.

T. Elr, Service-Oriented Architecture: Conceptschrmlogy,
and Design, Prentice-Hall, 2005.

H. Washizaki, H. Yamamoto, and Y. Fukazawa, A Mbstri
Suite for Measuring Reusability of Software Compuse
Proceedings of the 9th International Symposium oftwére
Metrics (METRICS '03), IEEE Computer
Washington, DC, USA, 2003, pp.211-223.

P. Clements and L. Northrop, Software Product Lines
Practices and Patterns, Addison-Wesley, 2002.

W.B. Frakes and S. Isoda, Success Factors of Sgtem
Reuse, IEEE Software, vol. 11, Sep./Oct. 1994,449.

Y. Kim and E.A. Stohr., Software reuse: survey agskarch
directions, Journal of Management Information Syste-
vol.14, March 1998, pp.113-147.

D. Merkl, Self-Organizing Maps And Software Reubedk
chapter), Compu-tational intelligence in softwangiaeering,

ISBN: 978-1-61208-230-1

Society, [34]

Pedrycz, W., Peters, J.F. (eds.), Singapore, Wacldntific,
1998, pp.65-95.

O.P. Rotaru and M. Dobre, Reusability Metrics faft®are
Componenents, ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA’05),
Washington DC, USA, 2005, pp.24-31.

J. Poulin, Measuring software reusability, Procegsliof the

International Conference on Software Reuse: Adwarnioe
Software Reusability, 1-4 Nov. 1994, pp.126-138.

G. Caldiera and V.R. Basili, Identifying and quugilifg
reusable software components, IEEE Computer, voE2b.
1991.

M. Halstead, Elements of Software Science, Amstarda
Elsvier North-Holland, Inc., 1977.

[24] T.J. McCabe, A Complexity Measure, IEEE Transacion

Software Engineering, vol. 2, Sept. 1976, pp. 328:3

J. Barnard, A new reusability metric for objectemtied
software, Software Quality Journal, vol. 7, Jan98,9p.35-
50.

Y. Mao, H. Sahraoui, and H. Lounis, Reusability tyesis
Verification using Machine Learning Techniques: Asé
Study, Proceedings of the International Confererare
Automated software engineering, IEEE, 1998, pj284-

Y. Lee and K.H. Chang, Reusability and maintairigbil
metrics for object-oriented software, Proceedinigthe 38th
annual on Southeast regional con-ference (ACM-SE 38
ACM, New York, NY, USA, 2000, pp.88-94.

E.S. Cho, M.S. Kim, and S.D. Kim, Component Metrios
Measure Component Quality, Proceedings of the BRigisia-
Pacific on Software Engineering Con-ference (APSE&D,
IEEE Computer Society, Washington, DC, USA, 2001,
pp.419-426.

L.H. Etzkorn, W.E. Hughes Jr., and C.G. Davis, Andbed
reusability quality analysis of OO legacy software,
Information and Software Techn., vol.43, 2001, 295-308.

S. Bhattacharya and D.E. Perry, Contextual reusabil
metrics for event-based architectures, Intern. Syrop
Empirical Software Engineering, 17-18 Nov. 2005,4%9-
468.

G. Gui and P.D. Scott, New Coupling and Cohesioririgke
for Evaluation of Software Component Reusabilitypd® of
the Intern. Conf. for Young Computer Scientists,020
pp.1181-1186.

N. Gill and S. Sikka, Inheritance Hierarchy Basesufe &
Reusability Metrics in OOSD, International Journah
Computer Science and Engineering (IJCSE), vol.3eJu
2011, pp.2300-2309.

M.A.S. Boxall and S. Araban, Interface Metrics for
Reusability Analysis of Components, Australian $efte
Engineering Conference (ACWEC'04), Melbourne, Aalir,
2004, pp.40-50.

A. Sharma, P.S. Grover, and R. Kumar, Reusability
assessment for software components, SIGSOFT Seftwar
Engineering Notes, vol.34, No.2, February 20091 {ip.

V.R. Basili, G. Caldiera, and H.D. Rombach, The Goa
Question Metric Ap-proach, Encyclopedia of Software
Engineering, vol.1, New York, John Wiley & SonsgInSept.
1994, pp.528-532.

S. Becker, A. Brogi, |. Gorton, S. Overhage, A. Rmovsky,
and M. Tivoli, Towards an engineering approach to
component adaption. In Architecting Systems with
Trustworthy Components, Springer, 2006, pp. 193-215

429

