
Structuring Software Reusability Metrics
for Component-Based Software Development

Danail Hristov, Oliver Hummel, Mahmudul Huq, Werner Janjic
Software Engineering Group

University of Mannheim
Mannheim, Germany

e-mail: {dhristov, hummel, shuq, janjic}@mail.uni-mannheim.de

Abstract — The idea of reusing software components has been
present in software engineering for several decades. Although
the software industry developed massively in recent decades,
component reuse is still facing numerous challenges and
lacking adoption by practitioners. One of the impediments
preventing efficient and effective reuse is the difficulty to
determine which artifacts are best suited to solve a particular
problem in a given context and how easy it will be to reuse
them there. So far, no clear framework is describing the
reusability of software and structuring appropriate metrics
that can be found in literature. Nevertheless, a good under-
standing of reusability as well as adequate and easy to use
metrics for quantification of reusability are necessary to
simplify and accelerate the adoption of component reuse in
software development. Thus, we propose an initial version of
such a framework intended to structure existing reusability
metrics for component-based software development that we
have collected for this paper.

Keywords- Software Reusability; Software Reusability
Metrics; Component-Based Software Development.

I. INTRODUCTION

The idea of software reuse [1] is not new: its roots date
back to 1968 when McIlroy has presented his seminal work
on reusable components [2] at the NATO Software
Engineering Conference in Garmisch, Germany. However,
there has only been limited practical experience with reuse
until the late 1980s, when large-scale reuse programs were
adopted by companies, mainly in the US (e.g., by IBM and
Hewlett Packard [3]) and Japan (e.g., by Toshiba and
Fujitsu); these efforts have also pushed forward the research
in the 1990s, and in turn created a growing interest in
systematic software reuse and reuse programs for
organizations at that time [4]. After the turn of the
millenium, widely available broadband internet connections
and the raise of the open source movement have clearly
created opportunities for broader inter-organizational reuse
[5] and resulted in a huge amount of source code and
components that is freely available [6]. Even the recently
rising popularity of agile methodologies and practices has
created numerous interesting ideas on how to facilitate reuse
in that context [7,8]. However, as stated by Frakes and Kang,
there are still numerous open issues to be solved [9] –
including a better understanding of reusability.

Before being able to go into more details on the
challenges tackled in this paper, we have to clarify what is
not in its scope since reuse is a broad concept that cannot
only be applied on components, but also on numerous other
artifacts necessary for software development. Such artifacts
are, for example, design structures [3,11,12], architectures
[1,11,12], or even documentation [12]. However, the results
presented in this paper will focus on software components, in
both source code and binary form or in other words on the
white- and black-box reuse of these software building
blocks. In white-box reuse, the source code is available to the
developer and can be changed before it is integrated into a
new context, while in black-box reuse this is not the case and
therefore only a component’s interface (containing the public
methods and attributes) and the documentation are visible
[13]. Services in Service Oriented Architectures (SOA) [14]
are conceptually certainly similar, but research on service
reusability could not be considered in this publication due to
space limitations. Black-box reuse probably tended to be the
more facilitated approach in the past [15], however, the wide
availability of search engines for open source software [7]
has certainly brought the possibility of white-box reuse back
into the center of interest .

It has been observed that software reuse research is rather
scattered than focused and consecutive [9]. It is also evident
that – though the software industry has developed massively
in last decades – the paradigm of component reuse is still
facing numerous issues and hence lacking adoption from
practitioners. One of the central impediments that prevent
efficient and effective reuse today is the difficulty to
determine which artifacts are best suitable to solve a parti-
cular problem in a certain context and how easy it will be to
reuse them. In other words, no comprehensive framework
describing the reusability of software and structuring
appropriate metrics exists in literature so far. Nevertheless, a
good understanding of software reusability as well as
adequate and easy to use metrics for its quantification are
crucial in order to facilitate the adoption of reuse in software
development. The focus of the research presented in this
paper is on the reusability of software components in an ad-
hoc reuse scenario. By “ad-hoc reuse scenario” we mean the
spontaneous decision of a developer to use a component
repository or search engine [7], indexing e.g. open source
software not specifically built for being reused, in order to
search for a component that might match the given
requirements. This type of software reuse is probably one of

421Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the most promising that does not require larger upfront
investments as for example the creation of a software
product line [17] or a planned reuse program [4]. Never-
theless, it is likely that the insights gained from this work can
be transferred to the latter areas where a measure for judging
the reusability of software artifacts is also important.

Hence, in this paper we are distilling an initial framework
for structuring software reusability metrics in component-
based software development based on a comprehensive
survey of metrics proposed in the literature. Its remainder is
organized in the following order: in Section II we discuss the
general concept of software reusability before we turn to the
current state of the art in reusability metrics in Section III. In
Section IV we propose our novel software reusability
framework for the context of ad-hoc reuse approaches. The
paper is finally concluded with a summary of its findings and
an outlook on potential future work in Section V.

II. REUSE & REUSABILITY

Literature provides a significant number of definitions for
software reuse; probably the most popular one was published
by Krueger [1] who has defined software reuse as the use of
“existing software artifacts during the construction of a new
software system”. Software reuse can be embraced in several
different ways: on the one hand, it can be practiced in a
structured and controlled manner inside organizations, where
software artifacts are systematically designed for reuse when
created according to a software reusability policy [12]. In
this case, the artifacts can be usually reused within a
particular domain, which is nowadays well-known as the
paradigm of software product line engineering [4,9]. It is
based on the presumption that most software systems are not
new but rather a variation (or improvement) of already exis-
ting systems in a domain [9]. For such software reusability
policies to succeed, they have to be systematic [18] and well
planned. Thus, such a scenario of reuse is also known as
planned reuse which indicates that it requires up-front
investments by the organization implementing it, for
example, designing the software for potential future reuse,
establishment of libraries of reusable components, etc.
[3,19]. Such systematic software reuse has been the central
topic of a substantial amount of research papers (as, e.g.,
[12]).

Another interesting scenario is ad-hoc reuse [3, 19]: in
this case, the artifacts for reuse are taken from generic
libraries or search engines. This usually happens on an
individual basis (i.e., per developer) and not per project or
company. Here, the role of the libraries and retrieval
mechanisms is of high importance [20]. With the fast growth
of the World Wide Web and the possibility to store and
retrieve large amounts of data online, it has become much
easier to distribute reusable assets over the Internet even
between organizations [21,22]. According to the body of
existing literature, practicing this kind of reuse in software
development can bring substantial benefits to organizations
as well as the developers [9,19,23,24]. The most widely
expressed and discussed benefits of reuse are: a productivity
and quality increase, easier maintainability and higher
portability.

An important prerequisite for every kind of component
reuse is a “repository for storing reusable assets, plus an
interface for searching the repository” [12]. In case of
planned reuse, companies need to implement and maintain
an internal repository of reusable components to store the
assets produced and keep them ready for reuse [23]. For ad-
hoc reuse, the components are usually stored in a publicly
available library, accessible over the Internet (cf. e.g. [7] for
an overview). However, the issue with the efficient retrieval
of components suitable for reuse is still not completely
solved. However, our screening of literature did not uncover
sufficient empirical evidence of practitioners and
organizations actually experiencing the expected benefits.
Therefore, it should not be concluded that the mere
availability of prerequisites for reuse alone will increase pro-
ductivity and quality in software development already. The
characteristics of the available artifacts also have to be taken
into consideration.

As for software reuse, a large number of definitions for
software reusability can be found in existing literature, e.g.,
Kim and Stohr [19] have defined software reusability as “a
measure for the ease with which the resource can be reused
in a new situation”. It is important to distinguish between
software reuse and reusability as the former is focused on the
practice of reuse itself while the latter tries to make the
potential of artifacts for being reused measureable. Poulin
[25] has stated in this context that knowing what makes
software reusable can help us learn how to build new
reusable components and to identify potentially useful (and
thus reusable) modules in existing programs. The literature
lists several characteristics of software, which are believed to
determine reusability and are therefore repeatedly referenced
in research papers [8,13,20,25]. Such factors are:
adaptability, complexity, composability, maintainability,
modularity, portability, programming language, quality,
reliability, retrievability, size and understandability. Further-
more, the reusability of a component in a certain context
should be comparable to the reusability of other – potentially
functionally equivalent – software components in the same
context. However, most of the existing research is rather
incoherent and only covers one or a few of these aspects so
that to our knowledge there is no publication that has tried to
bring all these aspects together in a single model.

III. EXISTING REUSABILITY DEFINITONS

In order to get an impression of reusability definitions
available in the literature, we performed a systematic
literature review that identified a number of articles
proposing quantitative metrics for assessing the reusability of
software. For that purpose, Google Scholar, IEEE Xplore,
ACM Digital Library, Citeseer and Springer Link were
searched with the keywords “software reusability”. Titles
and abstracts of delivered publications were read in order to
determine whether they could contribute to the aim of our
study, which resulted in a total set of 73 papers that were
deemed worthwhile to be more closely read and investigated.
In general, we found that some of the metrics described were
newly developed solely for the purpose of measuring
reusability, while others were modified or adapted from

422Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

other areas (such as maintainability measurement) and have
not been initially developed with reusability in mind. For the
sake of practicality, we have separated the results of this
survey, i.e., the discovered metrics, into two categories: one
for white-box (allowing to look into the code of the
components) and one for black-box (where usually merely
interface and documentation of a component are available)
reusability. This separation helps to distinguish the different
nature of metrics for these two paradigms. Within these two
categories that are presented in the following two
subsections, the results of previous research are presented in
chronological order to illustrate the development of
reusability measurement. Due to limited space, we can only
briefly describe most of these contributions; the interested
reader is referred to the original sources for more detailed
information.

A. White-Box Reusability

As early as in 1991, Caldiera and Basili [26] have
defined three main (but still relatively abstract) attributes for
assessing the reusability of components – reuse costs,
functional usefulness and quality of components. These
attributes were determined by factors, which are directly or
indirectly measured by classic software metrics such as
Halstead’s Volume [27], McCabe’s Cyclomatic Complexity
[28] or other metrics such as Regularity and Reuse
Frequency [26]. Volume was used in order to estimate two
important attributes, namely reuse costs and quality of
components. The Cyclomatic Complexity was used to assess
all three reusability attributes introduced before,. Regularity
was used to assess the former two attributes, while Reuse
Frequency was merely used to assess functional usefulness.

Seven years later, Barnard [29] has suggested a
composite metric for reusability of object-oriented software,
which was derived from two empirical experiments. As
foundation, again a variety of readily available software
metrics have been used. Based on the experiments, those
metrics that were related best to reusability have been
selected (with corresponding confidence intervals). In order
to come up with this relation, classes from C++, Java and
Eiffel libraries have been considered in the experiments,
assuming that classes in libraries are more reusable.
Barnard’s metric suite is focused on the Simplicity,
Genericity and Understandability of classes’ interfaces,
methods and attributes.

Around the same time, Mao et al. [30] have investigated
the effects of inheritance, coupling and complexity on the
reusability of classes in object-oriented software. Two years
later, Lee and Chang [31] proposed another set of metrics for
measuring the reusability and maintainability of object-
oriented software. The determining criteria here are
complexity and modularity. The corresponding metrics are
Internal and External Class Complexity (for complexity),
and Class Cohesion and Class Coupling (for modularity).

In 2001, Cho et al. [32] have suggested metrics for
component complexity, customizability, reusability and
reuse. Component Reusability is determined by the
functionality that the software components provide for their
domain: it is the ratio between the number of interface

methods in the component that provide commonality
functions in the its domain, and the total number of interface
methods in the component. The more commonality functions
a component provides, its reusability is considered higher.
Additionally to this metric, Cho et al. have suggested metrics
for Component Customizability. They state that if the
possibility to customize a component is not given, the
reusability is low, since developers cannot adapt components
for their purpose. Customizability is determined by the
metric Component Variability, which is defined as the ratio
of the number of customization methods to all methods in a
component’s interfaces.

Also in 2001 Etzkorn et al. [33] have published a model
capturing reusability of object-oriented legacy software.
They suggest a comprehensive metric suite covering
different aspects of the reusability of individual classes. It is
defined as the sum of metrics for Modularity, Interface Size,
Documentation and Complexity of a class, each equally
weighted.

Four years later, Bhattacharya and Perry [34] have stated
that the usefulness of a software component depends not
only on its internal characteristics, but also on the context in
which it should be integrated. Therefore, they suggested
reusability metrics measuring how well a component fits in a
predefined architectural context. The prerequisite is that the
(potentially reusable) components are adapted to the
architectural description of the target system, which includes
a description of the services needed by the system. They
have proposed two metrics for measuring software
reusability, namely Architecture Compliance and Compo-
nent Characteristics. The Architecture Compliance metric is
measured by three different sub-metrics: Architectural
Component Service Compliance Coefficient, Architectural
Component Attribute Compliance Coefficient and Archi-
tectural Component Behavior Compliance Coefficient. A
higher value for the Architecture Compliance metrics
indicates a more reusable component in a given context. The
Component Characteristics metric measures the compliance
of a component with regards to the data and functionality
requirements of all attributes and services in the architectural
description.

In 2008, Gui and Scott [35] have suggested revised
formulas for established coupling and cohesion metrics in
order to measure the reusability of Java components. They
are proposing to measure to which extent classes are coupled
together and to which extend their methods are cohesive.
Additionally, they have considered transitive relationships
and finally defined two metrics for measuring software
reusability, based on their own versions of Coupling and
Cohesion. The authors admit that additional determinants of
a components’ reusability exist; however they are not
considered in their paper. Only very recently, Gill and Sikka
[36] have proposed five new metrics for better assessing
reuse and reusability in object-oriented software develop-
ment. The metrics are Breadth of Inheritance Tree, Method
Reuse per Inheritance Relation, Attribute Reuse Per
Inheritance Relation, Generality of Class and Reuse
Probability.

423Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Black-Box Reusability

To our knowledge, the first set of metrics for measuring
the reusability of black-box components was proposed by
Washizaki et al. [16] in 2003. They proposed to consider
three main factors that are expected to affect reusability:
understandability, adaptability and portability. Through an
empirical analysis of Java Beans components, the authors
have established thresholds for each proposed metric. For
measuring the overall understandability, the metrics
Existence of Meta-Information and Rate of Component
Observability are defined. Rate of Component
Customizability measures adaptability, while Self-
Completeness of Component’s Return Value and Self-
Completeness of Component’s Parameter measure
portability.

In 2004, Boxall et al. [37] have proposed that the Under-
standability of a software component’s interface is a major
quality factor for determining reusability. To measure this,
they have defined a set of metrics, including values such as
Interface Size, Identifier Length or Argument Count. The
authors have selected 12 components from different software
systems in C and C++ to empirically validate their metrics
and developed simple tools to automatically calculate them.
The derived values have (merely) been compared against the
expert knowledge of the authors judging the reusability of
these components. Consequently, the authors have stated that
more empirical research is necessary.

Again one year later, Rotaru et al. [24] have identified
adaptability, composability and complexity of software
components as determinants for their measure of reusability.
The composability of a component is determined by the
complexity of its interface. Adaptability is the ability of a
component to handle environmental changes. Although a
preliminary metric specification is given for all three aspects,
the authors have stated that an empirical calibration is
necessary to better understand its effects.

Only recently (in 2009), Sharma et al. [38] have proposed
an Artificial Neural Network (ANN) approach to assess the
reusability of software components. The authors have
considered determining reusability by four factors:
Customizability, Interface Complexity, Portability and
Understandability. However, only customizability was quan-
titatively evaluated so far. The other three factors are only to
be assessed qualitatively, i.e. merely ranked on a relative
scale by experts.

C. Open Issues

For the metric suites reviewed and presented in this
section so far, the most evident shortcoming beyond their
quite limited scope is that almost all lack a sufficient
empirical validation of their prediction capabilities. Their
expressiveness originates mainly from expert opinions and
evidence mainly derived from small case studies so that it
seems that research on reusability is largely underrepresented
in empirical software engineering research so far. There may
be many reasons for this situation: one possible explanation
is that there is no agreement in the research community
which software characteristics provide a sufficient basis for
determining software reusability and which metrics for these

characteristics are sufficient. In other words, there is no
common understanding of what software reusability is and
how it can be best measured, yet.

Furthermore, as can be seen in the metric sets we
presented, they mainly focus on the technical characteristics
of software, which may be inconsistent with the expectations
of practitioners. Therefore, a more holistic approach to
defining and measuring reusability is needed. We intend to
address these issues in current research in the next section.
Following the Goal-Question-Metric (GQM) approach [39],
an initial proposal for a more structured and analytically
justified reusability model will be developed. Thereby, the
understanding of software reusability can be improved,
which on the one hand should encourage researchers to
invest more effort in empirically validating this (and similar)
models and on the other hand should give practitioners the
confidence they need for measuring reusability “in real life”.

IV. STRUCTURING REUSABILITY METRICS

In this section, the reusability requirements for software
components will be explained and structured in a reusability
requirements model. For this purpose the well-accepted
Goal-Question-Metric (GQM) paradigm [39], for deriving
appropriate measurements and metrics for software
reusability will be used. Following this approach, the first
step is to define the goal of this research work. It can be
expressed as follows:

Improve the reusability assessment of software
components in an ad-hoc software reuse scenario from the
developer’s point of view.

The purpose here is to improve, the issue is reusability
assessment, the objects are software components and the
viewpoint is that of the developer. Another element – that of
the context (ad-hoc reuse) is added to the goal definition. It
is not explicitly defined in the GQM approach, but it is
important for the research presented in this paper and will be
relevant for the further elaboration. The next step foreseen in
the GQM approach is to define the questions resulting from
the goal stated above. They can be expressed as follows:

• which are the requirements to the software
components that can determine their reusability in
an ad-hoc reuse scenario?

• which are the characteristics of the software
component that determine their reusability in an ad-
hoc reuse scenario?

Obviously, these questions are not trivial and it is not
possible to give an answer to them directly through
identifying the appropriate metrics and hence a more
sophisticated elaboration is needed in this case. Therefore, it
is helpful to look at the following common ad-hoc reuse
scenario (sometimes also called opportunistic reuse [3]) to
better identify the needs of their users: usually, a developer
(e.g., a software developer) would start thinking about the
possibility to reuse a software component when he or she
receives a task to develop certain functionality in the
software system that she or he is working on. He or she
would have two possibilities – (1) to develop this
functionality from scratch or (2) to reuse already existing
code that provides as much of this functionality as possible.

424Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

It is also necessary to stress that (2) would be a valid option
only if there were no managerial, organizational or other
company-internal obstacles preventing people from reusing
code [29] that might come from a 3rd party and of course
must be accessible in some kind of repository [17]. Looking
into these two alternatives, the developer is likely to choose
alternative (2) – the reuse of a software component – if the
expected effort (or the corresponding costs) in case (2) is less
than the effort (or costs) in case (1) [11]. The costs in (1)
could be derived by monetizing the effort invested in the
short term and middle/long term activities performed by the
developer, and the costs in (2) could be derived by the effort
invested in the short term and middle/long term activities
(such as searching, integrating and testing a component) of
the developer plus possible royalties that need to be paid to
the creator or vendor of the component.a

To summarize, reusability requirements can be divided
into functional and non-functional requirements as presented
in the following. The functional requirement is that, in order
to be considered for reuse in a particular context, the
component(s) need to provide the functionality requested by
the developer. There are two possibilities to address this
requirement. The first possibility is to consider this a “hard” ,
i.e. a “yes or no” requirement. This means that a component
would be considered for reuse only if it fully satisfies all
needs specified by the developer. The second possibility is to
consider the functional requirement as “soft”. In this case,
also components that do not fully satisfy the requested and
specified functionality are included in the consideration set.
In this case, the developer has to change/adjust the
functionality of the component before reusing it, or to find a
workaround, which clearly also influences the perceived
degree of reusability.

The non-functional requirements, which determine the
reusability of a software component, can be derived from the
ad-hoc reuse scenario and the factors affecting the decision
on reuse just explained and can be structured as follows:

• Fast and easy to retrieve: in order to consider a
software component for reuse, it has first to be found
by the developer. The easier and faster a component
can be retrieved, the less effort it will take to reuse it.

• Licensed for reuse in the particular context: If the
component is readily approved for reuse in the
context of the developer, she or he can directly
implement it and thus save time. If there are any legal
concerns, they have to be clarified and settled first,
which will require additional effort.

• Usability: software components, which are more
usable from the viewpoint of the developer, will be
preferred. This can have several dimensions:
satisfying quality of the software component, easy to
understand how it is built and structured, guaranteed
maintenance of the component in the future etc.

• Inexpensive: if a component is too expensive, this
will increase the overall costs (or their equivalent
effort expressed in the developer’s overall effort) and
thus make the reuse alternative unattractive.

• Easy to adapt to a new usage context: The easier the
component can be adapted to the context of the
developer, the less effort it will take to implement it.

Overall it can be said that the better a software component
meets these requirements, the higher is the probability that
the developer will select it for reuse.

A. Core Elements of Reusability

Our reusability measurement model does not aim on
identifying new characteristics of software components
determining reusability while rejecting the existing ones, but
rather focuses on structuring them better and identifying a
common superset of these characteristics to determine the
reusability of software components. The match between
reusability requirements and characteristics is obviously an
n-to-m relationship. This means that one characteristic can
address many requirements, and in the same time one
requirement can be addressed through various
characteristics. Therefore, the core measurement model is
defined based on the following characteristics distilled from
the reusability models presented in the last section:

• Availability: the availability of a software component
can determine how easy and fast (or hard and slow) it
is to retrieve it, this is not to be confused with the
opertational availability often used in the context of
long-running (server) systems.

• Documentation: a good documentation can make the
software component more reliable since it makes it
easier to understand. Furthermore, it should contain
the legal terms and conditions and thus make clear if
it is licensed for reuse in the context of the developer
or if any legal issues may arise.

• Complexity: the complexity of a software component
determines how usable it is (i.e., if it possesses
satisfying quality, if it is easy to understand and to
maintain) and how easy it is to adapt the software
component in the new context of use. The rationale
behind this is that if there are two components which
provide the same functionality (which is the
prerequisite for assessing their reusability), then a
lower component complexity would mean that func-
tionality is implemented more efficiently. Thus, it is
likely that the implementation of this functionality in
the component is of higher quality, is easier to under-
stand by the developer and easier to maintain in the
future, and it will be easier to adapt in a new context.

• Quality: the quality of the component directly
determines how usable it is in a given context. The
quality of a component is regarded as a characteristic
which describes how good it fulfils its requirements
and also how error- and bug-free it is. This can
include a number of sub-characteristics, e.g . whether
it often crashes when it is used, whether it is
thoroughly tested and whether it provides suitable test
cases to be tested when integrated in a new context.

• Maintainability: The maintainability of a software
component directly determines how usable it is for
reuse. After the integration into the new system, the

425Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

component should be able to adjust to the changes in
the system along with its evolution (e.g., in future
versions of the system). This can be facilitated
through appropriate methods that the component
provides to the developer or simply through providing
changeable source code of the component (this is of
course only possible for white-box components).

• Adaptability: This characteristic directly determines
how easy it is to adapt a software component to the
context of the developer. Otherwise, the availability
of compatible adapters will increase the ease of
adapting, compared to components for which such
adapters have to be developed from scratch. Apart
from the programming language, the design of the
component and the availability of appropriate
methods and interfaces to modify, adapt and bind the
component to the software landscape of the developer
are of high importance.

• Reuse: The actual reuse of the component can also
be used to infer how usable and how easy it is to
adapt it. The amount and frequency of reuse,
especially in contexts similar to that of the
developer can serve as reference points and she or
he may select the component with the higher
amount and frequency of reuse.

• Price: the price of the software component
determines how expensive it is to reuse.

An illustrative overview of the elements influencing

reusability measurement as just discussed is presented in the
following figure, the concrete metrics contained there are
briefly discussed afterwards as well as potentially necessary
distinctions between white- and black-box reuse (i.e. for
source and binary components).

Figure 1. Factors influencing reusability measurement.

In order to calculate the reusability (R) of a software
component (c) in the context of the developer (c), the
individual parts of the measurement model have to be
quantified through metrics first, and then these metrics have
to be aggregated in a reusability calculation model. Based on
the characteristics introduced above, it can be defined as
follows:

(1)

w1 - w8 are weights and the rest are composite metrics for

the attributes from the reusability measurement model. To
facilitate the comparison of the reusability of different

components in the same context, these values should be
adjusted to a common scale, e.g., normalized to the range
[0..1] since this is common for software metrics, but not
always done for the metrics presented before. The values of
the weights determine the importance of each characteristic
of the component for its reusability and have to be
determined empirically or through expert opinion. Their sum
has to be equal to 1 (because of the normalization). As to the
other metrics, their absolute values should be calculated first
and then normalized such that a minimal and a maximal
value need to be found for each metric [38]. These values
can be absolute min/max values found by analytical methods
or empirical values derived from the components in a large
enough consideration set.

426Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Concrete Metrics Proposals

Based on the insights gained from surveying numerous
reusability definitions, we have been able to distill the
following preliminary suggestions for concrete reusability
metrics within each characteristic as presented below:

• Availability : a generic, qualitative and subjective
metric can be used. The alternative values are:
instant, search with automatic aid (e.g., an online
library), search manually (e.g., via manually
screening software systems for suitable components),
upon request and not available. These values have to
be placed on an ordinal scale (by, e.g., an expert –
therefore the metric is subjective) and normalized (as
all other metrics) to fit in the overall calculation of
reusability.

• Documentation: to be determined by four different
attributes: amount, quality, completeness of
documentation and availability of appropriate legal
terms and conditions. The amount is a generic,
objective and quantitative metric that can be
measured through its size, e.g. in kilobytes (kB). The
quality is a generic, subjective and qualitative metric
that can be measured on an ordinal scale (from, e.g.,
poor to very good) set by an expert. The same
applies to the completeness. The existence of legal
terms and conditions is a boolean metric: either this
information is provided, or it is not.

• Complexity: The complexity of software is a widely
researched topic and numerous metrics have been
suggested in the literature. Therefore, it makes sense
to use some of them for assessing the complexity of
software components. The complexity intended here
is a composite metric of the size of the component
(e.g., in Lines of Code (LOC), excluding the LOC
containing only documentation, i.e. comments) and
complexity metrics for the classes, methods and
parameters of the component, as well as their
coupling and cohesion. It should be noted that the
application of these metrics will be different for
white-box and black-box components.

• Quality : generally, it is difficult to assess the quality
of code in software engineering. This may often be
subjective and inaccurate. In the narrow under-
standing of quality in this first version, it can be
assessed via four attributes: the number of bugs, the
number of tests performed (and their coverage and
outcome), availability of test cases, provided along
with the component, and an independent rating and
certification. The first two attributes can only be
collected through the lifetime of the component and
may not be available. They are generic, objective and
quantitatively measurable values. The availability of
test cases is a context-based, subjective and quali-
tative metric. The best option would be to provide
ready-to-use test cases which fit to the testing

environment of the developer. An ordinal scale set
by an expert seems reasonable here. A rating can be
provided by experts or by other developers who have
already reused the component (“wisdom of the
crowd”). Such a rating can be an ordinal value,
which is subjective, context-based and qualitative.

• Maintainability : The difference between maintain-
ability and adaptability of a component is basically
the perspective, the former is more concerned with
the source code of the component while the latter is
focused on its interface. Otherwise, the idea of both
is how easy it is to adjust the component to a new
context and hence, metrics related to the
maintainability of the component are also included in
the adaptability metric below. Therefore, the
preliminary maintainability metric presented here
will include only one additional aspect: the
availability of the source code (as available for
white-box components). A boolean metric is thus
sufficient for this calculation. In the long run it
makes sense to incorporate more detailed
characteristics such as changeability etc. from the
maintainability research community. However, the
effect of the metrics used there (such as LOC,
Cyclomatic Complexity, Volume etc.) are not yet
well understood so that their impact on reusability is
also not clear.

• Price: A generic, objective and quantitative metric,
expressed through a predefined currency (con-
versions between currencies are possible).

• Adaptability : one important aspect of the
adaptability is the programming language, and
another is the availability of appropriate methods and
interfaces for adapting the component [40]. The first
aspect is context-dependent, subjective and
qualitative. The possible values are: same
programming language of the component and the
context of the developer, different language with
available and suitable component adapters, different
programming language with no available suitable
adapters. Again, these values have to be placed on an
ordinal scale by an expert, while considering the
similarity of the programming languages (e.g., it may
be easier to adapt a C component to C++ then to
Java). The second aspect should be addressed by
some of the metrics in chapter 3 – the adaptability
metric Rate of Component Customizability (RCC)
from the metric suite of Washizaki et al. [16] seems
useful in this case. The different applicability of
adaptability metrics to white-box and black-box
components has to be considered here, since the
latter lack the possibility to change their code.

• Reuse: can be determined by the amount and
frequency of reuse. Both are generic, objective and
quantitative metrics. The amount is the overall

427Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

number of reuses of the component, and the
frequency is the number of reuses for a certain period
of time (e.g., the last week, month, year etc., or since
it is available).

As stated before, these metrics are currently only

suggestions for quantifying the reusability measurement and
could be used as a starting point for quantitative empirical
research. Their completeness and accuracy in measuring the
reusability characteristics have to be empirically validated
and synchronized with insights from other communities
(such as those investigating software quality, complexity or
maintainability).

C. Discussion

This chapter presented a holistic analytical approach for
assessing the reusability of software components in an ad-
hoc reuse scenario. The literature survey, which was carried
out in the beginning of this research, did not identify any
other publication that has conducted such extensive analysis
of this topic. The GQM approach was used as a
formalization technique for the analysis in order to increase
its expressiveness. It was argued that, in order to identify
appropriate and reasonable metrics, a reusability require-
ments model and a reusability measurement model have to
be defined first. This also corresponds to the guidelines of
the GQM approach.

Clearly, the major drawback of this analysis is the
missing empirical validation of the proposed measurements
and metrics, since the usefulness and practicability of the
suggested models can only be proven by conducting
empirical case studies and statistically significant tests using
real-life data from existing libraries for reusable components.
Therefore, the next logical step would be to implement a
reusability model based on these metrics by following the
guidelines provided in the previous subsections, and to adjust
the calculation model until it satisfies the needs of
practitioners. It is also possible that the calculation model has
to be adjusted for different implementation scenarios – e.g.,
for implementation in a company-internal reuse library and a
freely available online library. The metric suites described in
chapter III should be the first source to look into when
searching for alternatives or extensions.

Additionally, empirical investigations need to establish
thresholds that the reusability values of the components have
to beat. These thresholds should reflect the effort that a
developer is willing to invest in the case of developing the
functionality in-house (similar to the idea of Halstead’s
Effort metric [16]). However, this is a non-trivial task, since
the abstract and technical characteristics of the software
component (included in the reusability measurement model)
need to be translated into time, cost or effort values (e.g.,
“How much effort will be needed to reuse a component in a
particular context, if its complexity has the value X?”).
Obviously, a lot of further research is needed in this area, but
since this clearly creates a considerable amount of effort
(that has not even been spent for most other software metrics
so far), we are forced to limit ourselves on merely sketching
the idea of this model for the time being.

Another issue arises from the white-box and black-box
nature of the components. If there is a mix of such
components in the consideration set, it might become
difficult to compare their reusability. This is an issue of the
granularity of measurement – the object of measurement for
some of the component’s characteristics (e.g., the complexity
or adaptability) is different. In the white-box case, these
metrics can be calculated on the basis of the whole
component, and in the black-box case, they can be calculated
based only on the parts of the components made available to
the developer – usually the interfaces with their methods and
attributes. Further research is needed to define guidelines for
comparing the reusability of white-box and black-box
components.

In general, we believe that the reusability models defined
here will bring more clarity and better structure to reusability
research and have the potential to become a new starting
point when it comes to assessing reusability. Once this field
has made further progress, it becomes more likely that
practicing reuse of software components will increase and be
more efficient.

V. CONCLUSION & FUTURE WORK

In this paper we have surveyed the current state of
research on software reusability: available metrics for the
reusability assessment of code in the object-oriented and
component-based software development were presented and
evaluated. Moreover, a revised comprehensive definition for
the reusability of software components was proposed by
following a structured analytical approach.

We have identified that the reusability of a software
component is a context-specific characteristic that can vary
in different application scenarios. This is an important
aspect, which affects the definition of reusability and the
implementation of its measurement. The reusability of a
software component depends on various non-functional
characteristics while fulfilling functional requirements (i.e.
providing the desired functionality) is a prerequisite for
assessing the reusability at all. It has become evident that
reusability is a highly complex characteristic and its quanti-
tative assessment is a non-trivial problem (as is the case for
most other software quality characteristics). It may not be
possible to fully automate the calculation in the near future
so that human intervention may always be necessary.

The proposed software reusability measurement models
and metrics in this paper still lack empirical validation so
that is a logical next step in reusability research that should
be addressed in the future. Moreover, the specific issues of
setting practical threshold values when assessing reusability
and comparing reusability of different components have to
be addressed by researchers. Otherwise, it will be difficult to
implement the model in practice. If future research succeeds
to overcome these open issues in determining software
reusability, it is likely that it will be a major step towards a
wider adoption of the component reuse paradigm by both
academia and business, which in turn can be seen a
cornerstone for the further improvement of recently
spreading software search engines and component
marketplaces.

428Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

REFERENCES
[1] C.W. Krueger, Software reuse, ACM Computing Surveys,

vol.24, June 1992, pp.131-183.
[2] M.D. McIlroy, Mass produced software components,

Software Engineering: Report on a conference by the NATO
Science Committee, Garmisch, Germany, 7th to 11th October
1968, Naur, P., Randell, B., Eds., NATO Scientific Affairs
Division, Brussels, Belgium, 1969, pp.138–150.

[3] R. Prieto-Diaz, Status report: software reusability, IEEE
Software, vol.10, May 1993, pp.61-66.

[4] M. Griss, Software reuse: From library to factory., IBM
Systems Journal, vol. 32, 1993, pp. 548--566.

[5] O. Hummel and C. Atkinson, Using the Web as a Reuse
Repository, Reuse of Off-the-Shelf Components, Lecture
Notes in Computer Science, vol. 4039, Springer, 2006,
pp.298-311.

[6] A. Ampatzoglou, K. Apostolos, G. Kakaronzzos, and I.
Stamelos, An Empirical Evaluation on the Reusability of
Design Patters and Software Packages, Journal of Systems
and Software, vol. 86, Dec. 2011, pp. 2265-2283.

[7] O. Hummel, W. Janjic, and C. Atkinson, Code Conjurer:
Pulling Reusable Software out of Thin Air, IEEE Software,
vol.25, Sep./Oct. 2008, pp. 45-52.

[8] G. Kakarontzas and I. Stamelos, Component Recycling for
Agile Methods, Sev-enth International Conference on the
Quality of Information and Communications Technology
(QUATIC), 29 Sept. 2010 – 2 Oct. 2010, pp.397-402.

[9] W.B. Frakes and K. Kang, Software reuse research: status and
future, IEEE Transactions on Software Engineering, vol.31,
July 2005, pp.529-536.

[10] T.C. Jones, Reusability in Programming: A Survey of the
State of the Art, IEEE Transactions on Software Engineering,
vol.SE-10, Sept. 1984, pp.488-494.

[11] W.B. Frakes and C. Terry, Software reuse: metrics and
models, ACM Computing Surveys, vol. 28, June 1996,
pp.415-435.

[12] A. Sharma, R. Kumar, and P.S. Grover, A Critical Survey of
Reusability Aspects for Component-Based Systems, World
Academy of Science, Engineering and Technology, vol. 33,
2007, pp.35-39.

[13] A. Khoshkbarforoushha, P. Jamshidi, and F. Shams, A metric
for composite service reusability analysis, Proceedings of the
2010 ICSE Workshop on Emerging Trends in Software
Metrics (WETSoM '10), ACM, New York, USA, 2010,
pp.67-74.

[14] T. Elr, Service-Oriented Architecture: Concepts, Technology,
and Design, Prentice-Hall, 2005.

[15] H. Washizaki, H. Yamamoto, and Y. Fukazawa, A Metrics
Suite for Measuring Reusability of Software Components,
Proceedings of the 9th International Symposium on Software
Metrics (METRICS '03), IEEE Computer Society,
Washington, DC, USA, 2003, pp.211-223.

[16] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002.

[17] W.B. Frakes and S. Isoda, Success Factors of Systematic
Reuse, IEEE Software, vol. 11, Sep./Oct. 1994, pp.14-19.

[18] Y. Kim and E.A. Stohr., Software reuse: survey and research
directions, Journal of Management Information Systems -
vol.14, March 1998, pp.113-147.

[19] D. Merkl, Self-Organizing Maps And Software Reuse (book
chapter), Compu-tational intelligence in software engineering,

Pedrycz, W., Peters, J.F. (eds.), Singapore, World Scientific,
1998, pp.65-95.

[20] O.P. Rotaru and M. Dobre, Reusability Metrics for Software
Componenents, ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA’05),
Washington DC, USA, 2005, pp.24-31.

[21] J. Poulin, Measuring software reusability, Proceedings of the
International Conference on Software Reuse: Advances in
Software Reusability, 1-4 Nov. 1994, pp.126-138.

[22] G. Caldiera and V.R. Basili, Identifying and qualifying
reusable software components, IEEE Computer, vol.24, Feb.
1991.

[23] M. Halstead, Elements of Software Science, Amsterdam:
Elsvier North-Holland, Inc., 1977.

[24] T.J. McCabe, A Complexity Measure, IEEE Transactions on
Software Engineering, vol. 2, Sept. 1976, pp. 308-320.

[25] J. Barnard, A new reusability metric for object-oriented
software, Software Quality Journal, vol. 7, Jan. 1998, pp.35-
50.

[26] Y. Mao, H. Sahraoui, and H. Lounis, Reusability Hypothesis
Verification using Machine Learning Techniques: A Case
Study, Proceedings of the International Conference on
Automated software engineering, IEEE, 1998, pp.84-93.

[27] Y. Lee and K.H. Chang, Reusability and maintainability
metrics for object-oriented software, Proceedings of the 38th
annual on Southeast regional con-ference (ACM-SE 38),
ACM, New York, NY, USA, 2000, pp.88-94.

[28] E.S. Cho, M.S. Kim, and S.D. Kim, Component Metrics to
Measure Component Quality, Proceedings of the Eighth Asia-
Pacific on Software Engineering Con-ference (APSEC '01),
IEEE Computer Society, Washington, DC, USA, 2001,
pp.419-426.

[29] L.H. Etzkorn, W.E. Hughes Jr., and C.G. Davis, Automated
reusability quality analysis of OO legacy software,
Information and Software Techn., vol.43, 2001, pp. 295-308.

[30] S. Bhattacharya and D.E. Perry, Contextual reusability
metrics for event-based architectures, Intern. Symp. on
Empirical Software Engineering, 17-18 Nov. 2005, pp.459-
468.

[31] G. Gui and P.D. Scott, New Coupling and Cohesion Metrics
for Evaluation of Software Component Reusability, Proc. of
the Intern. Conf. for Young Computer Scientists, 2008,
pp.1181-1186.

[32] N. Gill and S. Sikka, Inheritance Hierarchy Based Reuse &
Reusability Metrics in OOSD, International Journal on
Computer Science and Engineering (IJCSE), vol.3, June
2011, pp.2300-2309.

[33] M.A.S. Boxall and S. Araban, Interface Metrics for
Reusability Analysis of Components, Australian Software
Engineering Conference (ACWEC’04), Melbourne, Australia,
2004, pp.40-50.

[34] A. Sharma, P.S. Grover, and R. Kumar, Reusability
assessment for software components, SIGSOFT Software
Engineering Notes, vol.34, No.2, February 2009, pp.1-6.

[35] V.R. Basili, G. Caldiera, and H.D. Rombach, The Goal
Question Metric Ap-proach, Encyclopedia of Software
Engineering, vol.1, New York, John Wiley & Sons, Inc., Sept.
1994, pp.528-532.

[36] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky,
and M. Tivoli, Towards an engineering approach to
component adaption. In Architecting Systems with
Trustworthy Components, Springer, 2006, pp. 193–215.

429Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

