
Deriving DO-178C Requirements Within the Appropriate Level of Hierarchy

Jamie P. White

Department of Computer Science

University of North Dakota

Grand Forks, USA

Jamie.white@gmail.com

Hassan Reza

Department of Computer Science

University of North Dakota

Grand Forks, USA

reza@aero.und.edu

Abstract— In this paper, a set of criterion is proposed that

assists an engineer in placing a derived requirement as defined

by DO-178C in the proper document within the requirement

document hierarchy. The proper documentation of derived

requirements has historically posed some issues when it comes

to requirements-based testing. For one thing, if the derived

requirements are inappropriately documented, then it will be

very difficult to establish traceability between individual

requirements to the elements of design, implementation, and

verification. Consequently, the lack of correlation between

elements of requirements, design, code, and verification can

jeopardize the safety of systems because it will be impossible to

establish forward and backward traceability. To this end, the

proposed criteria discussed in this work attempts to improve

the visibility of derived requirements to prevent the unwanted

consequences of masking required information from

developers.

Keywords-requirement traceability; requirements analysis;

safety critical systems; RTCA/DO-178C; software testing;

software design

I. INTRODUCTION

An aircraft system is a complex system that is composed
of a hierarchy of subsystems, which are further decomposed
into software and hardware elements. A set of requirement
documents describe each level of this requirement hierarchy.
The highest layer, the system requirements, specifies the
observable requirements at the system level (e.g., The
System shall display total fuel quantity on the FMS
Departure page). These very high level requirements are
allocated to specific subsystems such as a Flight
Management System (FMS) (e.g., FMS shall display total
fuel quantity in either pounds or kilograms). Subsystem
requirements are then further allocated to software and
hardware high-level requirements (HLRs) (e.g., FMS shall
display total fuel quantity in kilograms when metric units are
selected). These HLRs can then be decomposed into low-
level requirements (LLRs) at which point they should be
specific enough to implement in hardware or software.
Figure 1 illustrates a hierarchy of requirements starting at the
system level that is decomposed into subsystem requirements
and then further decomposed into hardware and software
requirements.

Figure 1. Example of a system requirement document hierarchy

High-level requirements do not always contain sufficient

details to describe the underlying requirement documents. As
such it is necessary to create derived requirements (DR). A
DR as defined by DO-178C [10] is a requirement that is not
directly traceable to a higher-level source; it is inferred or
deduced from a specific source/user. As an example of a
derived requirement for ABC system can be read as “The
ABC DataFusion subsystem shall write position, velocity,
and maneuverability data received from Radar data signal
processing site 1 to external storage”. Such low-level details
may be outside the scope of the SW-HLR document.

Low-level requirements are implementation of high-level
requirements; they can be generated differently by different
engineers but having the same functionalities. Low level
requirements may then be implemented by different
programmers in totally different ways, but yet representing
the same functionalities [18].

An example of corresponding low-level requirements for
ABC system can be read “The ABC DataFusion subsystem
shall read the position, velocity, and maneuverability data
received from the Radar Subsystem every 60 seconds”.

As DO-178C requires the existence of source code is
directly traceable to a requirement, it will then become
necessary to derive such requirements in a low-level
software requirements (SW-LLR) document. Figure 2 shows
an example of a software derived requirement (SW-DR) that
is derived within a SW-LLR document.

430Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

High-level
Requirement 1

Low-level

Requirement 1 Requirement 2 Requirement 3

(Derived)

Figure 2. Example of a derived requirement

Deciding at what level a requirement should be derived at
is generally done on a case by case basis (e.g., is it more
appropriate to derive the requirement at the SW-HLR
requirement document versus the SW-LLR document?).
Such a decision could have unintended consequences and
cost by hiding information applicable to other stakeholders.

As an example, let us assume that a SW-HLR document
exists for a multi-threaded FMS application. From the
SW_HLR document, multiple SW_LLR documents are
created and categorized by independent functions worked on
by multiple software engineering teams. In one of the
SW_LLR documents a DR is intoduced that impacts a shared
resource among the other software functions. Once
implemented the other software functions could exhibit
unpredicatable behaviors or defects, which may lead to
additional time spent debugging the issue. If the defect is
identified late in the software development process, then the
cost for fixing the defect will become increasing expensive
[13].

The paper is organized as follows. Section 2 provides an
overview of the certification agencies and DO-178C. Section
3 contains related work. Section 4 defines criteria to serve as
a guideline for the appropriate placement of a derived
requirement regardless if it impacts safety aspect of a system.
Such criteria are based on nonfunctional requirements such
as operability, safety, reliability, observability, etc. Criteria
for functional requirements are also defined, which include
interfaces and configurationable elements. Section 5 shows
a simple example of requiremnents for the display of fuel
quantity in an aircaft cockpit. Finally Section 6 discusses a
conclusion and future work.

II. BACKGROUND

Certification agencies such as the Federal Aviation

Administration (FAA), Transport Canada, and the European

Aviation Safety Agency (EASA) rely on industry standards

to serve as guidelines on how to create aircraft systems that

are certifiable, or trusted for use in airborne applications.

ARP-4754 [7] serves as the guideline for system and

subsystem processes, DO-254 [8] for hardware processes,

and DO-178C [10] for software processes.
Avionics systems have contained software since the

1970s. As the certification of avionic systems increased in
complexity, additional methods were necessary to achieve
the same level of assurance as hardware based systems [11].

Radio Technical Commission for Aeronautics (RTCA)

and European Organization for Civil Aviation Equipment

(EUROCAE) formed committees to create common

certification criteria for software development [11]. The

works from these committees were merged, which led to

RTCA publishing DO-178 [17] and EUROCAE publishing

ED-12 with both documents containing identical content

[11]. DO-178 categorized systems as critical, essential and

non-essential and defined the rigor needed to develop

software to each level [16].
DO-178C, published in December 2011, is the recent

standard, which describes the processes in the creation of
flight critical software. These processes outline the stages
which include the creation of multiple levels of
requirements, design, implementation and verification. From
the previous version of DO-178B, published in 1992, little
has changed from this core document. The changes mostly
consist of fixing errors and inconsistencies, word
improvements, and adding several clarifications and
objectives [11]. The bulk of the work was the creation of
supplement documents, referred to by DO-178C, that
provide guidance on model-based development, tool
qualification, object-oriented technology, and formal
methods.

DO-178C describes that system level requirements are
decomposed into SW-HLRs. SW-HLRs are defined by DO-
178C as being developed from the analysis of system
requirements, safety-related requirements and system
architecture [10]. SW-LLRs are then created, which further
decompose the SW-HLRs. SW-LLRs are software
requirements that were developed from SW-HLRs or are
derived, which describe in sufficient detail to allow source
code to be implemented without additional information [10].
The role of SW-HLRs is to describe the ‘what’ and for the
SW-LLRs to describe the ‘how’ [5][6]. SW-DRs can be SW-
HLRs or SW-LLRs and are not directly traceable to higher-
level requirements. SW-DRs are used to specify additional
behavior beyond what is defined in the higher level
requirements [10].

Software is implemented from the SW-LLRs and is
verified from requirements based testing that verify the
correctness of SW-HLRs and SW-LLRs. Finally, traceability
is required to be maintained at each stage (i.e., SW-LLRs are
traceable to SW-HLRs, code is traceable to SW-LLRs and
verification is traceable to both SW-LLRs and SW-HLRs).

The certification standards specify that traceability, both
forward and backward, is needed for the allocated
requirements at each requirement document level.
Requirements traceability describes the ability to describe
and follow a requirement in both a forward and backward
direction [1]. A requirement management tool such as IBM
Rational DOORs supports linking between levels of
requirements through the use of requirement attributes [2].

In DOORs, a requirement document is called a module.
One way to organize a project would be to create a separate
DOORs module for each level of the requirement hierarchy
(e.g., system requirements, subsystem requirements, SW-
HLRs, SW-LLRs). A DOORs link can then be used to

431Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

connect multiple requirements. A requirement can be linked
with another requirement that exists in the same module or a
different module. DOORs links are directional and are
categorized as ‘in-links’ or ‘out-links’. In the context of DO-
178C, the practice of linking is done to show decomposition
of requirements. As an example, a SW-HLR could contain
in-links from one or more SW-LLRs and an out-link to a
subsystem requirement. Using links in DOORs, forward and
backward traceability is maintained (e.g., for a specific SW-
HLR, traceability information exists for the source of the
SW-HLR as well as the SW-LLRs that decompose it).

Finally, DO-178C requires additional processes for SW-
DRs. Rationale must be documented to support the existance
of a SW_DR When using DOORs, this documentation can
be captured as an attribute attached to the SW-DR.
Additional processes must be created to provide DRs to the
system process. Typically, this is done by having a safety
engineer review all SW-DRs and its rationale to determine if
there is an impact to safety (i.e., could the SW-DR cause loss
of function resulting in additional pilot workload or provide
misleading information to the pilots). SW-DRs that are
determined to impact safety are captured by the system
safety assessment process. Most DRs typically do not impact
safety so these requirements are larged ignored at the system
level. Even if a SW-DR requirement that impacts safety is
tracked at the system level, these requirements are not easily
traced to other functional requirements of the system. Hence,
it is still important that SW-DRs that impact safety are
derived at the appropiate level.

III. RELATED WORK

Since the 1970s, product organizations have used
requirements traceability in order to have complete and
consistent information about the product being built [2].
Since this time, much work has been done studying
requirements traceability and traceability tool support [3].
Others have proposed frameworks for the organization of
traceability information [4]. Studies have been conducted to
understand the benefits and costs of traceability [1][2].

In 2011, RTCA (Radio Technical Commission for
Aeronautics), Inc. published DO-178C “Software
Considerations in Airborne Systems and Equipment
Certification”, which serves as a guide for the creation of
airborne software using traditional methods [5], and which
typically utilize the C and ADA programming languages.
DO-331[ref] was also published in 2012 which describes
how to implement software using model-based development
(MBD) [6]. Many companies selling aviation products
follow DO-178C or the previous release of DO-178B to
prove airworthiness of their software elements. Regulatory
agencies such as the Federal Aviation Administration (FAA),
Transport Canada, and the European Aviation Safety Agency
(EASA) audit these software elements seeking compliance to
DO-178C.

Nonfunctional requirements (NFRs) play an important
role in the creation of software architecture and are blamed
for system re-engineering when not considered when
designing the architecture [14]. In an avionics environment,
certain NFRs play important role, which include security,

maintainability, safety, availability, integrity, and
schedulability [15]. These NFRs should be considered when
creating the software architecture.

IV. METHOD

In this section, 6 points of criterion have been suggested
for the proper placement of derived requirements within a
requirement document hierarchy. The criteria are intended to
cover certain special cases such as requirements that specify
external interfaces, externally observable behavior,
configurable elements, etc. Engineers should consider each
criterion to determine the most appropriate placement for a
derived requirement to ensure information is not hidden from
the stakeholders.

As an example, system or subsystem engineers will have
little visibility of requirements defined in a SW-HLR or SW-
LLR document. If a requirement is derived in a SW-HLR or
SW-LLR document, there would be no link for the system or
subsystem engineer to follow from their requirements
documents. This could result in important information being
hidden. On the other hand, putting large amounts of
irrelevant details in a high level requirements document
could result in the document becoming unmanageable.

The end goal is to place requirements in the requirements
document that provides the most visibility to the stakeholders
while preserving the scope of the document. Hence, there is a
fine line between putting too much information in a high-
level requirements document and providing an appropriate
amount of visibility to stakeholders. In addition, the CAST-
15 position paper provides guidance that for software
requirements a high-level requirements document should
describe the “what” and a low-level requirements document
should describe the “how” [5]. Placing the derived-
requirements in the correct requirements document will
improve traceability by making the requirements more
visible to the stakeholders. Some of the consequences of
poor traceability include lower changeability and higher
maintenance costs [3].

A. Requirements that specify an external interface

Software and hardware elements contain external

interfaces. Software elements provide APIs allowing

communication with other software elements. Hardware can

contain external interfaces for data buses (e.g., ARINC 429

connectors) power adapters or other form factors.

The introduction of the derived requirement for such

features would depend on the scope or visibility of these

interfaces (i.e., the software functions or software

applications that have access to these interfaces). For

instance, if a software element provides a service to

software elements in other subsystems, it would be

appropriate to create a high-level parent requirement in the

systems requirement document (e.g., “The system shall

provide an interface to collect fault information”) Such a

requirement would be further decomposed in the subsystem

and software requirements document until it is specific

enough to be implemented. If the software element provides

an API that is only visible to software elements in the same

432Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

subsystem, the parent requirement should be derived in the

subsystem requirement document (e.g., FMS shall provide

an interface to store FMS faults to the FMS maintenance

log).

B. Requirements that describe externally observable

behavior

Externally observable behavior includes any set of

inputs that yields an output that can be noticeable to the

user. The set of requirements in the systems or subsystems

documents should provide high-level detail for the

capabilities and functional requirements that are observable

to the user. The user (i.e., pilot) must have a complete

understanding for the controls of the aircraft and in turn the

aircraft must respond in a deterministic fashion.

Requirements must exist to capture all behavior.

Requirements should also be added to cover any corner or

fault conditions. For instance, if a FMS software element is

placed in a fault state, which produces an error message

visible to the user, there should be a basis for that

requirement at the system level (e.g., FMS shall display

“FMS Unavailable” within the target window when

unavailable). Such a requirement at the system level would

be more appropriate than at the subsystem level since it is

observable to the user. Information should not be ‘hidden’

from the user. In addition, test procedures should be written

based on system or subsystem requirements for anything

observable at the system level.

C. Requirements that describe configurable elements

 Many components of an aircraft are configurable to

support reuse on different aircraft types or for selectable

options for a specific aircraft type.

This criterion depends on which level the element needs to

be configurable. For example, an aircraft manufacture may

sell a common avionics package to its customers, which are

allowed to purchase additional features. Features may be

enabled through the use of licenses. The basis of license

management should be defined at the system level with

requirements on how to configure the system. Alternatively,

software elements may be reused on many aircraft systems,

which contain a single configuration per aircraft type.

Describing the configurable elements at a higher level

would add no value. As an example, the owner of an aircraft

may subscribe to services such as Graphical Weather Radar

that would require a key to enable. Maintenance personnel

could enable the feature by entering the license key in one

of the avionics application maintenance pages. System

requirements should capture this capability. Another

example is a Radio Interface Unit (RIU), which may be

configurable to support multiple aircraft types to support

reuse. At the system level, there would be no need to

capture such requirements since it was a design decision to

make the RIU configurable to support reuse. The

implementation details should in turn be hidden from the

user.

D. Requirements that describe performance, schedulability,

and design margin

 For software, especially within an Integrated Modular

Avionics (IMA) environment, system requirements

describing performance, schedulability, and design margin

(e.g., maximum allowed latency, CPU utilization, memory

usage, etc) should be defined. This is required so that

when the aircraft is integrated each application has

sufficient resources. Additional capacity should be left for

future growth. In addition, subsystems requirements, SW-

HLRs, and SW-LLRs could have derived requirements to

account for future growth, reuse, task scheduling, etc. For

example, derived SW_HLRs describing how often specific

threads should run could be defined. SW_LLRs could

contain derived requirements specifying size of buffers.

 E. Requirements that describe security features

 Like external interfaces, requirements describing

security features depend on scope. For example, many

aircrafts now provide support for ETHERNET for its

passengers [15]. The mechanism that isolates ETHERNET

traffic from other aircraft communications should be done

at the system level or subsystem level. An example of a

derived SW_HLR, databases used by an FMS could be

encrypted to preserve propriety information. As it is not

applicable to the system that such security features are

implemented, it would not be appropriate to define such

security features in a higher-level document.

 F. Requirements that describe system safety availability

constraints

Safety requirements concerning the development process
include efforts to ensure correctness of the design and
correctness of requirements in terms of safety where
availability describes the continuity of a function [15].
System safety/availability constraints are expressed in DO-
178C through a Design Assurance Level (DAL). DAL A is
the most stringent and is designated to functions that could
contribute to a catastrophic failure condition (e.g., failure
could cause a crash). DAL E is at the other end of the
spectrum in which a failure has no impact on the safety of
the aircraft. Safety assessments for the aircraft should be
conducted and defined at the system level as specified by
ARP4754 [7]. Hence, requirements expressing DAL levels
should be contained in system documents and not derived in
software documents. Derived requirements at any level need
to be reviewed by a safety engineer to ensure there is no
negative effect on safety or availability of the aircraft (e.g., a
failure could cause a loss of the primary flight display).

V. EXAMPLE

Figure 3 illustrates an example of FMS requirements
responsible for displaying total fuel quantity beginning at the
system level. This example demonstrates some of the
difficulty in determining the correct place to capture DRs.
SYS_FMS1, a system requirement, is decomposed into one
subsystem requirement, SUB_FMS1. This decomposition is

433Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

represented by an ‘in-link’ into SYS_FMS1. The ‘in-link’ is
represtented by a directional arrow from SUB_FMS1 to

SYS_FMS1.

Req ID Req Text Derived? Rationale

SYS_FMS1
The System shal l display total fuel

quantity on the FMS Departure page
N/A

System Requirements

Req ID Req Text Derived? Rationale

SUB_FMS1
FMS shal l display total fuel quantity in

ei ther pounds or ki lograms.
FALSE

Subsystem Requirements

Req ID Req Text Derived? Rationale

SW-HLR_FMS1
FMS shal l display tota l fuel quanti ty in

ki lograms when metric units are selected.
FALSE

SW-HLR_FMS2
FMS shal l display tota l fuel quanti ty in

ki lograms when metric units are selected.
FALSE

SW-HLR_FMS3

FMS shal l display '-----' when the tota l

fuel quanti ty i s inval id. TRUE

Speci fies what is displayed

when fuel quanti ty i s out of

range

High-Level Software Requirements

Req ID Req Text Derived? Rationale

SW-LLR_FMS1

The total fuel shal l be the addition of the

left wing fuel tank plus the right wing

fuel tank plus the center fuel tank.

FALSE

SW-LLR_FMS2

The total fuel shal l be the addition of the

left wing fuel tank plus the right wing

fuel tank plus the center fuel tank and

then multipl ied by 0.45359237.

FALSE

SW-LLR_FMS3

Total Fuel Quantity shal l be inval id when

the SSM of any of the fol lowing label 's i s

Fa i l , NCD, or miss ing: 246, 247, 241.

FALSE

SW-LLR_FMS4
FMS shal l pol l the fuel sensors every

200ms.
TRUE

Rate at which FMS software

pol ls fuel sensors to

determine fuel quanti ty

Low-Level Software Requirements

Figure 3. Example of FMS

SUB-FMS1 is decomposed into two SW-HLRs, SW-
HLR-FMS1 and SW-HLR_FMS2. SW-HLR_FMS3 is a
SW-HLR DR since it is not traceable to SYS-FMS1.
Philisophically, SW-HLR_FMS3 is a DR since it does not
decompose SUB-FMS1 but instead describes the behaviour
when fuel quantity cannot be displayed. In Figure 3, it is
apparent that SW-HLR_FMS3 is a DR since it contains no
‘out-link’ to a higher-level source. In addition, it is a
common practice to create a requirement attribute specifying
if the requirement is derived or not. This derived attribute is
shown in the “Derived?” column for each requirement. Since
HLR-FMS3 is a DR, it is also required by DO-178C to
include rationale, which is included in the “Rationale”
column.

SW-HLR_FMS1, SW-HLR_FMS2, and SW-
HLR_FMS3 are further decomposed into SW-LLR_FMS1,
SW-LLR_FMS2, and SW-LR_FMS3. Finally SW-

LLR_FMS4 and SW-LLR_FMS5 are derived requirements
since they are not traceabile to a higher source.

Let us now review each of the derived requirements. SW-
HLR_FMS3 is an interesting example of a requirement that
contains externally observable behaviour’ as described in
Section 4. The caveat is, this externally observable behaviour
is not based on an explicit input by the user, but instead a
minor fault condition.

Many would argue that it would not be appropriate to
describe a requirement such as SW-HLR_FMS3 in the
systems requirement document, as it would be too detailed.
SW-HLR_FMS3 merely captures the behaviour for a corner
fault conditon that should not occur in normal operation.

Using the same argument, SW-HLR_FMS3 may also not
be appropriated in the subsystem requirement document.
There would be value in including a requirement such as
SW-HLR_FMS3 in the subsystem requirements document
for other reasons. Through subsystem testing, it is quite

434Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

common to introduce faults into the system that would reach
such fault conditions. By not having the information from
SW-HLR_FMS3 stored or otherwise traced to the subsystem
document, a subsystem engineer may have diffiuclty to
understand why the fault occurred. The engineer may need to
consult the domain experts or search for this information in
software requirement documents.

SW-LLR_FMS4 is another interesting example of a DR,
which relates to a requirement that describes performance,
schedulability, and design margin (see Section 4). SW-
LLR_FMS4 describes how often the FMS task should read
fuel quantity information from the fuel sensors. As long as
the value chosen does not impact system performance (e.g.,
sending data requests every millisecond which could
overload a data bus), a detail such as this will be insignificant
at the system or subsystem level. Since SW-LLR_FMS4 is a
DR, a safety engineer is required to review this requirement
to determine if it can impact the safety of the aircraft.

For this DR, it is assumed that the fuel sensor
information is published throughout the system at some
constant rate. Therefore, there should be no real stakeholders
of this information. Hence, this requirement could be
considered an implementation detail and placed in a SW-
LLR document.

On the other hand, if the fuel sensors were a shared
resource among multiple FMS threads, there could be
contention. In this case, it will be appropriate to put
LLR_FMS4 in the SW-HLR document. For a more
complicated example, consider if there are primary and
secondary fuel sensors. Would it be considered an
implementation detail to fail-over to the secondary fuel
sensor data when the data from the primary fuel sensor is
invalid or missing?

In summary, this work shows that it is not always a
trivial problem to determine the proper placement for a DR.
In terms of DO-178C, there is no explicit answer beyond
putting the “what” in the SW-HLR and the “how” in the SW-
LLR. Therefore, other aspects must also be considered such
as ensureing traceability and visibility of information.

VI. CONCLUSION AND FUTURE WORK

This study proposes a set of guidance to for the optimal
placement of derived requirements as defined by DO-178C.
By deriving a requirement in a document that is too low-
level may have the unwanted consequences of hiding
information from stakeholders (e.g., engineers). This, in
turn, may result in forward and backward traceability
problem, which can compromise dependability of safety
critical systems.

In future work, apart from creating additional detail in the
criteria contained in this paper, validation of these criteria
will be carried on. Another related topic for future work
would be to create criteria to determine if a LLR correctly
decomposes a HHR or if it should be considered a DR. There
is more effort involved with the creation of DRs (e.g.,
creation of rationale, review with safety engineer, additional
scrutiny, etc.). Because of this, engineers may be more prone
to create a trace to a HLR (indicating decomposition) versus
specifying as a DR when there is a gray area. Of course, this

is especially dangerous (left uncorrected) as this would
bypass a review by a safety engineer.

REFERENCES

[1] Gotel, O. C .Z. and Finkelstein, C. W., "An analysis of the
requirements traceability problem," Requirements
Engineering, 1994., Proceedings of the First International
Conference on Software Engineering , pp. 94-101, April
1994.

[2] Kirova, V., Kirby, N., Kothari, D., and Childress, G.,
”Effective requirements traceability: Models, tools, and
practices,” Bell Labs Technical Journal, vol. 12, no. 4, pp.
143-157, 2008.

[3] Winkler, S. and Pilgrim, J., “'A survey of traceability in
requirements engineering and model-driven development,”
Software & Systems Modeling, vol. 9, no. 4, pp. 529-565,
2010

[4] Ramesh, B. and Jarke, M., “Toward Reference Models for
Requirements Traceability,” IEEE Transactions on Software
Engineering, vol. 27, no.1, pp. 58-93, 2001.

[5] RTCA. DO-178B/ED-12B. Software Considerations in
Airborne Systems and Equipment Certification. RTCA, 1992.

[6] Certification Authorities Software Team (CAST) Position
Paper.; “CAST-15: Merging High-Level and Low-Level
Requirements”, February 2003.

[7] Marques, J. C., Yelisetty, S. M. H., Dias, L. A. V., and da
Cunha, A. M., "Using Model-Based Development as Software
Low-Level Requirements to Achieve Airborne Software
Certification," Information Technology: New Generations
(ITNG), pp. 431-436, April 2012.

[8] “Guidelines for Development of Civil Aircraft and Systems”,
EUROCAE ED-79A and SAE Aerospace Recommended
Practice ARP 4754A, 2010.

[9] RTCA, 2000, DO-254: Design Assurance Guidance for
Airborne Electronic Hardware, RTCA, Inc., Washington, DC.

[10] RTCA DO-178C—Software Considerations in Airborne
Systems and Equipment Certification, December 2011.

[11] Qualtech Consulting Inc, “Summary of Difference Between
DO-178B and DO-178C",
http://www.faaconsultants.com/html/do-178c.html.

[12] Taylor, C., Alves-Foss J., and Rinker, B., “Merging Safety
and Assurance: The Process of Dual Certification for
Software.” Proceeding of Software Technolgy Conference
(STC), Salt Lake City, UT, 2002.

[13] Chaar, J. K., Halliday, M. J., Bhandari, I. S., and Chillarege,
R., “In-Process Evaluation for Software Inspection and Test,”
IEEE Trans. Software Eng., vol. 19, no. 11, pp. 1055-1070,
November 1993.

[14] Reza, H., Jurgens, D., White, J., Anderson, J., and Peterson,
J., "An architectural design selection tool based on design
tactics, scenarios and nonfunctional requirements," Electro
Information Technology, 2005.

[15] Paulitsch, M., Ruess, H., and Sorea, M., “Non-functional
Avionics Requirements,” Communications in Computer and
Information Science, vol. 17, pp. 369–384, 2009.

[16] Johnson, L. A., "DO-178B, Software considerations in
airborne systems and equipment certification",
http://www.dcs.gla.ac.uk/~johnson/teaching/safety/reports/sch
ad.html.

[17] Radio Technical Commission for Aeronautics, “DO-178 -
Software Considerations in Airborne Systems and Equipment
Certification”, Washington, United States, 1982.

[18] Hayhurst, K.,Veerhusen, D., Chilenski, J., and Rierson, L. A.
Practical Tutorial on Modified Condition/Decsion Coverage.
NASA/TM-2001-210876, 2001.

435Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

