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Abstract—Mutation testing is a well established fault-based
technique for assessing and improving the quality of test
suites. Mutation testing can be applied at different levels of
abstraction, e.g., the unit level, the integration level, and the
specification level. Designing mutation operators represents
the cornerstone towards conducting effective mutation testing
and analysis. While mutation operators are well defined for
a number of programming and specification languages, to
the best of our knowledge, mutation operators have not been
defined for the Abstract State Machines (ASM) formalism. In
this paper, we define and classify mutation operators for the
Abstract State Machines (ASM) formalism. The proposed ASM
mutation operators are illustrated using examples written in the
CoreASM language. Furthermore, we have developed a tool for
automatic generation of mutants from CoreASM specifications.

Keywords-Mutation testing; specification; mutation operator;
Abstract State Machines (ASM); CoreASM.

I. INTRODUCTION

Mutation testing [1] is a well established fault-based
testing technique for assessing and improving the quality
of test suites. Mutation testing uses mutation operators to
introduce small changes, or mutations, into the software
artifact (i.e., source code or specification) under test. A
mutant is produced by applying a single mutation operator,
and for each mutant a test is derived that distinguishes the
behaviors of the mutated and original artifact.

In a recent survey on the development of mutation testing,
Jia and Harman [2] have stated that more than 50% of
the mutation related publications have been applied to Java
[3], Fortran [4] and C [5]. Although mutation testing has
mostly been applied at the source code level, it has also been
applied at the specification and design level [6][2]. Formal
specification languages to which mutation testing has been
applied include Finite State Machines [7][8][9], Statecharts
[10], Petri Nets [11] and Estelle [12].

Fabbri et al. [7] have applied specification mutation to val-
idate specifications based on Finite State Machines (FSM).
They have proposed 9 mutation operators, representing faults
related to the states (e.g., wrong-starting-state, state-extra,
etc.), transitions (e.g., event-missing, event-exchanged, etc.)
and outputs (e.g., output-missing, output-exchanged, etc.)
of an FSM. In a related work, Fabbri et al. [10] have
defined mutation operators for Statecharts, an extension
of FSM formalism, while Batth et al. [13] have applied

mutation testing to Extended Finite State Machines (EFSM)
formalism.

Hierons and Merayo [9] have investigated the application
of mutation testing to Probabilistic (PFSMs) or stochastic
time (PSFSMs) Finite State Machines. The authors [9] have
defined new mutation operators representing FSM faults
related to altering probabilities (PFSMs) or changing its
associated random variables (PSFSMs) (i.e., the time con-
sumed between the input being applied and the output being
received).

The widespread interest in model-based testing techniques
provides the major motivation of this research. We, in
particular, focus on investigating the applicability of fault-
based testing (vs. scenario-based testing) to Abstract State
Machines (ASM) [14] specifications. We aim at assessing
and further enhancing the fault-finding effectiveness of test
suites targeting ASM-based models.

While mutation operators are well defined for a number
of FSM related paradigms such as EFSM, PFSM and Stat-
echarts, to the best of our knowledge mutation operators
have not been defined for the Abstract State Machines [14]
paradigm.

This paper serves the following purposes:
• Provide a set of mutation operators for Abstract State

Machines [14] formalism.
• Present a classification of the proposed mutation op-

erators into three categories: ASM domain operators,
ASM function update operators, and ASM transition
rules operators.

• Present a tool for generating and validating ASM
mutants.

The remainder of this paper is organized as follows. The
next section provides an overview of the Abstract State
Machines (ASM) [14] formalism. In Section III, we define
and classify a collection of mutation operators for ASM
paradigm. Section IV describes the ASM Mutation tool.
Finally, conclusions are drawn in Section V.

II. ABSTRACT STATE MACHINES

Abstract State Machines (ASM) [14] define a state-based
computational model, where computations (runs) are finite
or infinite sequences of states {Si} obtained from a given
initial state S0 by repeatedly executing transitions δi:
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S0
δ1 // S1

δ2 // S2
. . . δn // Sn

An ASM A is defined over a fixed vocabulary V , a
finite collection of function names and relation names. Each
function name f has an arity (number of arguments that
the function takes). Function names can be static (i.e., fixed
interpretation in each computation state of A) or dynamic
(i.e., can be altered by transitions fired in a computation
step). Dynamic functions can be further classified into:

• Input functions that A can only read, which means
that these functions are determined entirely by the
environment of A. They are also called monitored.

• Controlled functions of A are those which are updated
by some of the rules of A and are never changed by
the environment.

• Output functions of A are functions which A can only
update but not read, whereas the environment can read
them (without updating them).

• Shared functions are functions which can be read and
updated by both A and the environment.

Static nullary (i.e., 0-ary) function names are called con-
stants while Dynamic nullary functions are called variables.
ASM n-ary functions have the following form: f : T1 x T2

x . . . ... Tn → T.
Given a vocabulary V , an ASM A is defined by its

program P and a set of distinguished initial states S0. The
program P consists of transition rules and specifies possible
state transitions of A in terms of finite sets of local function
updates on a given global state. Such transitions are atomic
actions. A transition rule that describes the modification of
the functions from one state to the next has the following
form:

if Condition then <Updates> endif

where Updates is a set of function updates (containing only
variable free terms) of form: f(t1,t2,. . .,tn):= t which are
simultaneously executed when Condition (called also guard)
is true. In a given state, first, all parameters ti, t are evaluated
to their values, vi, v, then the value of f(v1,. . .,vn) is updated
to v. Such pairs of a function name f, which is fixed by the
signature, and an optional argument (v1,. . .,vn), which is
formed by a list of dynamic parameters value vi, are called
locations.

Example1: The following rule yields the update-set {(x,
2), (y(0), 1)}, if the current state of the ASM is {(x, 1),
(y(0), 2)}:

if (x = 1) then x := y(0)

y(0) := x

In every state, all the rules which are applicable are
simultaneously applied. A set of ASM updates is called
consistent if it contains no pair of updates with the same

locations, i.e., no two elements (loc,v) and (loc,v’) with
v̸=v’. In the case of inconsistency, the computation does
not yield a next state.

Example2: The following update set {(x, 1), (y, 3), (x,
2)}, is inconsistent due to the conflicting updates for x:

x := 1

y := 3

x := 2

For a detailed description of Abstract State Machines, the
reader is invited to consult [15].

In what follows, we describe mutation operators for
Abstract State Machines. Although, we illustrate the appli-
cability of our approach using features and examples from
CoreASM [16], our proposed mutation operators can be
applied to any ASM-based language, thus maintaining the
discussion generic.

III. ABSTRACT STATE MACHINES MUTATION
OPERATORS

We use the following guiding principles, introduced in
[17], to formulate our mutation operators:

• Mutation categories should model potential faults.
• Only simple, first order mutants should be generated.
• Only syntactically correct mutants should be generated.
There exist several aspects of an ASM specification that

can be subject to faults. These aspects can be classified into
three categories of mutation operators:

1) ASM domain mutation operators.
2) ASM function update mutation operators.
3) ASM transition rules mutation operators.

Each category contains many mutation operators, one per a
fault class.

A. ASM Domain Mutation Operators

A domain (called also universe) consists of a set of
declarations that establish the ASM vocabulary. Each
declaration establishes the meaning of an identifier within
its scope. For example, the following CoreASM [16] code
defines a new enumeration background PRODUCT having
three elements (i.e., Soda, Candy, and Chips) and three
functions selectedProduct, price, and packaging:
enum PRODUCT = {Soda, Candy, Chips}
function selectedProduct: → PRODUCT
function price: PRODUCT → NUMBER
function packaging: PRODUCT*PRODUCT → NUMBER

ASM domains/universes can be mutated by adding or
removing elements. Table I shows examples of the following
domain mutation operators:

• Extend Domain Operator (EDO): the domain is ex-
tended with a new element.
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• Reduce Domain Operator (RDO): the domain is re-
duced by removing one element.

• Empty Domain Operator (EYDO): the domain is emp-
tied.

Table I
EXAMPLES OF ASM DOMAIN MUTATION OPERATORS FOR CoreASM

[16]

Mutation Operator CoreASM Mutant S’

Extend Domain Operator
(EDO)

enum PRODUCT = {Soda, Candy,
Chips, Sandwich}.

Reduce Domain Operator
(RDO)

enum PRODUCT = {Soda,
Candy}.

Empty Domain Operator
(EYDO)

enum PRODUCT = {}.

B. ASM Function Update Mutation Operators

A function update has the following form:

f(t1, t2, . . ., tn):= value

Depending on the type of operands, the traditional operators
[4] such as Absolute Value Insertion (ABS), Arithmetic
Operator Replacement (AOR), Logical Operator Replace-
ment (LOR), Statement Deletion (SDL), Scalar Variable
Replacement (SVR) etc., can be applied. In addition to these
traditional mutation operators, we define:

• Function Parameter Replacement (FPR): parameters
of a function are replaced by other parameters of a
compatible type.

• Function Parameter Permutation (FPP): parameters of
a function are exchanged.

Table II
EXAMPLES OF FUNCTION UPDATE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant
S’

AOR x := a + b x := a - b
ABS x := a + b x := a + abs(b)
LOR y := m and n y := m or n
SDL x := a + b skip
SVR selectedProduct:=

Soda
selectedProduct:=
Candy

FPR price(Soda):=70 price(Candy):=70
FPP packaging(Soda,

Candy):= 1
packaging(Candy,
Soda):= 1

Table II describes the proposed function update mutation
operators.

C. ASM Transition Rules Mutation Operators

The transition relation is specified by guarded function
updates, called rules, describing the modification of the
functions from one state to the next. An ASM state transition
is performed by firing a set of rules in one step.

1) Conditional Rule Mutation Operators:: The general
schema of an ASM transition system appears as a set of
guarded rules:

if Cond then Rulethen else Ruleelse endif

where Cond, the guard, is a term representing a boolean
condition. Rulethen and Ruleelse are transition rules.

Many types of faults may occur on the guards of con-
ditional rules [18]. Some of these faults include Literal
Negation fault (LNF), Expression Negation fault (ENF),
Missing Literal fault (MLF), Associative Shift fault (ASF),
Operator Reference fault (ORF), Relational Operator fault
(ROF), Stuck at 0(true)/1(false) fault (STF). Table III il-
lustrates the mutation operators addressing the above fault
classes. Furthermore, we define three additional conditional
rule mutation operators:

• Then Rule Replacement Operator (TRRO): replaces the
rule Rulethen by another rule.

• Else Rule Replacement Operator (ERRO): replaces the
rule Ruleelse by another rule.

• Then Else Rule Permutation Operator (TERPEO): per-
mutes the Rulethen and the Ruleelse rules.

Table III
EXAMPLES OF CONDITIONAL RULE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

LNO if (a and b) if (not a and b)
ENO if (a and b) if not (a and b)
MLO if (a and b) if (b)
ASO if (a and (b or a)) if ((a and b) or a)
ORO if (a and b) if (a or b)
ROO if (x >= c) if (x <= c)
STO if (a and b) if (true)
TRRO if a then R1 else R2 if a then R3 else R2
ERRO if a then R1 else R2 if a then R1 else R3
TERPEO if a then R1 else R2 if a then R2 else R1

2) Parallel and Sequence Rule Mutation Operators::
Parallel Constructor: If a set of ASM transition rules have
to be executed simultaneously, a parallel rule is used:

par Rule1 . . . Rulen endpar

The update generated by this rule is the union of all the
updates generated by Rule1 to Rulen.

Sequence Constructor: The sequence rule aims at exe-
cuting rules/function updates in sequence:

seq Rule1, . . ., Rulen

The resulting update set is a sequential composition of the
updates generated by Rule1 . . . Rulen.

We define the following mutation operators for both
Parallel and Sequence constructors:

• Add Rule Operator (ARO): adds a new rule to the
parallel/sequence of rules.
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• Delete Rule Operator (DRO): deletes a rule from the
parallel/sequence of rules.

• Replace Rule Operator (RRO): replaces one of the rules
in the parallel/sequence by another rule.

• Permute Rule Operator (PRO): changes the order of the
parallel/sequence rules by permuting two rules.

Table IV
EXAMPLES OF THE PARALLEL/SEQUENCE RULE MUTATION

OPERATORS FOR CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ARO seqblock R1 R2 endse-
qblock

seqblock R1 R2 R3
endseqblock

ARO par R1 R2 endpar par R1 R2 R3 endpar
DRO seqblock R1 R2 R3

endseqblock
seqblock R1 R3 endse-
qblock

DRO par R1 R2 R3 endpar par R1 R3 endpar
RRO seqblock R1 R2 endse-

qblock
seqblock R1 R3 endse-
qblock

RRO par R1 R2 endpar par R1 R3 endpar
PRO seqblock R1 R2 endse-

qblock
seqblock R2 R1 endse-
qblock

PRO par R1 R2 endpar par R2 R1 endpar
SPEO seqblock R1 R2 endse-

qblock
par R1 R2 endpar

SPEO par R1 R2 endpar seqblock R1 R2 endse-
qblock

In addition to these rules, we define the Sequence-Parallel
Exchange Operator (SPEO) to exchange a sequence rule
with a parallel rule and vice versa. Table IV illustrates the
Parallel/Sequence rule mutation operators.

It is worth noting that:
• Applying SPEO operator may result into mutants that

are syntactically correct but containing inconsistent
updates. Table V shows a simple coreASM sequence
rule and its corresponding mutant after applying SPEO
operator. The execution of the produced mutant leads
to an inconsistent update of variable a (i.e., the com-
putation of the rule does not yield a next state).

Table V
APPLYING SPEO OPERATOR THAT LEADS TO AN INCONSISTENT

UPDATE

Original Spec S Mutant Spec S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
a := b a := b

endseqblock endpar

• Applying SPEO operator may produce a mutant that
is equivalent to the original specification. Indeed, such
a case may take place when the rules enclosed within
the parallel/sequence blocks do not interfere. Table VI
shows a specifications S and its mutant S’. Both specifi-
cations are equivalents from an input/output perspective
since variables a and b are updated independently.

However, the original specification S produces 2 states
(i.e., one a:= a + 1 and one for b := b +1) whereas
its mutant S’ produces only one single state (i.e., a:=
a +1 and b := b + 1 are executed in one single step).

Table VI
APPLYING SPEO OPERATOR PRODUCES A MUTANT THAT IS

EQUIVALENT TO THE ORIGINAL SPEC

Original Spec S Mutant Spec S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
b := b + 1 b := b + 1

endseqblock endpar

3) Choose Rule Mutation Operators:: The choose rule
consists on selecting elements (non deterministically) from
specified domains which satisfy guards φ, then evaluates
Rule1. If no such elements exist, then evaluates Rule2.

choose x1 in D1, . . ., xn in Dn with φ (x1, . . ., xn) do
Ruledo ifnone Ruleifnone

The with and ifnone blocks are optional. The guard
φ may be a simple boolean expression of predicate logic
expressions.

To cover the choose rule, we define the following mutation
operators:

• Choose Domain Replacement Operator (CDRO): re-
places a variable domain with another compatible do-
main.

• Choose Guard Modification Operator (CGMO): alters
the guard φ. In this paper, we consider simple boolean
expressions as guards. Predicate logic expressions such
as exists are left for future work.

• Choose DoRule Replacement Operator (CDoRO): re-
places the rule Ruledo by another rule.

• Choose IfNoneRule Replacement Operator (CIRO): re-
places the rule Ruleifnone by another rule.

• Choose Rule Exchange Operator (CREO): replaces the
rule Ruleifnone by another rule.

Table VII
EXAMPLE OF THE CHOOSE RULE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CDRO choose x in Set1 with
(x >= 0)

choose x in Set2 with
(x >= 0)

CGMO choose x in Set1 with
(x >= 0)

choose x in Set1 with
(x <= 0)

CDoRO choose x in Set1 do
Rule1

choose x in Set1 do
Rule2

CIRO choose x in Set1 do
Rule1 ifnone Rule2

choose x in Set1 do
Rule1 ifnone Rule3

CREO choose x in Set1 do
Rule1 ifnone Rule2

choose x in Set1 do
Rule2 ifnone Rule1
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4) Forall Rule Mutation Operators:: The synchronous
parallelism is expressed by a forall rule which has the
following form:

forall x1 in D1, . . ., xn in Dn with φ do Ruledo

where x1, . . ., xn are variables, D1, . . ., Dn are the domains
where xi take their value, φ is a boolean condition, Ruledo
is a transition rule containing occurrences of the variables
xi bound by the quantifier.

We define the following mutation operators for the forall
rule that are quite similar to the ones of the choose rule :

• Forall Domain Replacement Operator (FDRO): re-
places a variable domain with another compatible do-
main.

• Forall Guard Modification Operator (FGMO): alters
the guard φ using the set of operators introduced in
Table III.

• Forall DoRule Replacement Operator (FDoRO): re-
places the rule Ruledo by any other rule.

Table VIII
EXAMPLES OF THE FORALL RULE MUTATION OPERATORS FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

FDRO forall x in Set1 with
(x = 0) do R1

forall x in Set2 with
(x >= 0) do R1

FGMO forall x in Set1 with
(x = 0) do R1

forall x in Set1 with
(x <= 0) do R1

FDoRO forall x in Set1 do R1 forall x in Set1 do R2

In addition to the proposed forall rule mutation operators
illustrated in Table VIII, we define the Choose-Forall Ex-
change Operator (CFEO) to exchange a choose rule with a
forall rule and vice versa (See Table IX).

Table IX
EXAMPLES OF THE CHOOSE-FORALL EXCHANGE OPERATOR FOR

CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CFEO forall x in Set1 do R1 choose x in Set1 do R1
CFEO choose x in Set1 do R1 forall x in Set1 do R1

5) Let Rule:: The let rule assigns a value of a term t to
the variable x and then execute the rule Rule which contains
occurrences of the variable x. The syntax of a Let rule is:

let (x = t) in Rule endlet

We define the following mutation operators (see Table X):
• Let Variable Assignment Operator (LVAO): assigns a

different value to x, other than t, of a compatible type.
• Let Rule Replacement Operator (LRRO): replaces the

rule Rule by another rule that has occurrences of x.
• Let Rule Variable Replacement (LRVR): replaces the

variable x by another variable.

Table X
EXAMPLES OF THE LET RULE OPERATORS FOR CoreASM [16]

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

LVAO let x = 1 in R1 let x = 2 in R1
LRRO let x = 1 in R1 let x = 1 in R2
LRVR let x = 1 in R1 let y = 1 in R1

Other ASM rules such as Case rule, iterate rule, etc. are
not covered in this work due to the lack of space.

IV. ASM MUTANTS GENERATION

Figure 1 illustrates the ASM Mutation Tool user interface.
The user may select one or multiple operators from the three
operator categories. The produced mutants are then stored
in separate files and run using carma, a comprehensive
command-line to run CoreASM specification, to check their
validity. Figure 2 shows an example of the output produced
from the execution of carma, from the command line, on a
syntactically incorrect specification (i.e., the output shows
’Engine Error’ and the error location). Note that only 1
execution step is needed to detect syntax errors (i.e., carma
–steps 1 MySpec.casm).

Figure 2. Checking the Validity of the Generated Mutant

It is worth noting that the mutation operator EDO (Extend
Domain Operator) requires manual definition of the added
element.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced mutation operators for
Abstract State Machines (ASM) formalism. The proposed
set of mutation operators are classified into three main
categories: ASM domain operators, ASM function update
operators, and ASM transition rules operators. Mutants are
generated automatically and their syntax are checked for
correctness. As a future work, we are planning to conduct an
empirical evaluation of the designed operators and to assess
their effectiveness and the number of mutants they produce.
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