
Towards Better Comparability of Software Retrieval Approaches
Through a Standard Collection of Reusable Artifacts

Oliver Hummel, Werner Janjic
Software Engineering Group

University of Mannheim
Mannheim, Germany

{oliver, werner}@informatik.uni-mannheim.de

Abstract — The idea of component-based software reuse as a
cornerstone of a more engineering-like approach to software
development has been around for more than four decades.
Since software and its building blocks represent an important
and valuable intellectual asset for most companies, researchers
have been struggling for nearly the same time to get their
hands on a substantial amount of reusable material to experi-
ment with. Only the advent of the open source movement miti-
gated this problem considerably and hence inspired interesting
new research in this area within the last decade. However,
basically all novel software retrieval solutions of that period
have been developed and evaluated independently from each
other and are thus by no means comparable with one another.
To address this flaw, an initiative was started to foster the
creation of a reference reuse collection for software search and
retrieval, which is intended as a common baseline for future
comparison of software retrieval systems. In this paper we
explain the motivation for this initiative, identif y and discuss
important foundations as well as open issues and present an
initial sketch of architecture, content and practical prere-
quisites of such a collection.

Keywords-component-based software development; software
reuse; software search; software retrieval; reference collection.

I. INTRODUCTION

Despite the immense benefits that are attributed to the
reuse of software [1] and a large number of seminal
approaches (such as by Zaremski and Wing [2], [3]; see e.g.
Mili et al. [4] for a comprehensive overview) developed in
recent decades, Douglas McIlroy’s initial idea of setting up
market places with reusable components [5], [6] still has not
lived up to its full potential [7]. Nevertheless, given today’s
exploding amount of potentially reusable (open source)
software, freely available on the Internet, the need for
effective software search and retrieval solutions – not only as
an enabling factor for reuse – is more apparent than ever:
open source repositories such as Sourceforge are hosting tens
of thousands of software projects with millions of artifacts
and even the version control systems of larger companies
contain more files than a human can ever overlook.

Consequently, the so-called reuse repository problem [8]
of not having enough material to fill repositories and market
places with reusable components is no longer an issue since
the Internet and the World Wide Web can be used as a
source for harvesting reusable material [9]. However, in
order to use this “megastore” of information for systematic

software reuse, sufficiently sophisticated software retrieval
approaches and tools are necessary. Especially when existing
material was not initially intended for reuse (as is the case
with most open source software today), this will only
become accepted if developers are able to find and access
useful components quick and easy. Consequently, this
change of prerequisites has not only triggered a new wave of
interesting academic research to better deal with search and
retrieval of software artifacts (e.g. [10], [11], [12]), but has
also created a new interest of commercial search engines
(such as Koders, Krugle or formerly Google Codesearch) in
searching for source code and software. Although all
approaches available today are certainly important and have
brought a new momentum to the community, they share one
significant problem: to date, their evaluations, if existing at
all, are largely based on different and/or proprietary datasets
and thus it is impossible to objectively compare their
performance on a common basis. Since even researchers are
not able to assess the existing solutions and to understand
their strengths and limitations, it is no surprise that software
search and component reuse are still not widely adopted in
industrial practice.

Interestingly, this evaluation challenge is not limited to
component reuse alone; it is rather a problem that has been
plaguing computer science (and especially software engi-
neering) for a while. As observed by Tichy [13], computer
scientists perform relatively little evaluations of their
approaches so that the experimental paradigm is not as well
established in our world as, for example in medicine or
physics. In other words, computer scientists often focus too
much on the development of new approaches and too little
on their systematic evaluation, which makes it hard if not
impossible to judge whether a new approach is really better
than the previous ones. Certainly, the development of new
approaches is important, but nevertheless, repeatable evalu-
ations of new developments are at least as important for good
research, as e.g. stressed by Basili [14] about twenty years
ago: “Proposing a model or building a tool is not enough.
There must be some way of validating that the model or tool
is an advance over current models or tools”. In order to
overcome this unsatisfying situation in the area of software
search and retrieval, the creation of a reference collection of
reusable artifacts was proposed recently [15]. The main
motivation for this effort is to simplify the comparison of
software retrieval systems. Furthermore, as already
experienced in the text retrieval community such a collection

450Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

will offer a good starting point for the development of new
and innovative tools as it freely provides the data necessary
for initial experiments [16].

The remainder of this paper, discussing motivation and
early experience from setting up such a collection, is
organized as follows: First, we introduce the foundations of
retrieval techniques and their evaluation, which is required to
better understand the contribution of this paper and the usage
scenarios in which the proposed reference collection can be
used (Section 2). Subsequently, we briefly survey existing
tool evaluations and identify their common weakness, before
we shed some light on reference collections from related
areas and how their ideas can be transferred to a standard
collection of reusable components (Section 3). Section 4
introduces our approach for tackling this challenge and gives
an example supposed to illustrate the usability of the
approach before we conclude our paper in Section 5.

II. FOUNDATIONS

The origins of software search and retrieval can clearly
be seen in “classic” text information retrieval [4] and
therefore most early approaches for the former simply
applied techniques from document retrieval to software
artifacts (cf. [17]). Software retrieval, however, is potentially
a far more complex undertaking than pure text retrieval since
software does not only contain linguistic semantic
information, but syntax and functional semantics as well.
Zaremski and Wing were amongst the first researchers that
elaborated on signature [2] and semantics specification [3]
matching as a way of identifying reuse candidates. About ten
years ago, Mili et al. [4] have presented a well-known survey
that identifies five general groups of techniques applicable
for the retrieval of software artifacts, namely –

1. Information retrieval methods
2. Descriptive methods
3. Operational semantics methods
4. Denotational semantics methods
5. Structural methods

The original listing contains a sixth group, called topological
approaches, which from today’s point of view is rather an
approach for the ranking of search results than a retrieval
approach itself so that we have left it out in the enumeration.
It obviously makes sense to reuse methods from information
retrieval to perform simple textual analyses on software
assets. Descriptive methods go one step further and require
additional textual descriptions of the asset like a set of
keyword or facet [18] definitions. Operational semantic
methods rely on the execution or so-called sampling [19] of
the assets. Denotational semantics methods use signatures
(see e.g., [2]) or specifications [3] of artifacts for matching,
while structural methods do not deal with the code of the
assets directly, but with program patterns or designs. Overlap
between these classifications can occur at various places,
e.g., between (3), (4) and (5) as “behaviour sampling” [19] of
components typically needs a specific signature to work on.

Based on the numerous results that had been presented in
the late 1990s some researchers were even convinced that the

most important software retrieval challenges have already
been solved [20]. Existing prototypes were able to deal with
the artifact collections available at that time easily
(containing, however, often merely a few dozen elements).
On the contrary, other researchers were convinced that the
existing techniques would not be precise and usable enough
when the amount of reusable material grows larger [4],
which has been commonly seen as a required condition for
successful marketplaces with reusable artifacts [7]. The latter
assumption has at least preliminary been proven right almost
ten years later when initial experiments [9] with “internet-
scale” software collections have shown that the usage of
merely one of the above mentioned retrieval techniques is
usually not precise enough to deliver practically usable
results. These experiments showed, e.g., that the precision of
signature matching quickly drops to under one percent in
collections with millions of artifacts. Consequently, in recent
years, there has been an increasing interest in improving
software retrieval approaches that led to a number of
interesting approaches (as well as a number of high-profile
publications [10], [11], [21]). Although their documentations
include reasonable evaluations that demonstrate the
prototypical applicability of the underlying approaches, it is
impossible to compare them with each other as they were
developed independently and evaluated with totally different
methods and test collections. Even worse, the examples used
to experiment with the prototypes are usually not publicly
available and hence it is extremely difficult to judge the
actual effectiveness of the evaluations and basically
impossible to replicate the experiments performed.

Due to the conceptual proximity to information retrieval
it is no surprise that common evaluation techniques from
classic information retrieval are widely applied in the context
of software retrieval. The two most prominent measures to
assess the quality of retrieval systems are Precision P (mea-
suring the fraction of relevant results Dr amongst all
delivered results D) and Recall Re (the fraction of delivered
relevant results Dr amongst all relevant results R):

Further well-known but not so commonly used measures
include Fallout (the fraction of non-relevant documents that
is retrieved from all non-relevant documents) and the F1
measure (the weighted harmonic mean calculated from
Precision and Recall) [16].

Recall is typically more important on small collections or
on large collections with very specialized queries (where one
assumes to have only few useful results per query), while
Precision becomes more important on large collections with
potentially numerous results. In this context, a tool should
clearly minimize the amount of false positives since
delivering only few relevant results amongst thousands of
irrelevant candidates will not only result in a poor precision,
but also in a low user satisfaction. It is obvious that such a

451Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

behavior is not tolerable in the area of software reuse where
a careful assessment, selection and integration of potential
reuse candidates may demand significant effort from the
developer. Hence, a thorough assessment of a retrieval
system typically requires the combination of at least two
measures, since otherwise a system can be optimized for one
and may fail in practice. The common approach to combine
e.g., Recall and Precision in such evaluations is through so-
called Recall/Precision curves [16] in which a large area
under the curve indicates a well performing retrieval system.
If other practical aspects are of interest other measures can
be derived as well, including the search execution time of a
query, for example.

A. Assessing Software Retrieval Tools

Although this general approach for the evaluation of
software retrieval tools is undisputed, one aspect that
complicates the evaluation is the challenge of defining the
actual relevance of a reusable artifact. While determining the
relevance of natural language documents is pretty straight-
forward for a human (e.g., does a document tell you how
high Mount Everest is or not?), this task is much more chal-
lenging for software artifacts. As discussed before, the latter
typically have three facets that can be used for retrieving
them, namely linguistic information, the syntax of their
interfaces and their semantics, i.e. their concrete func-
tionality. As already observed by Mili et al. [4], the evalu-
ation of software retrieval tools and algorithms is faced with
a serious problem when it needs to find a good criterion that
determines the practical relevance of a delivered result.
Usually none of the three facets mentioned before is
sufficient to achieve this on its own, as, e.g., text extracted
from a component not necessarily describes its functionality
in a precise and unambiguous manner; and even if a
component with matching functionality has been found, a
wrong interface might make its integration into a given
environment hard or even impossible. In other words, a
reusable component delivered by a state of the art software
search engine might still require a significant amount of

effort from a developer in order to finally determine whether
it provides the desired functionality and is usable in the
environment at hand. We believe, the ultimate relevance
criterion for determining the reusability of a component and
solving the make or buy dilemma [25] in favor of buy (reuse)
is clearly the question whether a reusable artifact can be
integrated into a system under development “as is”, i.e., with
virtually “zero effort” and deliver the required functionality.

To our knowledge, however, this relevance criterion has
rarely been consequently defined in the literature so far and
thus, most previous evaluations have been relying on a kind
of surrogate, namely the so-called matching condition that
simply determines whether a search engine considers a
document as relevant or not. Obviously, this does not reveal
much useful information about the reusability of a
component in a given context.

B. Usage Scenarios

Software development is a continuous and complex pro-
cess that can benefit from software search at various
occasions, which makes it important to identify and to bear
in mind which usage scenarios exist for software retrieval
tools within the software development lifecycle. Obviously,
the process of “reusing” an artifact as an inspiration during
the design or implementation phase of a software system is
totally different to the actual reuse of a concrete component
that needs to adhere to a given specification. While a stake-
holder may be satisfied with relatively “blurry” results for
the former, the latter requires a perfect match in order to
make reuse more worthwhile than building the component
from scratch, as explained before. Figure 1, taken from our
earlier work [22], summarizes various archetypal usage
scenarios for software retrieval systems and identifies the
development activities where they are likely to be most use-
ful. We used different shapes of lines, to illustrate distinction
between more speculative (dashed) and definitive (solid)
searches. The most important usages scenarios in the context
of this paper are additionally highlighted in bold typeface.

Figure 1. Overview of software retrieval usage scenarios and their possible times of application in the software development life cycle.

452Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The motivation for definitive searches is always the
concrete need for a specific artifact; let it be a reusable
component described by a specification or a missing library
that is required to overcome Java’s infamous ClassNot-
FoundException. Both require a search engine to deliver as
exact matches as possible and even near misses are usually
not perceived helpful by the user, since they can often only
be integrated with a substantial amount of modification, if
they can be integrated at all. On the other hand where specu-
lative searches are driven more by general information need,
it is usually of interest whether any component or service is
available for a given task at all. The exact shape of the
desired artifact is typically not important in the context of
such a speculative search, since the design of the application
it should be integrated into is still moldable [23]. Due to a
lack of space, we have to refer the interested reader to the
original publication for more details on this topic; the focus

of this paper and our initial work for a reference collection is
on definitive searches used for the retrieval of well-defined
reusable components.

III. SOFTWARE RETRIEVAL EVALUATIONS SO FAR

As indicated in the introduction, most software reuse
approaches that have been published so far contain a
reasonable evaluation that demonstrates their feasibility and
leaves the interested reader at least with an idea of their
potential and of potential problems. However, as can be seen
in Table 1, that summarizes some of the best known reuse
tools of the last 20 years, most of these evaluations (i.e.,
those that were performed on a component collection with
more than just a few hundred elements) were incomplete
from the perspective of classic information retrieval as they
usually only calculated some kind of “top n Precision”.

TABLE I. OVERVIEW OF EVALUATIONS OF PREVIOUS COMPONENT REUSE SYSTEMS.

Tool No. of
Art efacts

Content Input Relevance
Criterion

Measures

Proteus [17] ~ 100 Unix commands Keyword-based Expert judgement Precision, Recall,
search time

CodeBroker [28] ~700 Java Classes Signature and
keywords

Expert opinions Precision, Recall

SparsJ [10] ~180,000 Java Source Classes Keywords Expert opinions Top n Precision
Maracatu [[29]] ~4,000 Java Source Classes Keywords,

facets
Expert’s opinion (based
on text matching)

Precision, Recall
(only for subset of
200 artefacts)

Merobase [11] ~ 4 M Java Source Classes Test Cases Passing of test cases Top n Precision
Sourcerer [12] ~ 250,000 Java Source Classes Keywords Expert judgement Hits per result

page

This kind of “crippled” precision measure is typically

used for search engines that operate on very large collections
where it is not feasible to determine the relevance of all
(potentially thousands of) results that may be returned for a
query. Instead, human experts revise only the, e.g., 20
highest ranked results (n = 20) for their relevance. Further
results and the Recall (for which knowledge of all relevant
elements in a collection is required) are simply ignored. This
procedure is usually justified by the habit of human users of
internet-scale (commercial) search engines that typically do
not consider more than roughly the first 20 results. However,
for a scientific comparison of search engines this is
obviously neither sufficient nor satisfying, especially in the
area of software retrieval where both, high precision and
high recall are essential as explained before.

A. Reference Collections so far

Tool evaluations in computing are often challenging, as
they typically require expensive empirical investigations to
demonstrate that a tool is better than other tools available
before [14]. However, software engineering is certainly not
the only discipline in computer science that has to deal with
somewhat fuzzy requirements to its tools. Therefore, the idea
of creating reference collections that allow benchmarking of
tools is certainly not new. Take, for example, the “Siemens

Testing Suite” [30], a popular collection of programs con-
taining known errors, which was widely used during the
1990s to evaluate the effectiveness of test cases and test case
creation strategies. More specifically, the challenge of
evaluating retrieval approaches is clearly known in related
disciplines as well. First and foremost, it is certainly the
information retrieval (IR) community [16] that found itself in
trouble how to evaluate their emerging text retrieval
algorithms some twenty years ago. At that time there were a
lot of new and exiting ideas as well as prototypes around in
this community, but the proprietary (and often very
expensive) evaluations performed on them individually were
usually not very helpful and especially not comparable with
each other. Fortunately, the IR community was able to
overcome this challenge by defining so-called reference
collections comprising a large set of documents, a substantial
number of tasks for retrieval systems and the expected
solutions for them. The most prominent one is probably the
Text REtrieval Collection (TREC) [16] that has been
considered as a major success fostering IR research since its
creation tremendously. Although TREC as a text-based
collection is not of direct use for the retrieval of software
artifacts, it can still be used to learn about some basic
principles how to define and built such a reference col-
lection. Furthermore, in the long term, the results gained with

453Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

it might also be helpful by giving some insights on heuristics
that can help to improve text-based retrieval algorithms for
software retrieval tools with techniques such as stemming or
the use of thesauri [16].

A second group that has been struggling with the
comparability of its tools is the rather young community
trying to match and orchestrate (semantic) web services. As
it is dealing with executable artifacts as well, it is obviously
more closely related to the retrieval of software components
than pure text retrieval. Given the enormous amount of
money that for instance was recently spent by the European
union (Küster and König [24] talk about 70 million Euros) to
support the research on semantic web services, it is not a
surprise that especially European researchers came up with
the idea of setting up a reference collection of semantic
services to evaluate matching tools and have been driving
this idea ever since. The so-called S3 (for Semantic Service
Selection) collection is the initial result of these endeavors.
The current version of S3 contains 1.083 semantically (with
38 ontologies) annotated web services and a set of 42 queries
for them. Various participants of the S3 contests and related
workshops have manually identified services in the
collection they considered relevant for each query in order to
create a set of relevant answers. To our knowledge together
with the OPPOSUM portal [24] (that subsumes S3 and a few
significantly smaller collections) it forms the only baseline
that allows systematic comparison of (ontology-based)
software retrieval algorithms so far. To our knowledge, there
exists no similar undertaking for a specific reference
collection in the reuse area for the time being.

Limitations of Web Service Reference Collections

However, although this can also be seen as a first step
towards a better evaluation of software retrieval algorithms,
its applicability in the context of software reuse is
questionable for a number of reasons. First and foremost, the
introduction of a graded relevance scheme and the revision
of the relevant results in the 2010 version of the S3 col-
lection changed the perception of relevance considerably and
it seems that there is still a large degree of subjective
judgment that influences the understanding of relevance
here. Thus, the risk that even this sophisticated collection
does not contain a clear notion of relevance, as we demanded
it for the evaluation of software reuse tools, is high. Second,
most of the existing software retrieval and reuse approaches
operate on source code, which is by definition not available
from web services, while vice versa, source code available in
open source repositories is usually not annotated with any
kind of ontological information. Moreover, the size of the
existing S3 collection is still rather limited (compared with
current software reuse collections as introduced in Table 1)
and the chance of substantially increasing it seems low, as
the definition of relevant results and the annotation of the
indexed services with ontological information is effort
manual activity. Given the size of state of the art reuse
collections that already goes into the millions, it is not clear
whether the results obtained from such a small collection can
be scaled up to internet-scale search engines. Finally, the
current S3 collection is focused on speculative searches that

are supposed to deliver all services that can be (remotely)
helpful for a query; the actual syntax of a service is currently
not taken into account. In other words, a definitive match
between query and result is highly unlikely in this collection
and a composition of various results may be required to
create a service that is finally able to satisfy a concrete
request.

B. Requirements for a Reuse Reference Collection

Küster and König [24] identified a number of desirable
characteristics for a semantic web service collection in their
publication and obviously it makes sense to revisit their work
as a starting point for a reference collection for software
reuse. In total they list the following five major points:

1. Expressivity & Usability: contained elements need to

be described as precisely as possible in order to avoid
room for interpretation of the results.

2. Scope: the collection should comprise elements from
as many different domains as possible in order to
maintain a high diversity and to allow making
statements, which approaches work under which
circumstances.

3. Scalability & Size: since large testbeds are required to
properly evaluate retrieval approaches, the collection
must be kept scalable.

4. Automation: obviously, the use of the collection
should be automated as much as possible.

5. Decoupling: as many people as possible should
contribute to the endeavor in order to avoid
unintended bias in the collection.

In general we can accept this list of requirements as

helpful for a reuse reference collection as well, although
requirements 1) and 3) are clearly contradicting each other in
the context of a very large collection. This fact makes a
precise relevance criterion even more important because it is
not possible to manually investigate millions of artifacts for
their relevance. But nevertheless, it is important to preserve
as much information as possible when content for the
collection is harvested, as different usage scenarios for
software search engines may require slightly different
information to evaluate the retrieval algorithms.

Special Requirements in the context of Component Reuse.
As discussed before, the main motivation for the use of a
component collection from a reuse point of view is to find a
concrete artifact that definitively fills an existing gap.
Besides other factors, it has been mentioned numerous times
in the literature [25] that a reusable component must be large
enough so that reusing it is cheaper and easier than self-
implementing it (often called the “make or buy decision”).
Otherwise the incentive for a developer to reuse is obviously
low. While a component was initially seen as function by
McIllroy [5] in his seminal reuse paper, the granularity of
components has continuously been growing since then and
today a component is typically seen as an independently
deployable part of a system [6], comprising numerous
classes (if developed in an object-oriented language) behind

454Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

a well-defined interface. At the same time, research has
started to investigate automated adaptation [26] of
components and automated orchestration [24] of (usually
semantically annotated) services or in other words: auto-
mated “glue coding”. As the use of clever glue coding is
likely to increase the haul of matching components from a
collection (and thus to influence the number of relevant
components) in the future, we believe it makes sense to
consider the following three categories of automated glue
coding when competing search engines are to be evaluated in
the context of a reuse reference collection:

1. No glue coding at all: only direct matches are

allowed, no changes beyond simple path and package
configurations can be made to reuse candidates.

2. Adaptational glue coding: adapters [27] that wrap a
single component in a 1:1 fashion (or change them
internally) are allowed.

3. Compositional glue coding: the 1:n orchestration of
multiple sub-components behind a newly created
interface in the sense of the facade pattern [27] is
allowed.

IV. PROPOSED APPROACH

The two most important “ingredients” for a reuse
reference collection are certainly a large collection of
reusable material and a large enough collection of (at least
some) non-trivial queries that can be used to challenge
search engines and is not under the suspicion of being biased
for a particular engine. Moreover, a good way of determining
the relevance of retrieved candidates needs to be found.
Since we have already faced this challenge during the
evaluation of our Merobase search engine [11], we believe a
good starting point for this is the collection of test cases (e.g.,
written in JUnit) that can be used to doubtlessly judge
whether a delivered result is relevant or not. Ideally, a search
engine would directly support the use of such test cases for
automating this assessment, as Merobase does, for example.
The technique behind such a feature is known in the
literature as test-driven reuse [11] [21]. The following two
subsections go into more detail on this before we present the
results of an exemplary query that demonstrates the practical
usability of our approach and conclude this section with a
brief discussion of our preliminary findings.

A. Data Sets

In the context of the ICSE workshop on Search-driven
development: Users, Infrastructure, Tools and Evaluation
(SUITE) in 2010 a working group was formed with the goal
to evaluate the feasibility of creating a reuse reference
collection. As a result, the groups of Christina Lopez at the
University of California in Irvine and our group at the
University Mannheim have agreed to make the collections
forming the backbone of the software search engines
Sourcerer ([12], http://sourcerer.ics.uci.edu) respectively
Merobase ([11], http://merobase.com) available on the Web
so that they can be downloaded via http://resuite.org.
Currently, several hundred gigabytes of data are available
there and hence processing and indexing these collections is

certainly a matter of weeks if not months: Irvine’s collection
comprises about 500,000 java source files from roughly
13,000 open source projects, while our collection consists of
about 3 million java files harvested from nearly 50,000 open
source projects. To our knowledge these two packages form
the largest body of open source software freely available
today. Given its large size, it is likely that it will not only be
facilitating experiments for software reuse, but in related
areas (such as the community organizing the Mining
Software Repositories conference) as well.

B. Queries

As briefly mentioned before, we plan to start the creation
of queries for the reference collection based upon the test
cases we created as input for evaluating our earlier work [8]
to which we have to refer the reader for further details due to
the limited space of this paper. To our knowledge, test cases
are currently the best available technique that allows
formulating a semantically precise and automatically
checkable specification for reusable software components. A
further advantage of test cases is that they can easily be
“translated” into input for other retrieval approaches as well.
Consider the following simple JUnit test case that is
supposed to test an equally simple Stack data structure:

public class StackTest extends TestCase {

 public void testStack() {
 Stack s = new Stack();
 assertTrue(s.isEmpty());
 s.push((Object)"Object1");
 s.push((Object)"Object2");
 s.push((Object)"Object3");
 assertFalse(s.isEmpty());
 assertEquals(s.pop(), (Object)"Object3");
 assertEquals(s.pop(), (Object)"Object2");
 assertEquals(s.pop(), (Object)"Object1");
 assertTrue(s.isEmpty());
 }
}

From this piece of code it is, for example, possible to

extract keywords (such as stack, push, pop, isEmpty) or the
complete interface of a stack required to satisfy this test case
without much ado. Moreover, even the extraction of a
simplified description of the Stack’s behavior is contained in
this test case. In addition to the above mentioned set of test
cases we are aware of two other recent publications that used
test cases (or at least test data) for a similar purpose and
contain further evaluation challenges (cf. [21] & [12]). We
have recently made all test cases that have been used for test-
driven reuse available as JUnit test cases via resuite.org as
another pillar for the reference reuse collection described in
this paper. Since all three approaches are currently in a
prototypical stage, there is no precision recall analysis
available. Nevertheless, a sufficient quality of the test cases
guarantees that retrieved candidates are able to deliver the
desired functionality. Reusable components that have
actually been retrieved beyond simple data structures such as
stacks or binary trees, include a validator for credit card
numbers, spreadsheet calculation and Blackjack logic, a
comprehensive overview can be found in the mentioned
publications ([11], [12], [21]).

455Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

C. Examplary Results

Based on the test case we just introduced, we carried out
an exemplary analysis of various retrieval techniques in
order to show the expressivity improvement that we were
able to achieve in comparison to the simple top 20 precision
determination used in earlier evaluations [11]. In particular,

we analyzed interface-based (only classes with identical
interfaces, i.e. all names, parameter and return types had to
match), name-based (only names of classes and methods had
to match) and signature-based (only the parameter and return
types had to match, names were ignored [2]) searches for
their Recall and Precision as shown in the following figure:

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00% 10,00% 20,00% 30,00% 40,00%

Recall

P
re

ci
si

o
n

Name-Based Keyw ord-Based Interface-Based

Figure 2: Recall/Precision curve of different retrieval algorithms for the Stack test case from above.

In total, the signature required by the above test case
yielded a pool of 454,541 classes from the Merobase
collection that at least contained the three method signatures
defined and thus theoretically had the potential for being
usable as stacks. In practice, only a small fraction of them –
namely 163 – have been successfully tested and delivered
this functionality with the current version of our testing tool
(supporting adaptation and rudimentary dependency
resolution, but no composition). Thus, 163 was used to
calculate Recall and Precision. As visible in Figure 2, the
relatively simple retrieval algorithms used for this
experiment suffer from either a low recall or a low precision
as summarized in the subsequent table.

TABLE II. COMPARISON OF RETRIEVAL ALGORITHMS.

 Name Interface Signature Keyword

Max. Recall 8.0 % 5.5 % 100 % 28.2 %

Precision at
max. Recall

50.0
%

47.4 % < 0.1 % 5.8 %

No.
Relevant /
Candidates

13 / 36 9 / 19 163 /
454,541

46 / 3,000

D. Discussion and Forthcoming Steps

The approach we have just described already forms a
useful core for a reference collection of reusable artifacts.
Our preliminary results indicate that an evaluation based on
such a collection with results known as relevant is feasible
for internet-scale software repositories as well and delivers
significantly better results than the top n precisions usually
calculated for such repositories. However, as long as only
one tool with potentially imperfect adaptation has been used
to identify the relevant results for a query, it is not sure that
all relevant results have actually been discovered. Only a
combination of various tools and approaches can guarantee a
(nearly) perfect coverage of relevant results and thus create a
valid baseline for the calculation of Recall and Precision.

Therefore, one central prerequisite for the creation of a
viable reference collection is to have a large body of
researchers and working groups contributing their ideas and
tools. We would like to invite the community to challenge,
discuss and extend the requirements and the contents of the
collection in its current state. Although contact requests via
email are always welcome, we believe it makes sense to
discuss the further proceeding personally with as many

456Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

people as possible and hence plan to organize a workshop on
this topic soon. Another important future step is the creation
of a web portal (similar to the one described by Küster and
König [24] for semantic web services) that offers easy access
to data sets and queries.

E. Open Questions

Compared with a simple text reference collection or even
a web service collection, a generic reuse collection is faced
with a number of additional questions we briefly need to
mention at this occasion.

Although web service descriptions are by definition
programming language independent, the elements of a
collection of reusable components, however, can be created
in any arbitrary programming language. In other words, their
evaluation would require support for test-driven reuse in
each of these languages. For the time being only three
different prototypes of a test-driven reuse system in the Java
programming language exist. Clearly, it makes sense to set
up similar collections for other languages in order to study
whether a different language will affect the performance of
retrieval algorithms in any way.

Another issue closely related with the programming
language is the question whether an artifact is compilable
and executable at all. Often source files have dependencies
on other source files and will not be testable without either
complex dependency resolution algorithms as available in
the Eclipse framework and used by e.g., Code Genie [12] or
without the complete metadata (build path, etc.) of the
original project. Since most software search engines today
still focus on individual classes (cf. table 1) we rely on the
simple dependency resolution mechanisms contained in our
tool right now and bear in mind that they are not perfect.
Hence, it is likely that other tools might discover additional
relevant results in the future through the use of better
dependency resolution. However, a similar progression of
relevant results has been observed during the creation of the
TREC collection, so that this is perfectly acceptable.

The TREC collection has another advantage over a
software reference collection, namely the one that texts that
are once written (such as newspaper or research articles)
typically are not changed later. However, in the context of
software retrieval it is very likely that the projects forming
the collection will be updated over time and hence the
question arises whether and how updates can be performed.
Updating the collection itself is essentially noncritical as it
just calls for replacing, adding or removing files; the actual
challenge is to identify all results that may have become
relevant or irrelevant after such an update.

A final issue to deal with is the question how to decide
what makes a component or project elevated enough to
become part of a reference collection? We are well aware
that one may allege a certain bias for elements included e.g.,
in our Merobase collection so far. However, we believe that
the sheer size of about 3 million Java source files is already
large enough to mitigate such allegations. Furthermore, it
only contains open source projects harvested from popular
open source hosters (such as SourceForge) and no
specifically tailored projects that would harden this

suspicion. Moreover, the idea is that a future collection is
extensible so that everyone interested is able to contribute his
own material to it.

V. CONCLUSION AND FUTURE WORK

Component-based software reuse is by no means a new
concept and as widely demonstrated in the literature a
sophisticated software retrieval tool is an essential building
block to make reuse work. However, despite decades of
intensive research and the significant progress made in
software retrieval in recent years, it is still hard to compare
existing reuse approaches, as there exists no common testbed
for this purpose. As we have discussed in this paper, recent
efforts to set up a semantic web service reference collection
are certainly a step in the right direction, however, since the
prerequisites and goals of this community are different to
those of the component reuse community, it is unlikely that
results gained with this collection can be transferred to
software component retrieval.

Thus, we have proposed to create a reference collection
with reusable components based upon two recently published
collections of files from more than 50,000 open source
projects. Our proposal includes creating definitive queries for
concrete reusable artifacts in the form of test cases that can
be used to determine free of doubt whether a delivered
candidate will be usable in a given context specified by the
test case. Such test cases may be seen as a rather harsh
relevance criterion for reusable software components, but
ultimately they are the only way to establish the fitness for
purpose of a component and in our understanding this is the
only way to lower the threshold currently still hindering
systematic reuse in practice. Moreover, we defined three
classes of adaptation approaches that may be used to classify
the contestants that should be compared with a reuse
reference collection.

Such a collection will not only be applicable for
comparing existing tools with full Recall / Precision curves,
it is also likely that it will simplify the creation of and initial
experimentation with other innovative tools in the future.
Furthermore, there is a high chance that the data sets will be
useful for other communities (such as the one that is mining
software repositories, for example) as well and hence we
invite researchers from all related areas to contribute to the
efforts in setting up this collection as well.

REFERENCES
[1] Krueger, C.W.: Software Reuse, ACM Computing Surveys,

Vol. 24, Iss. 2, 1992.
[2] Zaremski, A.M. and Wing, J.M.: Signature Matching: A Tool

for Using Software Libraries. ACM Transactions on Software
Engineering and Methodology, Vol. 4, Iss. 2, 1995.

[3] Zaremski, A.M and Wing, J.M.: Specification Matching of
Software Components, ACM Transactions on Software
Engineering and Methodology, Vol. 6, No. 4, 1997.

[4] Mili, A., Mili, R., and Mittermeir, R.: A Survey of Software
Reuse Libraries. Annals of Software Engineering 5, 1998.

[5] McIlroy, D.: Mass-Produced Software Components. Software
Engineering: Report of a Conference sponsored by the NATO
Science Committee, Garmisch, Germany, 1969.

457Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

[6] Szyperski, C.: Component Software, 2nd Edition, Addison-
Wesley, Amsterdam, 2002.

[7] Ravichandran, T. and Rothenberger, A.: Software reuse
strategies and component markets. In Communications of the
ACM, 46, 8, 2003.

[8] Hummel, O.: Semantic Component Retrieval in Software
Engineering, PhD Dissertation, University of Mannheim,
Germany, 2008.

[9] Hummel, O. and Atkinson, C.: Using the Web as a Reuse
Repository. In: Morisio, M. (ed.) Proceedings of the
International Conference on Software Reuse, LNCS 4039,
Springer, Heidelberg, 2006.

[10] Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T.,
Matsushita, M., and Kusumoto, S.: Ranking Significance of
Software Components Based on Use Relations. IEEE
Transactions on Software Eng., Vol. 31, Iss. 3, 2005.

[11] Hummel, O., Janjic, W., and Atkinson, C.: Code Conjurer:
Pulling Reusable Software out of Thin Air. IEEE Software,
Vol. 25, Iss. 5, 2008.

[12] Bajracharya, S., Ossher, J. and Lopes, C.: Sourcerer: An
internet-scale software repository. Int. Workshop on Search-
Driven Development, SUITE 2009.

[13] Tichy, W.: Should computer scientists experiment more?
IEEE Computer, Iss. 5, 2002.

[14] Basili, V.: The Experimental Paradigm in Software
Engineering. Experimental Software Engineering Issues:
Critical Assessment and Future Directions, Springer, 1993.

[15] Hummel, O.: Facilitating the Comparison of Software
Retrieval Systems through a Reference Reuse Collection. Int.
Workshop on Search-Driven Development, SUITE 2010.

[16] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information
Retrieval, Addison-Wesley, 1999.

[17] Frakes, W.B. and Pole, T.P.: An Empirical Study of
Representation Methods for Reusable Software Components.
IEEE Transactions on Software Engineering Vol. 20, Iss. 8,
1994.

[18] Prieto-Díaz, R.: Implementing faceted classification for
software reuse. Communications of the ACM, Volume 34,
Issue 5, 1991.

[19] Podgurski, A. and Pierce, L.: Retrieving Reusable Software
by Sampling Behavior, ACM Transactions on Software
Engineering and Methodology, Vol. 2, Iss. 3, 1993.

[20] Poulin, J.: Reuse: Been There, Done That. Commun. of the
ACM, Vol. 42, Iss. 5, 1999.

[21] Reiss, S.P.: Semantics-based Code Search. Int. Conf. on
Software Engineering, 2009.

[22] Janjic, W., Hummel, O., and Atkinson, C.: More Archetypal
Usage Scenarios for Software Search Engines. Int. Workshop
on Search-Driven Development, SUITE 2010.

[23] Crnkovic, I., Chaudron, M., and Larsson, S.: Component-
based Development Process and Component Lifecycle, Proc.
of the Intern. Conf. on Software Engineering Advances, 2006.

[24] Küster, U. and König-Ries, B.: Towards standard test
collections for the empirical evaluation of semantic web
service approaches. Int. Journal Semantic Computing, Vol. 2,
Iss. 3, 2008.

[25] Clements, P.: From Subroutines to Subsystems: Component-
Based Software Development. in Heineman, G., Councill, W.
(eds..: Component-based Software. Eng. Ad.-Wesley, 2001.

[26] Hummel, O. and Atkinson, C.: Automated Creation and
Assessment of Component Adapters with Test Cases. Intern.
Symposium on Component-Based Software Engineering,
2010.

[27] Gamma, E.; Helm, R.; Johnson, R., and Vlissides, J.: Design
Patterns. Elements of Reusable Object-Oriented Software,
Addison-Wesley, Amsterdam, 1995.

[28] Ye, Y. and Fischer, G.: Reuse-Conducive Development
Environments. Journal of Automated Software Engineering,
Vol. 12, No. 2, Kluwer, 2005.

[29] Garcia, V., Lucrédio, D., Durão, F., Santos, E., Almeida, E.,
Fortes, R., and Meira, S.: From Specification to
Experimentation: A Software Component Search Engine
Architecture, International Symposium on Component-Based
Software Engineering, CBSE 2006.

[30] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T.:
Experiments on the effectiveness of dataflow- and control
flow-based test adequacy criteria. International Conference on
Software Engineering, 1994.

458Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

