
Impr oving Undergraduate Students’ Programming Skills

Sukhamay Kundu
Computer Science Department, Louisiana State University

Baton Rouge, LA 70803, USA
e-mail: kundu@csc.lsu.edu

Abstract − Tw o key factors for the failure of under-
graduate students in creating high quality programs
are their inability to: (1) identify the basic steps in
building a high-level solution algorithm, and (2) con-
vert these steps into an elegant and efficient program
implementation. Both these tasks require creative
thinking and a systematic approach with emphasis on
the programming process. We believe that with pr oper
training the students can improve their programming
skills and create high-quality programs. We describe a
new approach to programming, which can be viewed
as a refinement of the well-known "stepwise refine-
ment" method. We use the notion of work-breakdown
structur e to address factor (1) and suggest a few coding
techniques to address factor (2). Our initial experience
in using the new approach has been very positive in
terms of improved quality of student programs.

Keywords: work-breakdown structure; stepwise refine-
ment; programming process.

I. INTRODUCTION

The low success rate in the first and second year under-
graduate computer programming courses continues to be a
serious problem even today after the decades of many
advances in Programming Language designs (including
object-oriented languages) and Software Engineering
methods. Adrop-out rate of 30% in the first year pro-
gramming courses is not uncommon.We often see
another 20-30% of the remaining students having difficul-
ties with programming.This means 45-50% of the incom-
ing computer science undergraduates either change their
major or struggle with their computer science degree pro-
gram. Advances in the programming methods from struc-
tured programming and stepwise refinement to object-ori-
ented (OO) programming has not led to significant
improvements in the undergraduate students’ program-
ming ability [2]. For some students, the problem persists
beyond their undergraduate years.

The key element of our new approach to programming
is the use of work-breakdown structure (WBS) in building
the high-level pseudocode or algorithm.The notion of
WBS is routinely used by business analysts as a tool in

planning and scheduling. The connection of WBS to the
stepwise refinement method (SRM) of program develop-
ment is that both use a top-down approach, where a task is
successively decomposed into disjoint subtasks until we
arrive at subtasks that can be readily solved. Because
WBS is not concerned with the control-logic (if-then-else
and loops), it is simpler than SRM where one develops
subtask decomposition in parallel with the refinement of
control-logic in the form pseudocode.This makes WBS a
good intermediate step and one can add the control-logic
later in a bottom-up or top-down fashion at each subtask-
decomposition step.We can say that WBS helps to opera-
tionalize SRM in the same way that SCRUM software
development method helps to operationalize agile pro-
gramming. BothSRM and WBS can accommodate refine-
ments of data, operation, and control-logic.There have
been many advances in SRM-based formal techniques for
program development [5-7], but these techniques are not
suitable for teaching undergraduate-level programming.

We limit ourselves here to non-OO programming.
Indeed, one cannot create a high quality OO-program,
which involves the added complexity of class-subclass
considerations, if one cannot create a small high-quality
non-OO program.For the present discussion, a high qual-
ity program means simple and clear logic in the basic
algorithm, clean implementations for good computational
efficiency and memory usage, and simple and clear
input/output interfaces.

A. Work-Breakdown Structure

We build a WBS in a top-down fashion and represent it
as a tree, where the children of a node shows the decom-
position of the node into two or more subtasks. The termi-
nal nodes, called thework-units, represent the actual tasks
performed in solving the original problem given by the
root of WBS-tree. The intermediate nodes represent a
hierarchical grouping of work-units into larger conceptual
"chunks" and they help us in arriving at the work-units.
Creating a WBS-tree is often a non-trivial task and
requires much thought and insight into the problem at
hand. Although,in principle, a node withn ≥ 3 children
can be replaced by a chain ofn − 1 nodes each with 2 chil-
dren, this is not always easily done and nor it is advisable

493Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

to force this because it can lead to artificial subtasks.A
WBS represents a solution approach in a more abstract
form than a pseudocode because it does not show the con-
trol-logic. Thesimultaneous development of control-logic
and the bodies of loops and the then/else parts of if-state-
ments makes SRM harder to apply than our two-step
method: build a WBS first and then add the control-logic.

B. Two Demonstration Problems

We consider two problems to show the usefulness of
WBS in developing complex pseudocodes and their effi-
cient implementations.The solution of the first problem,
the triangle classification (TRC), involves a complex
nested if-then-else and the solution of the second problem,
the constrained binary string generation (CBSG), involves
several interacting pairs of loops and if-statements.In
both cases, we want simplest logic and the maximum effi-
ciency. The use of WBS helps to create a proper high-
level design for the solution algorithm, and then a proper
choice of data-structures leads to an efficient implementa-
tion. Theimportance of the CBSG problem is that many
other problems can be either formulated in this form or
can be solved by generalizing or modifying the method
used for solving CBSG.For example, we can associate
the subsets of sizem of a set of sizen with the binary
strings of lengthn with m ones and thus we can generate
those subsets using the solution of the CBSG problem.As
another example, we can generate all permutations ofn ≥
2 items by modifying the method for solving CBSG.

Sections II and III present the solutions of the TRC-
problem and the CBSG-problem. Some important coding
techniques are described in Section IV. Section V gives
the conclusion and the future work.

II. TRC-PROBLEM

Here, we want to classify a triangleT as one of equi-
lateral, isosceles, and scalar given the lengthsa, b, and c
of its sides which are assumed to satisfy the triangle
inequalities:a + b > c, a + c > b, and b + c > a. Table 1
shows the conditions for classifyingT. Note that we don’t
need the condition "a = c" in C1 and likewise the condi-
tion "b ≠ c" in the first and-combination ofC2, etc.

Table 1. Conditions for triangle classification.

Type Condition

Equilateral C1: (a = b) ∧ (b = c)
Isosceles C2: [(a = b) ∧ (a ≠ c)] ∨ [(a = c) ∧ (a ≠ b)] ∨

[(b = c) ∧ (a ≠ b)]
Scalar C3: (a ≠ b) ∧ (a ≠ c) ∧ (b ≠ c)

Figures 1(i)-(ii) show two WBSs for the TRC-problem,
each with three work-unitsw1 to w3. There are two more
WBSs similar to Figure 1(ii) based on decomposing the

root with respect to isosceles triangle and scalar triangle.
Clearly, the WBSs for any classification problem can be
mapped in an one-to-one fashion to the classification trees
for that problem if we do not include additional computa-
tion details in the WBSs for the classification problem.

Classify a triangleT as
equilateral, isosceles, or scalar

Determine ifT
is equilateral

w1
Determine ifT

is isosceles

w2
Determine ifT

is scalar

w3

(i) A simple WBS.

Classify a triangleT as
equil., isosceles, or scalar

Determine ifT
is equilateral

w1
Determine ifT

is not-equilateral

Determine ifT
is isosceles

w2
Determine ifT

is scalar

w3

(ii) A multi-level WBS with more structure.

Figure 1. Tw o alternate WBS for the TRC-problem.

Figure 2 shows several alternate pseudocodes for the
TRC-problem. Theone in Figure 2(i) comes directly from
the WBS in Figure 1(i) and is the least efficient; it does not
take advantage of the disjointness of conditionsC1-C3.
The pseudocode in Figure 2(ii) is from [3]; it is little better
than the one in Figure 2(i) but it fails to fully exploit the
relationships among the equalities and inequalities in
C1-C3. Figure 2(iii) is obtained from Figure 2(ii) by
replacingC3 by its negation (thereby avoiding negations
like "≠") and interchanging the associated then-else parts;
this is better than usingC2 in terms of the number of eval-
uations of various "=" and "≠". Figure2(iv) gives the most
efficient and elegant solution. In terms ofE = the average
number of evaluations of "=" or "≠", it has the minimumE
= 12/5. If we are given the additional information thata ≤
b ≤ c, then Figure 2(v) is the most efficient solution.

Table 2 shows the number of boolean conditions like
"a = b" or "a ≠ b" evaluated for different triangle types for
the pseudocode in Figure 2(iv). Here,the notation T(5) in
column "b = c" means the condition "b = c" evaluates to T
(true) in line 5 of Figure 2(iv). This gives E =
(2+2+2+3+3)/5 = 12/5.A similar analysis of the pseu-
docodes in Figures 2(ii)-(iii) gives E = 16/5, which is 30%
higher than 12/5. The pseudocode in Figure 2(i) hasE =
35/5. Thepseudocode in Figure 2(v) is a slight simplifica-
tion of that in Figure (iv) and hasE = 9/4; the only two
cases of isosceles triangles are now: "(a < c)∧ (a = b)" and

494Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

"(a < c)∧ (b = c)". Since sorting a, b, c takes at least 2
comparisons, Figure 2(iv) is still the best and many stu-
dents fail to obtain this solution.

Table 2. Computation ofE = 12/5 for Figure 2(iv).

Triangle Conditions Number of
Type a = b a = c b = c evaluations

Equilateral T(1) T(2) 2

Isosceles: case (a = b) T(1) F(2) 2
case (a = c) F(1) T(5) 2
case (b = c) F(1) F(5) T(5) 3

Scalar F(1) F(5) F(5) 3

1. if C1 then output("equilateral")
2. if C2 then output("scalar")
3. if C3 then output("isosceles")

(i) A very inefficient pseudocode.

1. if C1
2. then output("equilateral")
3. else if C3
4. then output("scalar")
5. else output("isosceles")

(ii) A better but not-so-good pseudocode.

1. if (a=b) AND (a=c)
2. then output("equilateral")
3. else if (a=b) OR (a=c) OR (b=c)
4. then output("isosceles")
5. else output("scalar")

(iii) An slightly better variant of (ii), with
the nested then/else parts interchanged.

1. if (a=b)
2. if (a=c)
3. then output("equilateral")
4. else output("isosceles")
5. else if (a=c) OR (b=c)
6. then output("isosceles")
7. else output("scalar")

(iv) A more efficient variation of (iii).

1. if (a=c) //assuming a <= b <= c
2. then output("equilateral")
3. else if (a=b) OR (b=c)
4. then output("isosceles")
5. else output("scalar")

(v) Anothervariation, assuminga ≤ b ≤ c.

Figure 2. Several alternate pseudocodes for the
TRC-problem having different efficiency in terms ofE.

III. CBSG-PROBLEM

Let B(n, m) = the set of binary strings of lengthn ≥ 1
and having m ones, 0≤ m ≤ n. We want to generate the
strings inB(n, m) one by one in lexicographic order, say,

to avoid generating a string more than once and missing
some strings altogether. The lexicographic orders < s′
between two strings s, s′ ∈ B(n, m) meanss represents a
smaller integer thans′. For B(4, 2), the lexicographic
ordering is: 0011 < 0101 < 0110 < 1001 < 1010 < 1100
and thus we want to generate these strings in that order.

A. WBSfor CBSG problem

Figure 3 shows a WBS for the CBSG problem, with
work-units w1 to w4. The use of "leftmost" inw2 is criti-
cal in two ways: (1) we sometimes cannot determine the
"rightmost" position of change ins without determining
the leftmost position of change, and (2) the corresponding
new w3 and w4 do not give us any computational advan-
tage. Theleftmost position of change ins is the position
of ’0’ in the rightmost "01" ins. If there is no "01" ins,
then there is no strings′ > s ands = 1m0n−m, the last string
in B(n, m). In this case,w3 and w4 will not be done.
(This illustrates an important point about WBS: the child-
nodes of a node do not always form an and-decomposi-
tion; they hav eto be, however, disjoint and one or more of
them must always suffice to complete the parent-task.A
program that implements a WBS must thus contain code
for each child-subtask of a node because for some input
situations the work for that child-subtask has to be done.)

Generate first string or the next string
s′ in B(n, m) from current strings

Generate first string
0n−m1m in B(n, m)

w1

Generate next strings′ ∈ B(n, m),
if exists, from any current strings

Find the left-
most positioni
of change ins

w2

Change 0 at
positioni in

s to 1
w3

Make other changes
to the right ofi in s

to obtains′
w4

Figure 3. A WBS for CBSG problem.

B. From WBS to Pseudocode

To transform a WBS into a pseudocode with "stubs"
for the work-units, one may need to add a good amount of
control logic. We may also need to choose parameters of
the functions for the main-task (root node of WBS) and
some other tasks, and add some variables for use in the
control-logic. Building a WBS first makes building a
pseudocode easier. Figure 4 shows the pseudocode for the
WBS in Figure ; "stubs" for the work-units are shown in
bold. We usen andm instead of "length" and "numOnes"
because of the small column-width of the printed text.
The nextBinString-function returns NULL if there is no
next binary string; otherwise, it returns a pointer to the
binary string generated. The static-variable binString
holds the most recent string (a beginning programmer may
make binString a global variable instead).

495Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

char *nextBinString(int n, int m)
{ static char *binString = NULL;
if (!binString) {

allocate storage for binString;
generateFirstBinString; }

else {
find leftmost position i of change in binString;
if (i not found) binString = NULL;
else { change 0 at positioni to 1;

make other changes in binString;
}

}
return(binString); //NULL, if no next string

}

Figure 4. A pseudocode for WBS in Figure 3.

Figure 5 shows a pseudocode for generating all strings
in B(n, m). We can start a new cycle for strings in
B(n, m), perhaps with one or both ofn and m changed,
and call nextBinString(n, m) repeatedly once the previous
cycle ends, indicated by the return-value NULL.

void genAllBinStrings()
{ char *binStr;
int maxLength = 100;
prompt("Enter string length n >= 1

and <= maxLength");
read(n);
prompt("Enter number of 1’s m >= 0

and <= length");
read(m);
do { binStr = nextBinString(n, m);

if (binStr) write(binStr);
} while (binStr);

}

Figure 5. A pseudocode to generate all strings inB(n, m).

We now present three ways of improving the efficiency
of computing the next binary strings′ from s.

C. Implementation/optimizationissue: IS.1

A close look at the successive strings inB(n, m) shows
to get the next string s′ from an s most of the time the
changes tos are made to few of its rightmost bits.This
means the search for the rightmost "01" ins should be
done from the right to left.A naive code to find the posi-
tion of ’0’ in rightmost "01" ins is shown below.

for (i=n-2; i>=0; i--)
if ((’0’ == s[i])&&(’1’ == s[i+1]))

break;

The problem with this code is that it looks at some of the
trailing 0’s in s more than once.For example, each of the
three underlined zeros ins = 001110111100000, where the
desired ’0’ ins is shown in bold, are looked at twice by

the above code. Abetter way to find the rightmost "01" in
s is shown below; it looks at the same positions ins as
before but they are now looked at only once. In both
cases, ifi ≥ 0 on termination of the for-loop(s), then it
gives the position of ’0’ of the rightmost "01" ins.

for (i=n-1; i>0; i--) //find rightmost ’1’

if (’1’ == s[i]) break;

for (i=i-1; i>=0; i--) //skip preceding 1’s

if (’0’ == s[i]) break

This code is an example of a general principle "Do A
Little and Take Advantage of it" (in short, DALTA, to be
read as "delta"). Another applications of this principle
was in Figure 2(iv) in the construction of nested if-then-
else. To force the better implementation ofw2 shown
above, we decomposew2 in Figure 3 as shown below.

Find the leftmost
positioni of change ins w2

Find rightmost
’1’ in s (if any)w2.1

Skip the preceding
group of 1’s (to the left) w2.2

Figure 6. A decomposition ofw2 in Figure 3.

D. Implementation/optimizationissue: IS.2

A further analysis of the relationship between a string
s ∈ B(n, m) and its next strings′ shows that we can avoid
the for-loop for skipping the ending group of 0’s in s (if
any) and, moreover, we need the for-loop to skip the pre-
ceding group of 1’s only in one case.For this, we keep
track of z(s) = size of the ending group of 0’s in s, k(s) =
size of the preceding group of 1’s in s (which is the same
as the rightmost group of 1’s), and update them as follows:

Casek(s) = 1: z(s′) = z(s) + 1, k(s′) ≥ 1.
Casek(s) > 1: z(s′) = 0, k(s′) = k(s) − 1.

E. Implementation/optimizationissue: IS.3

Now, consider the work-unit w4 in Figure 3. First, we
change ’1’ of the rightmost "01" (at positioni + 1) in s to
’0’. Next, we move the remaining (k(s) − 1) many 1’s of
the rightmost group of 1’s to the extreme right ins and
bring the ending groups of 0’s in s (if any) to the left of
these 1’s. A naive approach for this would be to inter-
change left half of the lastn − i − 2 = k(s) + z(s) − 1 posi-
tions in s with its right half. But a slightly more efficient
method is to simply interchangep = min { k(s) − 1, z(s)}
rightmost items ins with p leftmost items among the last
n − i − 2 positions. Thus,for s = ⋅⋅⋅011110000000, with
k(s) = 4, z(s) = 7, and s′ = ⋅⋅⋅100000000111, we need to
interchange onlyp = 3 positions (shown underlined ins)
among the last 10 = 4+ 7 − 1 positions, instead of inter-
changing 10/2 = 5 positions. Since the rightsidep items

496Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

will be made ’1’ and leftsidep items will be made ’0’, we
don’t need to read these 2p items for the exchange.

F. Final code and its performance

Figure 7 shows a completeC-code for nextBinString-
function based on Figure 4 and the optimizations in
(IS.1)-(IS.3). Thiscorresponds to version V.1 in Table 3;
Table 3 also briefly describes three other versions. Table 4
shows some performance data from the actual measure-
ments of average (over 5 runs) execution time for generat-
ing the strings inB(n, m), without printing. Note that
|B(n, m)| = C(n, m) is largest whenm = n/2. The version
V.1 has the best performance.The left-to-right search for
rightmost "01" in V.4 contributes most to its inefficiency.
The recursive version V.3 has no search for "01" and the
issues (IS.1)-(IS.3) are not relevant; it is less efficient than
V.2 due to the cost of recursive calls. In V.3, we succes-
sively fill the positionsi = 0, 1, ⋅⋅⋅, (n − 1) in the binary
string in that order as follows using two recursive calls: fill
position i by ’0’ (if m < n) and call nextBinString(n − 1,
m) to fill the remaining positions on right, and fill position
i by ’1’ (if m > 0) and call nextBinString(n − 1, m − 1) to
fill the remaining positions on right.

Table 3. Brief description of versions V1 to V4.

V.1: Searches the rightmost "01" from right to left and
adopts optimizations for (IS.1)-(IS.3); see Figure 7.

V.2: Searches the rightmost "01" from right to left but
does not adopt optimization for (IS.1)-(IS.3).

V.3: Uses recursion to generate strings inB(n, m).
V.4: Searches the rightmost "01" from left to right and

does not adopt optimization for (IS.1)-(IS.3).

Table 4. Av er. #(ticks over 5 runs in generating all
strings inB(n, m); a tick = 1/128 sec. The numbers in
parentheses give aver. #(accesses to items of a string
in B(n, m)) in search of the rightmost "01", if any.

Ver- n = 20 n = 30 n = 30 n = 30
sion m = 10 m = 10 m = 15 m = 20

V1 0.6 83.6 419.6 93.6
(1.0) (1.0) (1.0) (1.0)

V2 0.8 156.0 739.8 164.0
(4.2) (5.4) (4.3) (4.4)

V3 0.8 168.2 783.6 172.2
(3.8) (4.3) (3.9) (4.3)

V4 3.8 895.4 4578.2 823.4
(28.5) (48.3) (43.5) (38.7)

IV. SOME ELEGANT CODING TECHNIQUES

We hav e seen in Sections II-III that going from an
algorithm to an efficient implementation is a non-trivial
task. We now briefly describe a few techniques to go a

#include<stdio.h>

char *nextBinString(int length, int numOnes)
{ static char *binString;

static int i, //posn of ’0’ in rightmost "01"
//= -1 if there is no "01"

k, //size(rightmost group of 1’s)
z, //size(group of 0’s at length-1)
firstCall=1;

int j, min;
if (1 == firstCall) {

firstCall = 0;
binString = (char *)malloc((length+1)*

sizeof(char));
for (j=length-1-numOnes; j>=0; j--)

binString[j] = ’0’;
for (j=numOnes; j>0; j--)

binString[length-j] = ’1’;
i = length - 1 - numOnes; //= -1 if numOnes

//= length
k = numOnes; z = 0;

} else if ((-1 == i) || (0 == k)) {
free(binString); binString = NULL;
firstCall = 1;

} else { //this part may set i = -1 or k = 0
binString[i] = ’1’;
binString[i+1] = ’0’;
k--;
if (k > 0) { //move 1’s to right; set

//i, z for new binString
if (z < k) min = z;
else min = k;
for (j=0; j<min; j++) {

binString[length-1-j] = ’1’;
binString[i+2+j] = ’0’;

}
i = length - 1 - k; z = 0;

} else //no move of 1’s needed; set
//i, k, z for new binString
{ z = length - 1 - i;

for (i=i-1; i>=0; i--)
if (’0’ == binString[i])

break;
k = length - 1 - i - z;

}
}

return(binString);
}

Figure 7. Final code for nextBinString-function.

step further in creating a high quality elegant code, with-
out sacrificing the efficiency, simplicity, and clarity. This
involves some post-processing (cleaning) of the code, a
step often ignored by students.One such technique is
code-folding; we describe below two types of code-fold-
ing. See[1][4] for other techniques of good programming.
In Section III.C, we have seen an example of the opposite
process "code-unfolding", where we replaced a loop by
two loops to reduce computation.

A. Folding nested if-then-else

We often see student-codes that do not make proper
use of else-statements.For example, the two if-statements
"if (x > y) x = y; if (x <= y) y = x" can be simplified to "if
(x > y) x = y; else y = x" to avoid the unnecessary test "x
<= y". An extreme case of code-folding is replacing an if-
then-else statement by a simple statement as in replacing
"if (0 == x) y = x; else y = 2*x" by "y = 2*x". Figures
8(i)-(ii) show two slightly more complex cases of code-

497Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

folding, where the code on the right gives the simplified
form. The best solution to the TRC-problem in Figure
2(iv) uses both folding and unfolding of if-conditions.

(i) if (x) if (x && y)
if (y) s = t; s = t;
else u = v; else u = v;

else u = v;

(ii) if (x) if (x && !y)
if (y) u = v; s = t;
else s = t; else u = v;

else u = v;

Figure 8. Nested if-then-else simplified by code-folding.

B. Folding else-part

Given an array of non-zero numbers, suppose we want
to compute posCount = #(positive items) and negCount =
#(negative items). Figures9(i)-(ii) show two inelegant
student-codes for this problem.The first one ignores that
the array-items are non-zero, and both of them ignore the
property "posCount + negCount = #(items)".

(i) for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount++;

for (negCount=i=0; i<n; i++)
if (nums[i] < 0) negCount++;

(ii) for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount++;
else negCount++;

Figure 9. Tw o inelegant solutions to a simple counting
problem, where each nums[i]≠ 0.

The second solution is more efficient than the first, but
the best solution shown below is obtained by the DALTA-
principle. It is missed even by some graduate students.

for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount++;

negCount = n - posCount;

C. Folding or merging of loops

Consider computing the varianceV of nums[i], 0 ≤ i <
n. To use the formulasV = [Σn−1

i=0 (nums[i] − a)2]/n, where
a = (Σn−1

i=0 nums[i])/n, we need two separate loops. If we
use the formulaV = (Σn−1

i=0 nums[i]2) − a2, then a novice
programmer may also use the two loops shown below to
computeΣn−1

i=0 nums[i]2 anda.

for (sum=i=0; i<n; i++)
sum += nums[i];

for (sumOfSquares=i=0; i<n; i++)
sumOfSquares += nums[i]*nums[i];

A better solution is to merge the two loops. Thiscode is

shorter and runs a little faster; it performs half as many
tests "i < n" and half as many increments "i++".

for (sum=sumOfSquares=i=0; i<n; i++) {
sum += nums[i];
sumOfSquares += nums[i]*nums[i];

}

V. CONCLUSION AND FUTURE WORK

We hav e presented here a new approach to teaching
undergraduate-level programming by using the notion of
work-breakdown structure (WBS) as an intermediate step
in applying the well-known stepwise-refinement method
(SRM). Ourfour-step approach consists of: (1) creating a
WBS of tasks in solving the problem, (2) adding control
logic at various levels of the WBS to build a high-level
pseudocode, (3) creating an efficient implementation of
each work-unit (lowest level tasks in the WBS) based on a
detailed analysis and its alternative implementation
choices, and finally (4) applying certain code-transforma-
tions to obtain a more elegant program without loss of effi-
ciency and logical clarity. Our initial experience in using
this approach has been very positive. The students
designed more efficient and elegant code using less time
and with fewer errors. Our future work will involve a
more extensive study of this new approach on a larger stu-
dent population and extending the new approach to OO-
programming.

REFERENCES

[1] J.L. Bentley, Programming Pearls (2nd ed.), Addi-
son-Wesley, 2008.

[2] D. Gries, What have we not learned about teaching
programming.IEEE Computer,Oct. 2006, pp. 81-82.

[3] P.C. Jorgensen, Software Testing: a craftsman’s
approach(3rd ed.), Auerbach Publ., 2008, pp. 22.

[4] A. Hunt and D. Thomas,The Pragmatic Programmer,
Addison-Wesley, 2000.

[5] V. Preoteasa and R.-J. Back, Invariant diagrams with
data refinement,Formal Aspects of Computing,
24(2012), pp. 67-95.

[6] R.-J.Back and J. von Wright,Refinement Calculus: a
systematic introduction,Springer Verlag, 1998.

[7] C. Morgan, Programming from specifications (2nd
ed.),Prentice-Hall, 1994.

498Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

