ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Impr oving Undergraduate Students’ Programming Skills

Sukhamay Kundu
Computer Science Department, Louisiana Stateddsity
Baton Rouge, LA 70803, USA
e-mail: kundu@csc.Isu.edu

planning and scheduling. The connection of WBS to the
Abstract — Two key factors for the failure of under- stepwise refinement method (SRM) of progranetigp-
graduate students in ceating high quality programs ment is that both use a topvdo approach, where a task is
are their inability to: (1) identify the basic steps in successiely decomposed into disjoint subtasks until we
building a high-level solution algorithm, and (2) con- arrive & subtasks that can be readily sedv Because
vert these steps into an elegant and efficient pgram WBS is not concerned with the control-logic (if-then-else
implementation. Both these tasks equire aeative and loops), it is simpler than SRM where oneetgps
thinking and a systematic approach with emphasis on subtask decomposition in parallel with the refinement of
the programming process. V& believe that with proper control-logic in the form pseudocodd@his makes WBS a
training the students can impiove their programming good intermediate step and one can add the control-logic
skills and create high-quality programs. We describe a later in a bottom-up or top-down fashion at each subtask-
new approach to programming, which can be viewed decomposition stepWe @an say that WBS helps to opera-
as a kfinement of the well-known "stepwise efine- tionalize SRM in the same way that SCRUM saiitev
ment" method. We use the notion of verk-breakdown development method helps to operationalize agile pro-
structur e to address factor (1) and suggest a few coding gramming. BottSRM and WBS can accommodate refine-
techniques to addess factor (2). Our initial experience ments of data, operation, and control-logithere hae

in using the new approach has been very posig in been mayn advances in SRM-based formal techniques for
terms of improved quality of student programs. program deelopment [5-7], It these techniques are not
Keywords: work-breakdown structure; stepwise efine- Suitable for teaching undergraduateegorogramming.
ment; programming process. We limit ourselves here to non-OO programming.
Indeed, one cannot create a high quality OO-program,
I. INTRODUCTION which involves the added compligy of class-subclass

The lav success rate in the first and second year under considerations, if one cannot cregte a §mal| hi_gh-quality
graduate computer programming courses continues to be BoN-OO programFor the present discussion, a high qual-
serious problem ven today after the decades of rnyan 1Y Program means simple and clear logic in the basic
adwances in Programming Language designs (includingalgo_”thm* clean implementations for gopd computational
object-oriented languages) and Software Engineering€fficieny and memory usage, and simple and clear
methods. Adrop-out rate of 30% in the first year pro- INPut/outputinterfaces.
gramming courses is hot _u_ncommorWe_ o‘te_n_ seeé A, Work-Breakdown Structure
another 20-30% of the remaining studentsira difficul-
ties with programmingThis means 45-50% of the incom-

ing computer science undgaduates either change their - . .
major or struggle with their computer sciencgrée pro- position of the node into twvor more subtasks. The termi-

gram. Adwances in the programming methods from struc- nal nodes, called theork-units represent the actual tasks
tured programming and stepwise refinement to object-ori-performed in solving the_ original _problemvgn by the
ented (OO) programming has not led to significant r(_)ot of _\NBS-tree: The |ntern_1ed_|ate nodes represent a
improvements in the undergraduate students’ Iorogram_hlerarchlcal grouping of ark-units into larger conceptual

ming ability [2]. For some students, the problem persists "chun_ks" and the help us in arwing at the_ \prk-units.
beyond their undergraduate years. Creating a WBS-tree is often a non-trivial task and

requires much thought and insight into the problem at
) gty hand. Althoughjn principle, a node witm > 3 children
is the use of wrk-breakdan structure (WBS) in dilding can be replaced by a chainrof 1 nodes each with 2 chil-

the high-leel pseudocode or algorithmThe notion of gren this is not atays easily done and nor it is advisable
WBS is routinely used by business analysts as a tool in

We huild a WBS in a top-down fashion and represent it
as a tree, where the children of a nodenshthe decom-

The lkey dement of our n& approach to programming

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 493

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

to force this because it can lead to artificial subtagks. root with respect to isosceles triangle and scalar triangle.
WBS represents a solution approach in a more abstracClearly, the WBSs for ay classification problem can be
form than a pseudocode because it does net # con- mapped in an one-to-one fashion to the classification trees
trol-logic. Thesimultaneous delopment of control-logic for that problem if we do not include additional computa-
and the bodies of loops and the then/else parts of if-statetion details in the WBSs for the classification problem.
ments maks SRM harder to apply than ourohstep

method: build a WBS first and then add the control-logic. Classify a triangld as
equilateral, isosceles, or scalar

B. Two Demonstration Problems

We_ consider_tvm problems to she the usefulne_ss_ of Det;\;lmine T Determmze T Determmge T
WBS in dereloping compl& pseudocodes and theirfief is equilateral is isosceles is scalar
cient implementationsThe solution of the first problem,
the triangle classification (TRC), violves a compbe (i) A simple WBS.
nested if-then-else and the solution of the second problem,
the constrained binary string generation (CBSG)glires Classify a triangld” as
several interacting pairs of loops and if-statements. equil., isosceles, or scalar
both cases, we want simplest logic and the maximdim ef W,
cieng. The use of WBS helps to create a proper high- Determine ifT Determine ifT
level design for the solution algorithm, and then a proper is equilateral| |is not-equilateral

choice of data-structures leads to diicifnt implementa-

. : : Wo W3
tion. Theimportance of the CBSG problem is that pan Determine it [Determine T
other problems can be either formulated in this form or is isosceles is scalar
can be soled by generalizing or modifying the method

used for solving CBSGFor example, we can associate (ii) A multi-level WBS with more structure.

the subsets of size of a set of sizen with the binary

strings of lengti with m ones and thus we can generate Figure 1. Twoalternate WBS for the TRC-problem.

those subsets using the solution of the CBSG pr_obnzsn. Figure 2 shows seral alternate pseudocodes for the
another example, we can generate all permutatioms>0f TRC-problem. Thene in Figure 2(i) comes directly from
2 items by modifying the method for solving CBSG. the WBS in Figure 1(i) and is the least efficient; it does not

Sections Il and Il present the solutions of the TRC- take alvantage of the disjointness of conditioB8s-Cs.
problem and the CBSG-problem. Some important codingThe pseudocode in Figure 2(ii) is from [3]; it is little better
techniques are described in Section ISéction V gves than the one in Figure 2(i) but it fails to fully exploit the
the conclusion and the future work. relationships among the equalities and inequalities in
C;-C5. Fgure 2(iii) is obtained from Figure 2(ii) by

Il TRC-PROBLEM replacingC; by its ngaion (thereby woiding negations
Here, we want to classify a triangleas one of equi- like "#") and interchanging the associated then-else parts;
lateral, isosceles, and scalavegi the lengthsa, b, and ¢ this is better than usin@, in terms of the number of/a-

of its sides which are assumed to satisfy the triangleuations of various "=" and#". Figure2(iv) gives the most
inequalites:a+b >c,a+c>b,andb+c>a. Table1l efficient and elgant solution. In terms oE = the arerage

shaws the conditions for classifyirf. Note that we don’ number of galuations of "=" or %", it has the minimuni
need the conditiond' = c" in C; and likewise the condi- =12/5. If we are gien the additional information that <
tion "b # c" in the first and-combination @&,, &tc. b < c, then Figure 2(v) is the most efficient solution.

Table 1. Conditions for triangle classification. Table 2 shows the number of boolean conditione lik

— "a=Db"or"a#b" evauated for different triangle types for
Type Condition the pseudocode in Figure @i Here,the notation T(5) in
Equilateral C,: (a=b)d(b=c) column 'b = ¢" means the conditiorb'= c" evaluates to T
Isosceles |C,: [(a=b)O(azc)] O(a=c)d(a#b)] 0O (true) in line 5 of Figure 2¢). This gives E =
[(b=c)O(azb)] (2+2+2+3+3)/5 = 12/5.A similar analysis of the pseu-

Scalar Cs (azb)d(azc)O(#c) docodes in Figures 2(ii)-(iii) ges E = 16/5, which is 30%

higher than 12/5. The pseudocode in Figure 2(i) bhas

Figures 1(i)-(ii) sha two WBSs for the TRC-problem, 35/5. Thepseudocode in Figure 2(v) is a slight simplifica-
each with three erk-unitsw; to w;. There are tw more tion of that in Figure (iv) and ha = 9/4; the only tvo
WBSs similar to Figure 1(ii) based on decomposing thecases of isosceles triangles arevnt(a < ¢)J(a = b)" and

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 494

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

"(a<c)db=c)". Sincesorting a, b, c takes at least 2
comparisons, Figure 24 is still the best and mgrstu-
dents fail to obtain this solution.

Table 2. Computation of = 12/5 for Figure 2(iv).

Conditions |Number of
a=Db|a=c|b=c|evduations
T(1)|T(2) 2
T(1) [F(2)
F(1) |T(5)
F(1) |F(5)
F(1) [F(5)

Triangle

Type

Equilateral

Isosceles: casa (= b)
case 4 =¢c)
caseb=¢c)

2
2
T() |3
3

Scalar F(5)

if C1L then output("equilateral")
if C2 then output("scalar")
if C3 then output("isoscel es")

(i) A very inefficient pseudocode.

if Cl

then output("equil ateral™)
else if C3

t hen out put("scal ar")

el se out put ("i soscel es")

wNE

oaRwWNE

(i) A better but not-so-good pseudocode.

if (a=b) AND (a=c)

then output("equil ateral™)

else if (a=b) OR (a=c) OR (b=c)
t hen out put ("isoscel es")

el se out put ("scal ar")

(iif) An slightly better variant of (i), with
the nested then/else parts interchanged.

if (a=h)
if (a=c)
then output("equil ateral™)
el se out put ("i soscel es")
else if (a=c) OR (b=c)
t hen output ("isoscel es")
el se out put ("scalar")

(iv) A more efficient variation of (iii).

gRwWNE

NoORwWNE

if (a=c) //assuming a <= b <= ¢
then output("equil ateral™)

else if (a=b) OR (b=c)

t hen out put ("isoscel es")

el se out put ("scal ar")

oRwWNE

(v) Anothervariation, assuming < b <c.

Figure 2. Seeral alternate pseudocodes for the
TRC-problem having different efficiepin terms ofE.

. CBSG-PROBLEM

Let B(n, m) = the set of binary strings of length> 1
and haing m ones, 0< m < n. We want to generate the
strings inB(n, m) one by one in lexicographic ordesay,

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

to avoid generating a string more than once and missing
some strings altogetheiThe lexicographic orders < s
between tw drings s, s [0 B(n, m) meanss represents a
smaller integer thars'. For B(4, 2), the leicographic
ordering is: 0011 < 0101 < 0110 < 1001 < 1010 < 1100
and thus we want to generate these strings in that order.

A. WBSor CBSG problem

Figure 3 shows a WBS for the CBSG problem, with
work-unitsw; to w,. The use of "leftmost" i, is criti-
cal in two ways: (1) we sometimes cannot determine the
"rightmost” position of change is without determining
the leftmost position of change, and (2) the corresponding
new wz andw, do not gve s any computational adan-
tage. Theeftmost position of change isis the position
of '0’ in the rightmost "01" ins. If there is no "01" irs,
then there is no string > sands = 1"0""", the last string
in B(n, m). In this casew; and w, will not be done.
(This illustrates an important point about WBS: the child-
nodes of a node do notwalys form an and-decomposi-
tion; they haveto be, havever, disjoint and one or more of
them must alays sufice to complete the parent-tasih
program that implements a WBS must thus contain code
for each child-subtask of a node because for some input
situations the work for that child-subtask has to be done.)

Generate first string or the next string
s’ in B(n, m) from current string

Generate first string

Generate next stringj [1 B(n, m),
0"™1™in B(n, m)

if exists, from ag current strings

Wy
Find the left- Change 0 at | Make aher changes
most position positioni in to theright ofi in' s
of change irs stol to obtains
W5 W3 Wy

Figure 3. A WBS for CBSG problem.

B. Fom WBS to Pseudocode

To transform a WBS into a pseudocode with "stubs"
for the work-units, one may need to add a good amount of
control logic. We may also need to choose parameters of
the functions for the main-task (root node of WBS) and
some other tasks, and add some variables for use in the
control-logic. Buildinga WBS first makes building a
pseudocode easieFigure 4 shows the pseudocode for the
WBS in Figure ; "stubs" for the work-units are shown in
bold. We uisen andm instead of "length" and "numOnes"
because of the small column-width of the printexgt.te
The nextBinString-function returns NULL if there is no
next binary string; otherwise, it returns a pointer to the
binary string generated. The static-variable binString
holds the most recent string (agb@ing programmer may
malke binString a global variable instead).

495

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

char *nextBinString(int n, int m the aboe mde. Abetter vay to find the rightmost "01" in
{ static char *binString = NULL; s is shown belw; it looks at the same positions #as
if (!'binString) { before but the are nawv looked at only once. In both
al l ocate storage for binString; cases, ifi = 0 on ermination of the for-loop(s), then it
generateFirstBinString; } gives the position of ‘0’ of the rightmost "01" is
el se { for (i=n-1; i>0; i--) //find rightnost ’ 1’

find leftmost positioni of change in binString;

if (i not found) binString = NULL; 'T_.(l. ."_s_[ID break; . ,
S - for (i=i-1; i>=0; i--) //skip preceding 1's
el se { change O at positiori to 1; (0 == sl br eak
make aher changes in binString; o s(i]) brea
} This code is an example of a general principle "Do A
}]])) Little and Take Advantage of it" (in short, BLTA, to be
return(binString); //NULL, if no next string read as "delta"). Another applications of this principle
} was in Hgure 2(v) in the construction of nested if-then-
Figure 4. A pseudocode for WBS in Figure 3. else. D force the better implementation @f, shown

above, we cecomposav, in Figure 3 as shown belo
Figure 5 shars a pseudocode for generating all strings
in B(n, m). We can start a ne cycle for strings in Find the leftmost
B(n, m), perhaps with one or both of and m changed, positioni of change irs
and call ngtBinString(h, m) repeatedly once the piieus

W

cycle ends, indicated by the return-value NULL. W Find rightmost Skip the preceding W
21| '1"in s(if any) | |group of 15 (to the left) "'22
voi d genAl | BinStrings()
* hi .
t iCE?r mgLQﬁ;[h = 100: Figure 6. A decomposition ofv, in Figure 3.
pronpt (Eﬂgeizsg;fgngfﬂgg? n>=1 D. Implementation/optimizatiogsue: 1S.2
read(n); A further analysis of the relationship between a string
pronpt ("Enter number of 1's m>= 0 s 0 B(n, m) and its next strings’ shaws that we canvaid
and <= length"); L .) .
read(n); the forloop for skipping the ending group ofth s (if
do { binStr = nextBinString(n, m; ary) and, morewer, we reed the for-loop to skip the pre-
if (binStr) wite(binStr); ceding group of ¥ mly in one case.For this, we leep
} while (binStr); track of z(s) = size of the ending group of 9in s, k(s) =
} size of the preceding group ofslih s (which is the same

as the rightmost group of 1's), and update them as follows:

L . Casek(s) =1L 2(s)=1z(s)+1,k(s)=1.
We row present three ways of imprimg the eficiency Casek(s)> 1 2(s)=0, k(s) = k(9 - 1
of computing the next binary strirgyfroms. ' ' '

Figure 5. A pseudocode to generate all stringd(im m).

E. Implementation/optimizatiassue: IS.3

Now, consider the wrk-unit w, in Figure 3. First, we
change '1’ of the rightmost "01" (at positior 1) in s to
'0". Next, we mae the remaining K(s) — 1) mary 1's of
the rightmost group of §'to he extreme right irs and
bring the ending groups of Din s (if any) to the left of
these 13. A naive gproach for this would be to inter
change left half of the last—i —2 = k(s) + z(s) — 1 posi-

C. Implementation/optimizatiassue: I1S.1

A close look at the succesgsigrings inB(n, m) shows
to get the net string s’ from ans most of the time the
changes tes are made to fe of its rightmost bits. This
means the search for the rightmost "01"sishould be
done from the right to leftA naive wde to find the posi-
tion of "0’ in rightmost "01" insis shown bela.

for (i=n-2; i>=0; i--) _ tions ins with its right half. But a slightly more dicient
if ("0 ==s[i])&&("1" == s[i+l])) method is to simply interchange= min {k(s) - 1, z(s)}
br eak; rightmost items irs with p leftmost items among the last

The problem with this code is that it looks at some of the - :2 positiims. Thus{or s = (01111000000, with
trailing O's in s more than onceFor example, each of the K(S) =4 () = 7, and ' = [I10000000Q11, we need to

three underlined zeros 8= 0011101111®M000, where the interchange onlyp = 3 positions (_s.hown. underlined_ i5)
desired "0’ ins is shown in bold, are loek at twice by ~ 2mong the last 10 =47 -1 positions, instead of inter
changing 10/2 = 5 positions. Since the rightsl#gems

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 496

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

will be made "1’ and leftsidg items will be made '0’, we
don't need to read thesepatems for the exchange.

F. Fnal code and its performance
Figure 7 shars a completeC-code for ngtBinString-

function based on Figure 4 and the optimizations in

(1S.1)-(1S.3). Thiscorresponds to version V.1 in Table 3;
Table 3 also briefly describes three othersions. &ble 4

shavs some performance data from the actual measure-

ments of aerage (@er 5 runs) eecution time for generat-
ing the strings inB(n, m), without printing. Note that
[B(n, m)| =C(n, m) is lagest wherm = n/2. The \ersion
V.1 has the best performanc&he left-to-right search for
rightmost "01" in V.4 contributes most to its ifieengy.
The recursie vasion V.3 has no search for "01" and the
issues (1S.1)-(1S.3) are not redat; it is less efficient than
V.2 due to the cost of recurd alls. InV.3, we succes-
sively fill the positionsi = 0, 1, [} (h— 1) in the binary
string in that order as follows usingawecursve alls: fill
positioni by '0’ (if m < n) and call n&tBinString(h — 1,
m) to fill the remaining positions on right, and fill position
i by '1’ (if m> 0) and call n&tBinString(h—1, m-1) to

fill the remaining positions on right.

Table 3. Brief description of versions V1 to V4.

V.1: Searches the rightmost "01" from right to left and
adopts optimizations for (1S.1)-(I1S.3); see Figure 7.
Searches the rightmost "01" from right to lefitb
does not adopt optimization for (1S.1)-(1S.3).

Uses recursion to generate string8{n, m).
Searches the rightmost "01" from left to right and

does not adopt optimization for (1S.1)-(1S.3).

V.2:

V.3:
V.4.

Table 4. Aver. #(ticks over 5 runs in generating all
strings inB(n, m); a tick = 1/128 sec. The numbers in
parentheses g aver. #(accesses to items of a string

in B(n, m)) in search of the rightmost "01", ifyan

Ver- n=20 n=30 n=30 n=30
sion| m=10 | m=10 | m=15 | m=20
V1 0.6 83.6 419.6 93.6
(1.0) (2.0) (1.0) (2.0)
V2 0.8 156.0 739.8 164.0
(4.2) (5.4) (4.3) (4.4)
V3 0.8 168.2 783.6 172.2
(3.8) 4.3) (3.9) 4.3)
V4 3.8 895.4 | 4578.2| 823.4
(28.5) (48.3) (43.5) (38.7)

IV. SOME ELEGANT CODING TECHNIQUES

We have seen in Sections II-lll that going from an
algorithm to an efficient implementation is a nowigf
task. W now hriefly describe a f& techniques to go a

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

#i ncl ude<st di 0. h>

char *nextBi nSt
{ static char *
static int i,

g(int length,
String;
osn of

i nt nunOnes)

p 0" in rightnost "01"
=-1if thereis no "01"

si ze(ri ghtnost group of 1's)
S|ze(group of 0's at |length-1)

n
n
/
/
/
/
tCall=1

i
i
/
/

k, /

z, |/

firs

int j, mn;

if (1 --flrstCaII){

firstCall
binString

= (char *)mal | oc((| ength+1)*
si zeof (char));

for (j=length-1- nunOnes j>=0; j--)

binString[j] ='0

(j =nuntnes; j >0; j--)

bi nStrlng[Iength J1 =

length - 1 - nunDnes; /
/

for
] =

k =
} else

nuntnes; z = O;

if ((-1==1i) || (0
free(binString);
firstCall = 1;

} else { //this part may set i

binString[i 1,

binString[i "0

bi n

0z

]
+ =

17
|f(k>0){;

if (z <Kk) m
else mn = k;
for (j=0; j<min; j++)
bi nString[| engt h-
binString[i+2+4j]

nov o right; set

e l'st
z for new binString
= Z.

{
1- ='1';

il
0

= 0;
o nove of 1's needed

ngth - 1 - k; z
n
i, Kk,
z
fo

set
z for new bi nStrl ng

== bi nString[i])

k =length - 1 - i - z;

}
return(binString);
}

Figure 7. Final code for nextBinString-function.

step further in creating a high quality géat code, with-

out sacrificing the &tiencgy, amplicity, and clarity This
involves some post-processing (cleaning) of the code, a
step often ignored by student©ne such technique is
code-folding; we describe be&lotwo types of code-fold-
ing. Sed1][4] for other techniques of good programming.
In Section 11l.C, we hee en an example of the opposite
process "code-unfolding”, where we replaced a loop by
two loops to reduce computation.

A. Folding nested if-then-else

We dten see student-codes that do not engtoper
use of else-statementsor example, the tw if-statements
"if (x >y) x =y;if (x <=y) y = X" can be simplified to "if
(x >y) x =y; else y = X" to\aid the unnecessary test "x
<=y". An extreme case of code-folding is replacing an if-
then-else statement by a simple statement as in replacing
"if (0 ==X)y =x; elsey=2*" by "y = 2*x". Figures
8(i)-(ii) showv two dightly more complg cases of code-

497

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

folding, where the code on the righveg the simplified
form. The best solution to the TRC-problem in Figure
2(iv) uses both folding and unfolding of if-conditions.

@ if (x) if (x & vy)
if (y) s =t; s =t;
else u = v; else u = v;
else u = v;
@iy if (x) if (x & 'y)
if (y) u=v; s = t;
else s =t; else u = v;

else u = v;

Figure 8. Nested if-then-else simplified by code-folding.

B. Folding else-part

Given an aray of non-zero numbers, suppose wantv
to compute posCount = #(pos#i tems) and negCount =
#(nggative items). Figures9(i)-(ii) showv two inelggant
student-codes for this problenThe first one ignores that

shorter and runs a little faster; it performs half asyman
tests < n" and half as mapincrements "i++".

for (sumesunX Squares=i =0; i<n; i++) {
sum += nuns[i];
sumOf Squares += nuns[i]*nuns[i];

}

V. CONCLUSION AND FUTURE WORK

We have presented here a weapproach to teaching
undergraduate-e programming by using the notion of
work-breakdevn structure (WBS) as an intermediate step
in applying the well-known stepwise-refinement method
(SRM). Ourfour-step approach consists of: (1) creating a
WBS of tasks in solving the problem, (2) adding control
logic at various leels of the WBS to build a highvel
pseudocode, (3) creating arfi@ént implementation of
each work-unit (lowest \&l tasks in the WBS) based on a
detailed analysis and its altermati implementation

the array-items are non-zero, and both of them ignore thechoices, and finally (4) applying certain code-transforma-

property "posCount + negCount = #(items)".

0] for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount ++;

for (negCount=i=0; i<n; i++)
if (nums[i] < 0) negCount ++;

(i) for (posCount=i=0; i<n; i++)

if (nums[i] > 0) posCount ++;
el se negCount ++;

Figure 9. Two inelegant solutions to a simple counting
problem, where each numsf]0.

The second solution is more efficient than the finst, b
the best solution shown belds dbtained by the BLTA-
principle. Itis missed een by ome graduate students.

for (posCount=i=0; i<n; i++)
if (nums[i] > 0) posCount ++;
negCount = n - posCount;

C. PFolding or merging of loops

Consider computing theavianceV of numsf], 0<i <
n. To use the formula¥ = [3 - (numsf] - a)?)/n, where
a= (Z{Zol numsj])/n, we reed two sparate loops. If we
use the formula/ = (37 numsjf]?) - &2, then a nwice
programmer may also use theotlwops shown bele to
computezi”:_o1 numsj]? anda.

for (sumri=0; i<n; i++)
sum += nuns[i];
for (sumOf Squares=i=0; i<n; i++)

sunf Squares += nuns[i]*nuns[i];

A better solution is to mge the two loops. Thiscode is

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

tions to obtain a more gent program without loss of &f
cieng/ and logical clarity Our initial experience in using
this approach has been very pesiti The students
designed more efficient and géat code using less time
and with fewer errors. Our futureonk will involve a
more a&tensve gudy of this ne approach on a larger stu-
dent population and extending theanapproach to OO-
programming.

REFERENCES

[1] J.L. Bentley, Programming Rarls (2nd ed.), Addi-
son-Weslg, 2008.

[2] D. Gries, What hee we mot learned about teaching
programming.lEEE ComputerQct. 2006, pp. 81-82.

P.C. Jogensen, Softwae Testing: a caftsman’'s
approach(3rd ed.), Auerbach Publ., 2008, pp. 22.

A. Hunt and D. Thomag§,he Pagmatic Plogrammer,
Addison-Weslg, 2000.

V. Preoteasa and R.-J. Backyériant diagrams with
data refinement,Formal Aspects of Computing
24(2012), pp. 67-95.

R.-J.Back and J. @n Wright,Refinement Calculus: a
systematic introductior§pringer Verlag, 1998.

3]

[4]

[5]

[7]

C. Morgan, Programming from specifications (2nd
ed.),Prentice-Hall, 1994.

498

