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Abstract—Most existing automated debugging techniques just 

focus on selecting a set of suspicious statements that may cause 

failures and ranking them in terms of suspiciousness. 

Therefore, these techniques always ignore the contextual 

information of how suspicious statements behave and 

propagate in the program. However, the contextual 

information is useful for discovering and understanding bugs. 

Hence, this paper proposes a novel approach to enhance 

contexts for automated debugging techniques. Based on 

localization results obtained from automated debugging 

techniques, our approach utilizes program slicing to classify 

suspicious statements into different contexts, and assigns 

different suspiciousness to the contexts and their elements. The 

experimental study shows that our approach can substantially 

improve debugging effectiveness. 

Keywords-automate debugging; program spectra; program 

slicing; statistical analysis. 

I.  INTRODUCTION 

Software debugging has been recognized as one of the 
most time-consuming tasks in the development and 
maintenance of software [5]. With the aim at reducing the 
cost of debugging, a great number of research techniques are 
proposed to support automating or semi-automating the 
process of debugging and improve its performance [3-25]. 

However, existing automated debugging techniques just 
focus on selecting a subset of statements potentially 
responsible for failures and ranking them according to some 
criterion. Therefore, they ignore the contextual information 
of how suspicious statements behave and propagate in the 
program. The recent research [1] has found that the lack of 
contextual information may affect the activity of discovering 
and understanding bugs. For example, the faulty statement is 
included in the set of suspicious statements, and developers 
inspect the statements in this set. Due to the lack of 
contextual information, developers may judge the faulty 
statement is not responsible for program failures and just 
ignore this statement when inspecting it. Hence, it is vital to 
enhance the contexts for automated debugging techniques. 

Program slicing technique [14-16] utilizes data and 
control dependence to identify the set of program statements 
that may affect or be affected by the values at some 
statement of a program. The set of statements is referred to 
as a program slice. A program slice can be essentially 
regarded as a context that shows a causal chain of how data 
and control propagates in a program. However, program 

slicing treats the statements of a program slice with the same 
suspiciousness to be faulty and thus lacks the guidance as to 
how the statements in a slice should be examined. That 
always leads developers to be frustrated and tiresome as the 
size of a slice can substantially increase with the increasing 
size and complexity of today's software [1]. One possible 
way to address this issue is to use the promising ability of 
some automated debugging techniques to assign different 
suspiciousness to the statements of a slice. More importantly, 
it implies that automated debugging techniques can adopt 
program slicing to enhance contexts for themselves. 

Among current research, one promising automated 
debugging technique exploits the correlations between 
program entities and program failures via statistically 
analyzing coverage information [3-13]. This technique is 
generally referred to as spectrum-based fault localization 
(SFL). SFL usually collects coverage information and test 
results from dynamic executions to construct program 
spectra from passed and failed executions. After gathering 
spectra information, SFL adopts a ranking metric to evaluate 
the suspiciousness of program entities to be faulty and gives 
a ranking list of all entities in terms of suspiciousness. The 
research [3-13] has shown that SFL has a promising structure 
of evaluating the suspiciousness of an entity to be faulty. 
Nevertheless, SFL just outputs a ranking list of isolated 
entities and fails to provide the contextual information for 
discovering and understanding these suspicious statements. 

Considering the popularity and ability, this paper chooses 
SFL and enhances contexts for it by using program slicing 
technique. Hence, we propose a debugging approach which 
uses program slicing to enhance contexts for SFL. Our 
approach utilizes SFL to compute the suspiciousness of each 
statement to be faulty. Then, the approach uses program 
slicing to identify the most suspicious statement and its 
relevant statements as a context showing how the most 
suspicious statement behaves in a program. Finally, except 
for the statements of all constructed contexts, the most 
suspicious statement of the remaining statements and its 
relevant statements constitute a new context, and this step 
would be iterated until each statement is classified into a 
particular context. Because a context is constructed from the 
most suspicious statement in it, our approach assigns the 
suspiciousness of this statement to the context. For each 
statement, its suspiciousness keeps unchanged. In addition, 
our approach offers two modes to developers with different 
experiences, and utilizes visualization and program 
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dependence to further assist developers. It can be seen that 
our approach provides useful contexts and recommends 
examining guidance of all contexts and their elements in 
terms of suspiciousness. 

This paper conducts an experimental study on two 
standard benchmarks: the Siemens suite and Space [28], and 
compares our approach with nine ranking metrics of SFL: 
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6], 
Ample [7], CBI [8], Optimal and OptimalP [9]. The results 
demonstrate that the proposed approach outperforms all nine 
ranking metrics of SFL. 

The remainder of this paper is organized as follows. 
Section II introduces the background of SFL. Section III 
describes our approach. Section IV conducts an experimental 
study. Related work is introduced in Section V and 
conclusions are given in Section VI. 

II. BACKGROUND OF SFL 

 
Figure 1. Input to SFL. 

Spectrum-based fault localization (SFL) [3] is a dynamic 
program analysis technique. It typically uses coverage 
information of passed and failed runs to rank program 
entities whose activity correlates most with the failures. 
Passed runs are executions of a program that output as 
expected, whereas failed runs are executions of a program 
that output as unexpected. There are various types of entities, 
such as blocks, functions, branches, paths, etc. This study 
adopts statements as the entities. 

First, we assume that a program P comprises a set of 
statements S and runs against a set of test cases T that 
contains at least one failed test case, with N=|S| and M=|T|, 
respectively (see Fig. 1). The above matrix M×(N+1) 
represents the input to SFL. An element xij is equal to 1 if 
statement j is covered by the execution of test run i, and 0 
otherwise. The error vector e at the rightmost column of the 
matrix represents the test results. The element ei is equal to 1 
if run i failed, and 0 otherwise. Except the error vector, the 
rest of the matrix is expressed in terms of matrix A. The ith 
row of A indicates whether a statement was covered by run i. 
The jth column of A indicates statement j was covered by 
which runs. 

SFL usually measures the suspiciousness of a statement 
to be faulty from similarity between its statement spectra and 
error vector in the above matrix (see Fig. 1), and finally 
outputs a ranking list of all statements in descending order of 
suspiciousness. The similarity is quantified by ranking 
metrics.  

TABLE I shows nine ranking metrics of SFL and how 
the suspiciousness of statement j was computed by the 

corresponding ranking metrics. apq(j)=|{i|xij=p∧ei=q}|, and 

p, q∈{0,1}. a0q(j) represents the number of passed (q=0) or 

failed (q=1) test cases that do not execute statement j. a1q(j) 

TABLE I.  FORMULAS OF SFL  

Name Formula Name  Formula 
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denotes the number of passed (q=0) or failed (q=1) test cases 
that execute statement j.  

SFL is widely accepted and studied as a promising 
automated technique in the debugging community, and the 
research has empirically proven that SFL is effective to 
correlate faulty statements with failures in terms of 
suspiciousness [3-13]. According to the popularity and 
ability, this study chooses SFL to evaluate the suspiciousness 
of contexts and their elements. 

III. THE APPROACH 

Program slicing as a debugging aid was introduced by 
Mark Weiser [14]. Korel and Laski afterwards proposed 
dynamic slicing to focus on an execution in a specific input 
[15]. Because the localization result of SFL is based on the 
executions of a set of test cases instead of a specific 
execution, this study adopts static slices for our approach. 
There are two types of static slices: static backward slices 
(SBS) and static forward slices (SFS). The SBS of a variable 
at a statement includes all those statements which affect the 
value of the variable at that statement through chains of static 
data and/or control dependence [14]. In contrast, the SFS of a 
variable at a statement includes all those statements that are 
affected by the value of the variable at that statement through 
chains of static data and/or control dependence [19]. It can 
be seen that SBS can find a set of statements affecting a 
statement while SFS can identify a set of statements affected 
by a statement. 

The basic idea of our approach is to apply program 
slicing to SFL by constructing different suspicious contexts 
and their elements for discovering and understanding faults. 
Our approach uses both SBS and SFS to construct a context 
showing how a statement affects and is affected by other 
statements in a program, and then utilizes SFL to evaluate 
the suspiciousness of each context and its elements. 

The Algorithm 1 describes our approach. First, there are 
some explanations for Algorithm 1. This section adopts the 
program P and set of test cases T defined in Section II. The 
program P consists of a set of statements S that is denoted as 
{s1, s2, …, sN}. FSlice(si) represents the union of the SFS of 
each variable at statement si. BSlice(si) denotes the union of 
SBS of each variable at statement si. contextSet stores all 
constructed contexts. 
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Algorithm 1  The proposed approach

1: Step 1: Compute the suspiciousness of each statement.

2:           SFLAnalyze(S,T);

3: Step 2: Construct different suspicious contexts and their statements.

4:           while(S is not empty){

5:              stmSet=GetMostSuspiciousStm(S); 

6:              context=Φ;

7:              for(i=0; i<stmSet.size; i++)

8:                 context=context∪BSlice(stmSet[i])∪FSlice(stmSet[i])∪stmSet[i];

9:              context.suspiciousness=stmSet[0].suspiciousness;         

10:            S=S−context;

11:            if(mode=="weak-contexts")

12:                for(i=0;i<contextSet.size;i++)

13:                   context=context−contextSet[i];

14:           Add(context,contextSet);

15:         }

16: Step 3: Output the localization results.

17:        if(visualization == true)

18:          Visualize(contextSet);

19:        else

20:          Text(contextSet);  
Step 1: Compute the suspiciousness of each statement. 

The function SFLAnalyze(S,T) analyzes the statement 
coverage information and test results of test cases T, and 
adopts SFL to compute the suspiciousness of each statement 
in S. The format of statement coverage information and test 
results of test cases T is a matrix as shown in Fig. 1. In this 
study, for the statements with the same assigned 
suspiciousness, SFL ranks them in descending order of their 
line numbers in the source code. This strategy is also adopted 
by the text-form of localization results mentioned in the 
following step 3. 

Step 2: Construct different suspicious contexts and 
their elements. This step iteratively constructs suspicious 
contexts until each statement is classified into a specific 
context. As the suspiciousness of some statements may be 
the same, the function GetMostSuspiciousStm(S) may return 
a set of most suspicious statements in S more than one 
statement. Lines 6 to 8 represent that besides the most 
suspicious statements, context consists of a set of statements 
that can affect or are affected by at least one of the most 
suspicious statements in S. As a context is constructed from 
the most suspicious statements in S, line 9 assigns the 
suspiciousness of the most suspicious statements to its 
corresponding context. Line 10 excludes the statements of 
the new context from the set of statements S. 

There are two modes in our approach: weak-contexts and 
strong-contexts. The mode of weak-contexts demands that a 
statement can be only classified into one context. Therefore, 
it can cause some less suspicious contexts miss those 
statements presented in a more suspicious context. Lines 11 
to 13 exclude those statements of all constructed contexts 
from the new context when the mode is weak-contexts. In 
contrast, the mode of strong-contexts maintains the integrity 
of each context. In this mode, a statement may be classified 
into different contexts. The step 3 presents a strategy to give 
some hints of the repetitive appearance of a statement in 
different contexts. Line 14 inserts the new context into 
contextSet that contains all constructed contexts. 

Step 3: Output the localization results. This step 
outputs localization results in two different forms. One is 
text-form and the other is visualization-form. The functions 
Text(contextSet) and Visualize(contextSet) process the text-
form and visualization-form of the localization results 
contextSet respectively. The text-form firstly ranks all 

contexts in descending order of their suspiciousness and then 
sequences the statements of each context in descending order 
of suspiciousness given by SFL. The ranking list is outputted 
in a text form. The visualization-form uses program 
dependence graphs [26,27] or lists the statements in a context 
along the program dependence edges from the starting point 
to show each context and its statements, and maps color to 
them according to the suspiciousness. This form can visually 
assist developers in understanding and locating faults. Some 
information is attached to each statement, such as 
suspiciousness and role. There are three types of role, 
namely "root", "affect" or "affected". The "root" denotes the 
statement is chosen to be sliced to construct the context. The 
"affect" and "affected" represents the statement affects or is 
affected by the "root" statement respectively. As mentioned 
in step 2, a context may be constructed from several 
statements with the same highest suspiciousness. Hence, a 
context may contain several "root" statements. In this case, 
the algorithm will number "root" statements to associate 
each "root" statement with its corresponding "affect" and 
"affected" statements. 

The key idea of the color mapping algorithm is based on 
the visualization algorithm of Tarantula [5]. The color of a 
context or statement can be anywhere in the continuous 
spectrum of colors from red to yellow to green in descending 
order of suspiciousness. The contexts or statements are 
colored red to denote "danger" and indicate high likelihood 
of containing faults; those contexts or statements are 
specified green to denote "safety" and suggest little 
correlation with the failure; the contexts or statements are 
marked yellow to denote "caution" and imply a medium 
circumstance between "danger" and "safety". The 
visualization algorithm of Tarantula is implemented by 
GIMP and limits the suspiciousness to belong to [0, 1]. 
However, some metrics of SFL can produce a value of 
suspiciousness out of this range, such as Wong2, Wong3 and 
Optimal. In addition, this study chooses GTK+ to implement 
the color mapping algorithm. Hence, a new color mapping 
equation is defined in Eq. (1). 
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In Eq. (1), s represents a context or statement and 
s.suspiciousness denotes the suspiciousness of s. The 
minSuspiciousness and maxSuspiciousness are the minimum 
and maximum suspiciousness in all statements respectively. 
GTK+ uses RGB model to produce different colors and 
specifies the values of each of the three basic colors at the 
range from 0 to 65535. In addition, the color mapping 
algorithm just needs red and green to generate the spectrum 
of colors for contexts and statements. As a result, Range and 
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Blue equal to 65535 and 0 in Eq. (1) respectively. It can be 
found that Eq. (1) can handle any range of the suspiciousness 
and map color to contexts and statements from red to yellow 
to green in descending order of suspiciousness. Note that if 
maxSuspiciousness equals to minSuspiciousness, all contexts 
and their statements will be colored green by the color 
mapping algorithm. 

As mentioned in the step 2, although the mode of strong-
contexts maintains the integrity of each context, checking 
those repetitive statements in different contexts may increase 
the workload of developers. A strategy is proposed to 
address this problem. Following the ranking list of all 
contexts in descending order of suspiciousness, this strategy 
examines the statements of each context in turn. When 
checking the statements of a context, some additional 
information is attached to those statements presented in 
previous examined contexts, such as rank/total and pre-
contexts. The rank/total means the rank of the statement in 
total statements of the program in descending order of 
suspiciousness. The pre-contexts denote the set of higher 
ranked contexts that contains the statement before this 
context. The rank/total shows an indication of how 
suspicious a repetitive statement is in total statements of the 
program and the pre-contexts provides the connections of a 
repetitive statement in different contexts. In addition, the 
visualization-form colors gray to the repetitive statements. 
The above strategy offers some useful information of the 
repetitive statements and can alleviate the burden on 
developers for checking those repetitive statements. 

As described above, it can be found that our approach 
can construct different suspicious contexts and their 
statements, and offer examining guidance of these contexts 
and statements in both text-form and visualization-form. It 
implies that the proposed approach equips SFL with contexts 
to further assist in discovering and understanding bugs. 

IV. AN EXPERIMENTAL STUDY 

A. Experimental Setup 

As SFL outputs a ranking list of all statements without 
repetition, this experiment use the weak-contexts mode of 
our approach to be compared to SFL. More concretely, the 
experiment study compares our approach in the weak-
contexts mode with nine ranking metrics of SFL, namely 
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6], 
Ample [7], CBI [8], Optimal and OptimalP [9]. The formulas 
of these metrics are illustrated in TABLE I. This study 
chooses the Siemens suite and Space as the benchmarks 
because they are two widely used benchmarks in the field of 
software debugging with high quality. The two benchmarks 
can be obtained from the Software artifact Infrastructure 
Repository [28]. The Siemens suite contains 7 programs and 
132 faulty versions of these programs. The Space contains 
38 faulty versions. We select "universe" suite that contains 
all test cases in TABLE II. TABLE II lists the programs, the 
number of faulty versions of each program, lines of 
statements, lines of executable statements, number of all test 
cases, as well as the functional descriptions of the 
corresponding program.  

TABLE II.  DESCRIPTION OF THE SIEMENS SUITE AND SPACE 

Program Versions LOC Ex Test Description 

print_tokens 7 563 203 4130 Lexical analyzer 

print_tokens2 10 508 203 4115 Lexical analyzer 

replace 32 563 289 5542 Pattern recognition 

schedule 9 410 162 2650 Priority scheduler 

schedule2 10 307 144 2710 Priority scheduler 

tcas 41 173 67 1608 Altitude separation 

tot_info 23 406 136 1052 Information measure 

Space 38 9564 6218 13585 ADL interpreter 

Although there are 170 versions in total, we were unable 
to adopt all of them. Because there was no failed test case in 
version 32 of replace, version 9 of schedule2 and versions 1, 
2, 34 of Space, we excluded the five versions. Additionally, 
we focus on executable statements, so the modifications of 
header files and definition/declaration errors were ignored. 
Hence, versions 4 and 6 of print_tokens, version 12 of 
replace, versions 13, 14, 36, 38 of tcas and versions 6, 10, 19, 
21 of tot_info were also discarded. Finally, 154 faulty 
versions were used for the experiment. 

In the experiment, the coverage information is gathered 
by using Gcov tool. We use FEMA (Failure Modes and 
Effects Analysis) slicing tool [26] developed by our group to 
perform program slicing. In addition, we adopt the GTK+ to 
implement the algorithm of the visualization of our approach. 

B. Evaluation metrics 

The effectiveness of debugging techniques is widely 
evaluated by the percentage of code that needs to be 
examined (or not examined) to find the fault [6]. This 
evaluation assumes that developers will follow the ranking 
list to examine all statements from top to bottom until they 
encounter the faulty statement. Following this notion, we 
define fault-localization accuracy (referred as Acc) as the 
percentage of executable statements to be examined before 
finding the actual faulty statement [10]. A lower value of Acc 
indicates higher effectiveness. 

For a more detailed comparison, we adopt relative 
improvement (referred as Imp) [10]. The Imp is to compare 
the total number of statements that need to be examined to 
find all faults using our approach versus the number that 
need to be examined by using the SFL. A lower value of Imp 
shows better improvement that our approach obtains. 

C. Results and analysis 

Figure 2 illustrates the Acc comparison between SFL 

and our approach in all faulty versions. The x-axis 

represents the percentage of executable statements to be 

examined. The y-axis denotes the percentage of faulty 

versions. A point in Fig. 2 represents when a percentage of 

executable statements is examined in each faulty version, 

the percentage of faulty versions has located their faults. 

As shown in Fig. 2, the curves of our approach are 

usually higher than those of the corresponding metrics of 

SFL. It suggests that our approach improves the 

effectiveness of the nine metrics of SFL. 

For a more detailed comparison, Fig. 3 presents the Imp 

of our approach over each metric of SFL in each program. 

The x-axis represents the name of each program. The y-axis 
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              Figure 2.  Acc comparison between SFL and our approach.                  Figure 3.  Imp of our approach over each metric of SFL on each program. 

 
Figure 4. The maximum, minimum and average saving of our approach 

over each program. 

denotes the Imp in a specific metric of SFL. The tables in Fig. 
3 show the detailed values of Imp on each program. If the 
value of Imp is less 100%, it means that our approach 
promotes the effectiveness of SFL. Otherwise it indicates our 
approach decreases the effectiveness of SFL. 

As shown in Fig. 3, the values of Imp over each metric of 
SFL are less than 100% in most of programs. This indicates 
that the effectiveness of SFL is improved by our approach in 
most of programs. Take Ochiai as an example. The lowest 
Imp is 39.1% in print_tokens. This implies that our approach 

obtains the maximum improvement over Ochiai in 
print_tokens. It also means that when locating all faults in 
print_tokens, our approach only requires the examination of 
39.1% of the number of statements that Ochiai requires the 
examination of. This represents a 60.9% saving in terms of 
effort, which is the maximum saving that our approach 
obtains in Ochiai. However, the highest Imp is 103.5% in 
Schedule, which implies that our approach requires an extra 
3.5% effort to locate all faults in Schedule compared to 
Ochiai. This represents the minimum saving, -3.5%, that our 
approach obtains in Ochiai. 

Fig. 4 illustrates the maximum, minimum and average 
saving of our approach in each program. As shown in Fig. 4, 
the average maximum saving that our approach obtains is 
41.7% and the average minimum saving is 8.6%. On average, 
the saving of our approach is 22.7%, which indicates our 
approach is more effective than SFL. 

Because the high suspicious statements evaluated by SFL 
are usually relevant to the faulty statements, our approach 
can classify the faulty statements into more suspicious 
contexts and they finally obtain higher ranks compared to 
those ranks in SFL. However, the high suspicious statements 
sometimes may be irrelevant to the faulty statements. Thus, 
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it can cause some less suspicious statements that are relevant 
to the high suspicious statements surpass the faulty 
statements in more suspicious contexts. This reveals the 
reason why our approach slightly decreases the effectiveness 
of some metrics of SFL in several programs. 

We also found that the decrease of effectiveness, to some 
extent, is caused by the vulnerability of SFL. For example, 
SFL utilizes coverage information that cannot identify those 
statements whose execution affects the program output. 
Suppose that a non-faulty statement that is irrelevant to the 
faulty statement and has little contribution to the faulty 
output. Suppose further that the number of failed test runs 
executing the non-faulty statement is larger than that of 
failed test runs covering the faulty statement, whereas the 
number of passed test runs covering the non-faulty statement 
is less than that of passed test runs executing the faulty 
statement. In this case, SFL usually assigns higher 
suspiciousness to the non-faulty statement than that to the 
faulty statement. If a context is constructed from this non-
faulty statement, it is more probable for some less suspicious 
statements associated with this non-faulty statement to 
surpass the faulty statement in this more suspicious context. 
However, if SFL can identify those statements whose 
execution affects the program output, SFL can rank this non-
faulty statement lower than the faulty statement. Under this 
circumstance, it reduces the possibility of decreasing the 
effectiveness of SFL when using our approach. 

D. Threats to Validity 

A threat to the validity of our experiment is the subject 
programs used by the study. The experiment chooses the 
Siemens suite and Space because they are two de-facto 
benchmarks in the field of software debugging. Apparently, 
the results obtained may not apply to all programs. For 
instance, a program, in reality, usually ships with multiple 
faults rather than a single fault as used in our experiment. 
The recent research [2] has found that multiple faults pose a 
negligible effect on the effectiveness of fault localization, 
and even in the presence of many faults, at least one fault is 
found by the fault localization technique with high 
effectiveness. Although these findings increase our 
confidence in the effectiveness of our approach for locating 
multiple faults, they cannot guarantee that multiple faults 
create a negligible effect on the effectiveness of our 
approach. It is necessary to use more subject programs to 
further investigate the effectiveness of our approach. 

Another threat is the metrics of SFL adopted by our 
experiments. The experimental study selects nine metrics of 
SFL to empirically evaluate the effectiveness and 
applicability of our approach. However, SFL is a big family 
and contains many metrics [3-13]. Our approach may not be 
applicable to some other metrics of SFL. It is vital to apply 
our approach to a much broader spectrum of SFL to further 
evaluate its effectiveness and applicability. 

V. RELATED WORK 

Spectrum-based fault localization (SFL) has motivated 
plenty of debugging techniques over recent years. The 
effectiveness of SFL highly depends on the ranking metrics 

that measure the correlations between program entities and 
failures. Hence, many metrics of SFL are proposed, such as 
the nine metrics of SFL adopted by the experiment [3-9]. In 
addition, there are many types of program entities presented 
for SFL, such as statements [5,6,9,10], blocks [3,7], branches 
[8], etc. Some new complex coverage types of program 
entities using dependences or flow are also proposed to 
strengthen the relationship among the elements of a program 
entity, such as mixed coverage [11], information flow 
coverage [12] and control flow edge coverage [13]. Although 
all of the above approaches have delivered the promising 
ability in correlating program entities and failures, they 
usually ignore the fact that the contextual information is 
useful for discovering and understanding the bugs. To 
enhance contexts for SFL, our approach applies program 
slicing to SFL to construct different suspicious contexts and 
their statements. 

Program slicing technique [14-16] has also been widely 
studied in the field of debugging. Kusumoto et al. [17] 
conducted an experimental evaluation of program slicing for 
fault localization and Zhang et al. [18] investigate the 
effectiveness of dynamic slicing in locating faults. Their 
research shows program slicing is useful for fault 
localization. To further narrow down the searching scope, 
Gupta et al. [19] present failure inducing chops that intersect 
the forward dynamic slices of inputs with the backward 
dynamic slices of outputs. Zhang et al. [20] study the 
probable missing dependencies in dynamic slices and use an 
effective slicing approach to locate execution omission errors. 
Xin et al. [21] present a data-centric dynamic slicing 
technique that focuses on the dependencies in memory 
locations. Zhang et al. [22] propose an event-centric dynamic 
slicing technique that removes the irrelevant events from the 
sets of events to narrow down the searching scope of events. 
Although slicing-based debugging techniques have made 
great progress in these years, the size of a slice is still large. 
In addition, the elements of a slice are always treated with 
same suspiciousness to be faulty and no checking order is 
recommended to developers. Therefore, the slicing-based 
debugging techniques are rarely used in practice [2]. To 
alleviate this problem, our approach uses SFL to quantify the 
suspiciousness of a slice and its statements, and provides the 
guidance as to how the statements in a slice should be 
examined. 

Baah et al. [23] uses the conditional probability in a 
dependence graph of a failed run to compute the 
suspiciousness of each node, and associate a state 
configuration with each node to construct a context and 
understand the problem. In contrast to their approach, our 
approach uses program slicing to iteratively construct 
different suspicious contexts and their statements according 
to the location results given by SFL. 

Jiang et al. [24] proposes a context-aware statistical 
debugging approach by constructing and ranking the control-
flow paths. The control-flow path is a context showing how a 
faulty predicate behave in a program. HOLMES [25] 
statistically analyzes path profiles of both passed runs and 
failed runs to isolate bugs that correlate with failure, and also 
uses paths to show a context where bugs occur. Unlike these 
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two approaches, our approach uses program slicing 
constructs contexts and their elements, and utilizes SFL to 
assign suspiciousness to them. A context in our approach is 
essentially a slice showing how the most suspicious 
statement affects and is affected by other statements. 

VI. CONCLUSION 

This paper proposes a debugging approach to enhance 
contexts for a promising automated debugging technique, 
namely spectrum-based fault localization (SFL). The 
proposed approach applies program slicing to SFL by 
constructing different suspicious contexts and their elements 
for assist in understanding and locating faults. In addition, 
our approach offers two modes to different experienced 
developers, and uses the visualization and program 
dependence to further help understand the problem. The 
experimental study on two standard benchmarks shows that 
the proposed approach outperforms all nine metrics of SFL. 

In future work, we plan to evaluate the effectiveness of 
our approach across a much broader spectrum of programs. 
We will also further study the applicability of our approach 
to more metrics of SFL and other automated debugging 
techniques. 
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