

Enhancing Contexts for Automated Debugging Techniques

Yan Lei, Chengsong Wang, Xiaoguang Mao and Quanyuan Wu

School of Computer

National University of Defense Technology

Changsha, China

yanlei@nudt.edu.cn, jameschen186@gmail.com, xgmao@nudt.edu.cn, quanyuanwu@nudt.edu.cn

Abstract—Most existing automated debugging techniques just

focus on selecting a set of suspicious statements that may cause

failures and ranking them in terms of suspiciousness.

Therefore, these techniques always ignore the contextual

information of how suspicious statements behave and

propagate in the program. However, the contextual

information is useful for discovering and understanding bugs.

Hence, this paper proposes a novel approach to enhance

contexts for automated debugging techniques. Based on

localization results obtained from automated debugging

techniques, our approach utilizes program slicing to classify

suspicious statements into different contexts, and assigns

different suspiciousness to the contexts and their elements. The

experimental study shows that our approach can substantially

improve debugging effectiveness.

Keywords-automate debugging; program spectra; program

slicing; statistical analysis.

I. INTRODUCTION

Software debugging has been recognized as one of the
most time-consuming tasks in the development and
maintenance of software [5]. With the aim at reducing the
cost of debugging, a great number of research techniques are
proposed to support automating or semi-automating the
process of debugging and improve its performance [3-25].

However, existing automated debugging techniques just
focus on selecting a subset of statements potentially
responsible for failures and ranking them according to some
criterion. Therefore, they ignore the contextual information
of how suspicious statements behave and propagate in the
program. The recent research [1] has found that the lack of
contextual information may affect the activity of discovering
and understanding bugs. For example, the faulty statement is
included in the set of suspicious statements, and developers
inspect the statements in this set. Due to the lack of
contextual information, developers may judge the faulty
statement is not responsible for program failures and just
ignore this statement when inspecting it. Hence, it is vital to
enhance the contexts for automated debugging techniques.

Program slicing technique [14-16] utilizes data and
control dependence to identify the set of program statements
that may affect or be affected by the values at some
statement of a program. The set of statements is referred to
as a program slice. A program slice can be essentially
regarded as a context that shows a causal chain of how data
and control propagates in a program. However, program

slicing treats the statements of a program slice with the same
suspiciousness to be faulty and thus lacks the guidance as to
how the statements in a slice should be examined. That
always leads developers to be frustrated and tiresome as the
size of a slice can substantially increase with the increasing
size and complexity of today's software [1]. One possible
way to address this issue is to use the promising ability of
some automated debugging techniques to assign different
suspiciousness to the statements of a slice. More importantly,
it implies that automated debugging techniques can adopt
program slicing to enhance contexts for themselves.

Among current research, one promising automated
debugging technique exploits the correlations between
program entities and program failures via statistically
analyzing coverage information [3-13]. This technique is
generally referred to as spectrum-based fault localization
(SFL). SFL usually collects coverage information and test
results from dynamic executions to construct program
spectra from passed and failed executions. After gathering
spectra information, SFL adopts a ranking metric to evaluate
the suspiciousness of program entities to be faulty and gives
a ranking list of all entities in terms of suspiciousness. The
research [3-13] has shown that SFL has a promising structure
of evaluating the suspiciousness of an entity to be faulty.
Nevertheless, SFL just outputs a ranking list of isolated
entities and fails to provide the contextual information for
discovering and understanding these suspicious statements.

Considering the popularity and ability, this paper chooses
SFL and enhances contexts for it by using program slicing
technique. Hence, we propose a debugging approach which
uses program slicing to enhance contexts for SFL. Our
approach utilizes SFL to compute the suspiciousness of each
statement to be faulty. Then, the approach uses program
slicing to identify the most suspicious statement and its
relevant statements as a context showing how the most
suspicious statement behaves in a program. Finally, except
for the statements of all constructed contexts, the most
suspicious statement of the remaining statements and its
relevant statements constitute a new context, and this step
would be iterated until each statement is classified into a
particular context. Because a context is constructed from the
most suspicious statement in it, our approach assigns the
suspiciousness of this statement to the context. For each
statement, its suspiciousness keeps unchanged. In addition,
our approach offers two modes to developers with different
experiences, and utilizes visualization and program

1Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

dependence to further assist developers. It can be seen that
our approach provides useful contexts and recommends
examining guidance of all contexts and their elements in
terms of suspiciousness.

This paper conducts an experimental study on two
standard benchmarks: the Siemens suite and Space [28], and
compares our approach with nine ranking metrics of SFL:
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6],
Ample [7], CBI [8], Optimal and OptimalP [9]. The results
demonstrate that the proposed approach outperforms all nine
ranking metrics of SFL.

The remainder of this paper is organized as follows.
Section II introduces the background of SFL. Section III
describes our approach. Section IV conducts an experimental
study. Related work is introduced in Section V and
conclusions are given in Section VI.

II. BACKGROUND OF SFL

Figure 1. Input to SFL.

Spectrum-based fault localization (SFL) [3] is a dynamic
program analysis technique. It typically uses coverage
information of passed and failed runs to rank program
entities whose activity correlates most with the failures.
Passed runs are executions of a program that output as
expected, whereas failed runs are executions of a program
that output as unexpected. There are various types of entities,
such as blocks, functions, branches, paths, etc. This study
adopts statements as the entities.

First, we assume that a program P comprises a set of
statements S and runs against a set of test cases T that
contains at least one failed test case, with N=|S| and M=|T|,
respectively (see Fig. 1). The above matrix M×(N+1)
represents the input to SFL. An element xij is equal to 1 if
statement j is covered by the execution of test run i, and 0
otherwise. The error vector e at the rightmost column of the
matrix represents the test results. The element ei is equal to 1
if run i failed, and 0 otherwise. Except the error vector, the
rest of the matrix is expressed in terms of matrix A. The ith
row of A indicates whether a statement was covered by run i.
The jth column of A indicates statement j was covered by
which runs.

SFL usually measures the suspiciousness of a statement
to be faulty from similarity between its statement spectra and
error vector in the above matrix (see Fig. 1), and finally
outputs a ranking list of all statements in descending order of
suspiciousness. The similarity is quantified by ranking
metrics.

TABLE I shows nine ranking metrics of SFL and how
the suspiciousness of statement j was computed by the

corresponding ranking metrics. apq(j)=|{i|xij=p∧ei=q}|, and

p, q∈{0,1}. a0q(j) represents the number of passed (q=0) or

failed (q=1) test cases that do not execute statement j. a1q(j)

TABLE I. FORMULAS OF SFL

Name Formula Name Formula

Ochiai
11

11 01 11 10

()

(() ()) * (() ())

a j

a j a j a j a j

Jaccard

11

11 01 10

()

() () ()

a j

a j a j a j

Tarantula

11

11 01

1011

11 01 10 00

()

() ()

()()

() () () ()

a j

a j a j

a ja j

a j a j a j a j

Ample

1011

01 11 00 10

()()

() () () ()

a ja j

a j a j a j a j

CBI

11 0111

11 10 11 01 00 10

() ()()

() () () () () ()

a j a ja j

a j a j a j a j a j a j

Wong2 11 10() ()a j a j

Optimal

01

00 01

1 if () 0

() if () 0

a j

a j a j

OptimalP

10
11

10 00

()
()

() () 1

a j
a j

a j a j

Wong3

10 10

11 10 10

10 10

() if () 2

() , where 2 0.1* (() 2) if 2 () 10

2.8 0.001* (() 10) if () 10

a j a j

a j h h a j a j

a j a j

denotes the number of passed (q=0) or failed (q=1) test cases
that execute statement j.

SFL is widely accepted and studied as a promising
automated technique in the debugging community, and the
research has empirically proven that SFL is effective to
correlate faulty statements with failures in terms of
suspiciousness [3-13]. According to the popularity and
ability, this study chooses SFL to evaluate the suspiciousness
of contexts and their elements.

III. THE APPROACH

Program slicing as a debugging aid was introduced by
Mark Weiser [14]. Korel and Laski afterwards proposed
dynamic slicing to focus on an execution in a specific input
[15]. Because the localization result of SFL is based on the
executions of a set of test cases instead of a specific
execution, this study adopts static slices for our approach.
There are two types of static slices: static backward slices
(SBS) and static forward slices (SFS). The SBS of a variable
at a statement includes all those statements which affect the
value of the variable at that statement through chains of static
data and/or control dependence [14]. In contrast, the SFS of a
variable at a statement includes all those statements that are
affected by the value of the variable at that statement through
chains of static data and/or control dependence [19]. It can
be seen that SBS can find a set of statements affecting a
statement while SFS can identify a set of statements affected
by a statement.

The basic idea of our approach is to apply program
slicing to SFL by constructing different suspicious contexts
and their elements for discovering and understanding faults.
Our approach uses both SBS and SFS to construct a context
showing how a statement affects and is affected by other
statements in a program, and then utilizes SFL to evaluate
the suspiciousness of each context and its elements.

The Algorithm 1 describes our approach. First, there are
some explanations for Algorithm 1. This section adopts the
program P and set of test cases T defined in Section II. The
program P consists of a set of statements S that is denoted as
{s1, s2, …, sN}. FSlice(si) represents the union of the SFS of
each variable at statement si. BSlice(si) denotes the union of
SBS of each variable at statement si. contextSet stores all
constructed contexts.

2Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Algorithm 1 The proposed approach

1: Step 1: Compute the suspiciousness of each statement.

2: SFLAnalyze(S,T);

3: Step 2: Construct different suspicious contexts and their statements.

4: while(S is not empty){

5: stmSet=GetMostSuspiciousStm(S);

6: context=Φ;

7: for(i=0; i<stmSet.size; i++)

8: context=context∪BSlice(stmSet[i])∪FSlice(stmSet[i])∪stmSet[i];

9: context.suspiciousness=stmSet[0].suspiciousness;

10: S=S−context;

11: if(mode=="weak-contexts")

12: for(i=0;i<contextSet.size;i++)

13: context=context−contextSet[i];

14: Add(context,contextSet);

15: }

16: Step 3: Output the localization results.

17: if(visualization == true)

18: Visualize(contextSet);

19: else

20: Text(contextSet);
Step 1: Compute the suspiciousness of each statement.

The function SFLAnalyze(S,T) analyzes the statement
coverage information and test results of test cases T, and
adopts SFL to compute the suspiciousness of each statement
in S. The format of statement coverage information and test
results of test cases T is a matrix as shown in Fig. 1. In this
study, for the statements with the same assigned
suspiciousness, SFL ranks them in descending order of their
line numbers in the source code. This strategy is also adopted
by the text-form of localization results mentioned in the
following step 3.

Step 2: Construct different suspicious contexts and
their elements. This step iteratively constructs suspicious
contexts until each statement is classified into a specific
context. As the suspiciousness of some statements may be
the same, the function GetMostSuspiciousStm(S) may return
a set of most suspicious statements in S more than one
statement. Lines 6 to 8 represent that besides the most
suspicious statements, context consists of a set of statements
that can affect or are affected by at least one of the most
suspicious statements in S. As a context is constructed from
the most suspicious statements in S, line 9 assigns the
suspiciousness of the most suspicious statements to its
corresponding context. Line 10 excludes the statements of
the new context from the set of statements S.

There are two modes in our approach: weak-contexts and
strong-contexts. The mode of weak-contexts demands that a
statement can be only classified into one context. Therefore,
it can cause some less suspicious contexts miss those
statements presented in a more suspicious context. Lines 11
to 13 exclude those statements of all constructed contexts
from the new context when the mode is weak-contexts. In
contrast, the mode of strong-contexts maintains the integrity
of each context. In this mode, a statement may be classified
into different contexts. The step 3 presents a strategy to give
some hints of the repetitive appearance of a statement in
different contexts. Line 14 inserts the new context into
contextSet that contains all constructed contexts.

Step 3: Output the localization results. This step
outputs localization results in two different forms. One is
text-form and the other is visualization-form. The functions
Text(contextSet) and Visualize(contextSet) process the text-
form and visualization-form of the localization results
contextSet respectively. The text-form firstly ranks all

contexts in descending order of their suspiciousness and then
sequences the statements of each context in descending order
of suspiciousness given by SFL. The ranking list is outputted
in a text form. The visualization-form uses program
dependence graphs [26,27] or lists the statements in a context
along the program dependence edges from the starting point
to show each context and its statements, and maps color to
them according to the suspiciousness. This form can visually
assist developers in understanding and locating faults. Some
information is attached to each statement, such as
suspiciousness and role. There are three types of role,
namely "root", "affect" or "affected". The "root" denotes the
statement is chosen to be sliced to construct the context. The
"affect" and "affected" represents the statement affects or is
affected by the "root" statement respectively. As mentioned
in step 2, a context may be constructed from several
statements with the same highest suspiciousness. Hence, a
context may contain several "root" statements. In this case,
the algorithm will number "root" statements to associate
each "root" statement with its corresponding "affect" and
"affected" statements.

The key idea of the color mapping algorithm is based on
the visualization algorithm of Tarantula [5]. The color of a
context or statement can be anywhere in the continuous
spectrum of colors from red to yellow to green in descending
order of suspiciousness. The contexts or statements are
colored red to denote "danger" and indicate high likelihood
of containing faults; those contexts or statements are
specified green to denote "safety" and suggest little
correlation with the failure; the contexts or statements are
marked yellow to denote "caution" and imply a medium
circumstance between "danger" and "safety". The
visualization algorithm of Tarantula is implemented by
GIMP and limits the suspiciousness to belong to [0, 1].
However, some metrics of SFL can produce a value of
suspiciousness out of this range, such as Wong2, Wong3 and
Optimal. In addition, this study chooses GTK+ to implement
the color mapping algorithm. Hence, a new color mapping
equation is defined in Eq. (1).

()

, if 0.5

 0
() * 2* * , if 0.5

0.5

1
() * (2 2*) * , if 0.5

0.5

, if

color s

Range Rate

Red Rate
Range Rate Range Rate

Rate
Range Rate Range Rate

Green

Range Rate

.

0.5

0

, =

s suspici

Blue

where Rate

 and 65535
ousness minSuspiciousness

maxSuspiciousness minSuspiciousness
Range

In Eq. (1), s represents a context or statement and
s.suspiciousness denotes the suspiciousness of s. The
minSuspiciousness and maxSuspiciousness are the minimum
and maximum suspiciousness in all statements respectively.
GTK+ uses RGB model to produce different colors and
specifies the values of each of the three basic colors at the
range from 0 to 65535. In addition, the color mapping
algorithm just needs red and green to generate the spectrum
of colors for contexts and statements. As a result, Range and

3Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Blue equal to 65535 and 0 in Eq. (1) respectively. It can be
found that Eq. (1) can handle any range of the suspiciousness
and map color to contexts and statements from red to yellow
to green in descending order of suspiciousness. Note that if
maxSuspiciousness equals to minSuspiciousness, all contexts
and their statements will be colored green by the color
mapping algorithm.

As mentioned in the step 2, although the mode of strong-
contexts maintains the integrity of each context, checking
those repetitive statements in different contexts may increase
the workload of developers. A strategy is proposed to
address this problem. Following the ranking list of all
contexts in descending order of suspiciousness, this strategy
examines the statements of each context in turn. When
checking the statements of a context, some additional
information is attached to those statements presented in
previous examined contexts, such as rank/total and pre-
contexts. The rank/total means the rank of the statement in
total statements of the program in descending order of
suspiciousness. The pre-contexts denote the set of higher
ranked contexts that contains the statement before this
context. The rank/total shows an indication of how
suspicious a repetitive statement is in total statements of the
program and the pre-contexts provides the connections of a
repetitive statement in different contexts. In addition, the
visualization-form colors gray to the repetitive statements.
The above strategy offers some useful information of the
repetitive statements and can alleviate the burden on
developers for checking those repetitive statements.

As described above, it can be found that our approach
can construct different suspicious contexts and their
statements, and offer examining guidance of these contexts
and statements in both text-form and visualization-form. It
implies that the proposed approach equips SFL with contexts
to further assist in discovering and understanding bugs.

IV. AN EXPERIMENTAL STUDY

A. Experimental Setup

As SFL outputs a ranking list of all statements without
repetition, this experiment use the weak-contexts mode of
our approach to be compared to SFL. More concretely, the
experiment study compares our approach in the weak-
contexts mode with nine ranking metrics of SFL, namely
Ochiai [3], Jaccard [4], Tarantula [5], Wong2 [6], Wong3 [6],
Ample [7], CBI [8], Optimal and OptimalP [9]. The formulas
of these metrics are illustrated in TABLE I. This study
chooses the Siemens suite and Space as the benchmarks
because they are two widely used benchmarks in the field of
software debugging with high quality. The two benchmarks
can be obtained from the Software artifact Infrastructure
Repository [28]. The Siemens suite contains 7 programs and
132 faulty versions of these programs. The Space contains
38 faulty versions. We select "universe" suite that contains
all test cases in TABLE II. TABLE II lists the programs, the
number of faulty versions of each program, lines of
statements, lines of executable statements, number of all test
cases, as well as the functional descriptions of the
corresponding program.

TABLE II. DESCRIPTION OF THE SIEMENS SUITE AND SPACE

Program Versions LOC Ex Test Description

print_tokens 7 563 203 4130 Lexical analyzer

print_tokens2 10 508 203 4115 Lexical analyzer

replace 32 563 289 5542 Pattern recognition

schedule 9 410 162 2650 Priority scheduler

schedule2 10 307 144 2710 Priority scheduler

tcas 41 173 67 1608 Altitude separation

tot_info 23 406 136 1052 Information measure

Space 38 9564 6218 13585 ADL interpreter

Although there are 170 versions in total, we were unable
to adopt all of them. Because there was no failed test case in
version 32 of replace, version 9 of schedule2 and versions 1,
2, 34 of Space, we excluded the five versions. Additionally,
we focus on executable statements, so the modifications of
header files and definition/declaration errors were ignored.
Hence, versions 4 and 6 of print_tokens, version 12 of
replace, versions 13, 14, 36, 38 of tcas and versions 6, 10, 19,
21 of tot_info were also discarded. Finally, 154 faulty
versions were used for the experiment.

In the experiment, the coverage information is gathered
by using Gcov tool. We use FEMA (Failure Modes and
Effects Analysis) slicing tool [26] developed by our group to
perform program slicing. In addition, we adopt the GTK+ to
implement the algorithm of the visualization of our approach.

B. Evaluation metrics

The effectiveness of debugging techniques is widely
evaluated by the percentage of code that needs to be
examined (or not examined) to find the fault [6]. This
evaluation assumes that developers will follow the ranking
list to examine all statements from top to bottom until they
encounter the faulty statement. Following this notion, we
define fault-localization accuracy (referred as Acc) as the
percentage of executable statements to be examined before
finding the actual faulty statement [10]. A lower value of Acc
indicates higher effectiveness.

For a more detailed comparison, we adopt relative
improvement (referred as Imp) [10]. The Imp is to compare
the total number of statements that need to be examined to
find all faults using our approach versus the number that
need to be examined by using the SFL. A lower value of Imp
shows better improvement that our approach obtains.

C. Results and analysis

Figure 2 illustrates the Acc comparison between SFL

and our approach in all faulty versions. The x-axis

represents the percentage of executable statements to be

examined. The y-axis denotes the percentage of faulty

versions. A point in Fig. 2 represents when a percentage of

executable statements is examined in each faulty version,

the percentage of faulty versions has located their faults.

As shown in Fig. 2, the curves of our approach are

usually higher than those of the corresponding metrics of

SFL. It suggests that our approach improves the

effectiveness of the nine metrics of SFL.

For a more detailed comparison, Fig. 3 presents the Imp

of our approach over each metric of SFL in each program.

The x-axis represents the name of each program. The y-axis

4Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

 Figure 2. Acc comparison between SFL and our approach. Figure 3. Imp of our approach over each metric of SFL on each program.

Figure 4. The maximum, minimum and average saving of our approach

over each program.

denotes the Imp in a specific metric of SFL. The tables in Fig.
3 show the detailed values of Imp on each program. If the
value of Imp is less 100%, it means that our approach
promotes the effectiveness of SFL. Otherwise it indicates our
approach decreases the effectiveness of SFL.

As shown in Fig. 3, the values of Imp over each metric of
SFL are less than 100% in most of programs. This indicates
that the effectiveness of SFL is improved by our approach in
most of programs. Take Ochiai as an example. The lowest
Imp is 39.1% in print_tokens. This implies that our approach

obtains the maximum improvement over Ochiai in
print_tokens. It also means that when locating all faults in
print_tokens, our approach only requires the examination of
39.1% of the number of statements that Ochiai requires the
examination of. This represents a 60.9% saving in terms of
effort, which is the maximum saving that our approach
obtains in Ochiai. However, the highest Imp is 103.5% in
Schedule, which implies that our approach requires an extra
3.5% effort to locate all faults in Schedule compared to
Ochiai. This represents the minimum saving, -3.5%, that our
approach obtains in Ochiai.

Fig. 4 illustrates the maximum, minimum and average
saving of our approach in each program. As shown in Fig. 4,
the average maximum saving that our approach obtains is
41.7% and the average minimum saving is 8.6%. On average,
the saving of our approach is 22.7%, which indicates our
approach is more effective than SFL.

Because the high suspicious statements evaluated by SFL
are usually relevant to the faulty statements, our approach
can classify the faulty statements into more suspicious
contexts and they finally obtain higher ranks compared to
those ranks in SFL. However, the high suspicious statements
sometimes may be irrelevant to the faulty statements. Thus,

5Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

it can cause some less suspicious statements that are relevant
to the high suspicious statements surpass the faulty
statements in more suspicious contexts. This reveals the
reason why our approach slightly decreases the effectiveness
of some metrics of SFL in several programs.

We also found that the decrease of effectiveness, to some
extent, is caused by the vulnerability of SFL. For example,
SFL utilizes coverage information that cannot identify those
statements whose execution affects the program output.
Suppose that a non-faulty statement that is irrelevant to the
faulty statement and has little contribution to the faulty
output. Suppose further that the number of failed test runs
executing the non-faulty statement is larger than that of
failed test runs covering the faulty statement, whereas the
number of passed test runs covering the non-faulty statement
is less than that of passed test runs executing the faulty
statement. In this case, SFL usually assigns higher
suspiciousness to the non-faulty statement than that to the
faulty statement. If a context is constructed from this non-
faulty statement, it is more probable for some less suspicious
statements associated with this non-faulty statement to
surpass the faulty statement in this more suspicious context.
However, if SFL can identify those statements whose
execution affects the program output, SFL can rank this non-
faulty statement lower than the faulty statement. Under this
circumstance, it reduces the possibility of decreasing the
effectiveness of SFL when using our approach.

D. Threats to Validity

A threat to the validity of our experiment is the subject
programs used by the study. The experiment chooses the
Siemens suite and Space because they are two de-facto
benchmarks in the field of software debugging. Apparently,
the results obtained may not apply to all programs. For
instance, a program, in reality, usually ships with multiple
faults rather than a single fault as used in our experiment.
The recent research [2] has found that multiple faults pose a
negligible effect on the effectiveness of fault localization,
and even in the presence of many faults, at least one fault is
found by the fault localization technique with high
effectiveness. Although these findings increase our
confidence in the effectiveness of our approach for locating
multiple faults, they cannot guarantee that multiple faults
create a negligible effect on the effectiveness of our
approach. It is necessary to use more subject programs to
further investigate the effectiveness of our approach.

Another threat is the metrics of SFL adopted by our
experiments. The experimental study selects nine metrics of
SFL to empirically evaluate the effectiveness and
applicability of our approach. However, SFL is a big family
and contains many metrics [3-13]. Our approach may not be
applicable to some other metrics of SFL. It is vital to apply
our approach to a much broader spectrum of SFL to further
evaluate its effectiveness and applicability.

V. RELATED WORK

Spectrum-based fault localization (SFL) has motivated
plenty of debugging techniques over recent years. The
effectiveness of SFL highly depends on the ranking metrics

that measure the correlations between program entities and
failures. Hence, many metrics of SFL are proposed, such as
the nine metrics of SFL adopted by the experiment [3-9]. In
addition, there are many types of program entities presented
for SFL, such as statements [5,6,9,10], blocks [3,7], branches
[8], etc. Some new complex coverage types of program
entities using dependences or flow are also proposed to
strengthen the relationship among the elements of a program
entity, such as mixed coverage [11], information flow
coverage [12] and control flow edge coverage [13]. Although
all of the above approaches have delivered the promising
ability in correlating program entities and failures, they
usually ignore the fact that the contextual information is
useful for discovering and understanding the bugs. To
enhance contexts for SFL, our approach applies program
slicing to SFL to construct different suspicious contexts and
their statements.

Program slicing technique [14-16] has also been widely
studied in the field of debugging. Kusumoto et al. [17]
conducted an experimental evaluation of program slicing for
fault localization and Zhang et al. [18] investigate the
effectiveness of dynamic slicing in locating faults. Their
research shows program slicing is useful for fault
localization. To further narrow down the searching scope,
Gupta et al. [19] present failure inducing chops that intersect
the forward dynamic slices of inputs with the backward
dynamic slices of outputs. Zhang et al. [20] study the
probable missing dependencies in dynamic slices and use an
effective slicing approach to locate execution omission errors.
Xin et al. [21] present a data-centric dynamic slicing
technique that focuses on the dependencies in memory
locations. Zhang et al. [22] propose an event-centric dynamic
slicing technique that removes the irrelevant events from the
sets of events to narrow down the searching scope of events.
Although slicing-based debugging techniques have made
great progress in these years, the size of a slice is still large.
In addition, the elements of a slice are always treated with
same suspiciousness to be faulty and no checking order is
recommended to developers. Therefore, the slicing-based
debugging techniques are rarely used in practice [2]. To
alleviate this problem, our approach uses SFL to quantify the
suspiciousness of a slice and its statements, and provides the
guidance as to how the statements in a slice should be
examined.

Baah et al. [23] uses the conditional probability in a
dependence graph of a failed run to compute the
suspiciousness of each node, and associate a state
configuration with each node to construct a context and
understand the problem. In contrast to their approach, our
approach uses program slicing to iteratively construct
different suspicious contexts and their statements according
to the location results given by SFL.

Jiang et al. [24] proposes a context-aware statistical
debugging approach by constructing and ranking the control-
flow paths. The control-flow path is a context showing how a
faulty predicate behave in a program. HOLMES [25]
statistically analyzes path profiles of both passed runs and
failed runs to isolate bugs that correlate with failure, and also
uses paths to show a context where bugs occur. Unlike these

6Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

two approaches, our approach uses program slicing
constructs contexts and their elements, and utilizes SFL to
assign suspiciousness to them. A context in our approach is
essentially a slice showing how the most suspicious
statement affects and is affected by other statements.

VI. CONCLUSION

This paper proposes a debugging approach to enhance
contexts for a promising automated debugging technique,
namely spectrum-based fault localization (SFL). The
proposed approach applies program slicing to SFL by
constructing different suspicious contexts and their elements
for assist in understanding and locating faults. In addition,
our approach offers two modes to different experienced
developers, and uses the visualization and program
dependence to further help understand the problem. The
experimental study on two standard benchmarks shows that
the proposed approach outperforms all nine metrics of SFL.

In future work, we plan to evaluate the effectiveness of
our approach across a much broader spectrum of programs.
We will also further study the applicability of our approach
to more metrics of SFL and other automated debugging
techniques.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant No.91118007,
90818024 and 61133001, the National High Technology
Research and Development Program of China (863 program)
under Grant No.2011AA010106 and 2012AA011201 and the
Program for New Century Excellent Talents in University.

REFERENCES

[1] C. Parnin and A. Orso, "Are automated debugging techniques actually
helping programmers?," in the 2011 International Symposium on
Software Testing and Analysis, Toronto, Canada, 2011, pp. 199-209.

[2] N. DiGiuseppe and J. Jones, "On the influence of multiple faults on
coverage-based fault localization," in the 2011 International
Symposium on Software Testing and Analysis, Toronto, Canada, 2011.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, "On the accuracy
of spectrum-based fault localization," in Testing: Academic and
Industrial Conference Practice and Research Techniques -
MUTATION, Windsor, UK, 2007, pp. 89-98.

[4] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, "Pinpoint:
Problem determination in large, dynamic internet services," in the
32nd International Conference on Dependable Systems and Networks,
Maryland, USA, 2002, pp. 595-604.

[5] J. A. Jones, M. J. Harrold, and J. Stasko, "Visualization of test
information to assist fault localization," in the 24th International
Conference on Software Engineering, Orlando, USA, 2002, pp. 467-
477.

[6] W. E. Wong, Y. Qi, L. Zhao, and K. Y. Cai, "Effective fault
localization using code coverage," in the 31st Annual International
Computer Software and Applications Conference, Beijing, China,
2007, pp. 449-456.

[7] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, "An evaluation of
similarity coefficients for software fault localization," in the 12th
Pacific Rim International Symposium on Dependable Computing,
Riverside, USA, 2006, pp. 39-46.

[8] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
"Scalable statistical bug isolation," in the ACM SIGPLAN Conference

on Programming Language Design and Implementation, NY, USA,
2005, pp. 15-26.

[9] L. Naish, H. J. Lee, and K. Ramamohanarao, "A model for spectra-
based software diagnosis," ACM Transactions on Software
Engineering and Methodology, vol. 20, p. 11, 2011.

[10] V. Debroy, W. E. Wong, X. Xu, and B. Choi, "A Grouping-Based
Strategy to Improve the Effectiveness of Fault Localization
Techniques," in the 10th International Conference on Quality
Software, Zhangjiajie, China, 2010, pp. 13-22.

[11] R. Santelices and J. A. Jones, "Lightweight fault-localization using
multiple coverage types," in the 31st International Conference on
Software Engineering, Vancouver, Canada, 2009, pp. 56-66.

[12] W. Masri, "Fault localization based on information flow coverage,"
Software Testing, Verification and Reliability, vol. 20, pp. 121-147,
2010.

[13] Z. Zhang, W. Chan, T. Tse, B. Jiang, and X. Wang, "Capturing
propagation of infected program states," in the ESEC/FSE 2009,
Amsterdam, The Netherlands, 2009, pp. 43-52.

[14] M. Weiser, "Program slicing," IEEE Transactions on Software
Engineering, vol. 10, pp. 352-357, 1984.

[15] B. Korel and J. Laski, "Dynamic Program Slicing," Information
Processing Letters, vol. 29, pp. 155-163, 1988.

[16] T. Gyimóthy, Á. Beszédes, and I. Forgács, "An efficient relevant
slicing method for debugging," in the ESEC/FSE 1999, Toulouse,
France, 1999, pp. 303-321.

[17] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, "Experimental
evaluation of program slicing for fault localization," Empirical
Software Engineering, vol. 7, pp. 49-76, 2002.

[18] X. Zhang, N. Gupta, and R. Gupta, "A study of effectiveness of
dynamic slicing in locating real faults," Empirical Software
Engineering, vol. 12, pp. 143-160, 2007.

[19] N. Gupta, H. He, X. Zhang, and R. Gupta, "Locating faulty code
using failure-inducing chops," in the 20th International Conference
on Automated Software Engineering, Long Beach, USA, 2005, pp.
263-272.

[20] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, "Towards locating
execution omission errors," ACM Sigplan Notices, vol. 42, pp. 415-
424, 2007.

[21] B. Xin and X. Zhang, "Memory slicing," in the 18th International
Symposium on Software Testing and Analysis, Chicago, USA, 2009,
pp. 165-176.

[22] X. Zhang, S. Tallam, and R. Gupta, "Dynamic slicing long running
programs through execution fast forwarding," in the 14th
International Symposium on Foundations of Software Engineering,
Portland, USA, 2006, pp. 81-91.

[23] G. K. Baah, A. Podgurski, and M. J. Harrold, "The probabilistic
program dependence graph and its application to fault diagnosis,"
IEEE Transactions on Software Engineering, vol. 36, pp. 528-545,
2009.

[24] L. Jiang and Z. Su, "Context-aware statistical debugging: from bug
predictors to faulty control flow paths," in the 22nd International
Conference on Automated Software Engineering, Atlanta, Georgia,
2007, pp. 184-193.

[25] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
"HOLMES: Effective statistical debugging via efficient path
profiling," in the 31st International Conference on Software
Engineering, Vancouver, Canada, 2009, pp. 34-44.

[26] W. Dong, J. Wang, C. Zhao, X. Zhang, and J. Tian, "Automating
software FMEA via formal analysis of dependence relations," in the
32nd Annual International Computer Software and Applications
Conference, Turku, Finland, 2008, pp. 490-491.

[27] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program
dependence graph and its use in optimization," ACM Transactions on
Programming Languages and Systems, vol. 9, pp. 319-349, 1987.

[28] SIR, http://sir.unl.edu/portal/index.php

7Copyright (c) The Government of China, 2012. Used by permission to IARIA. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

