
Automatic Synthesis of Hardware-Specific Code in Component-Based Embedded
Systems

Luka Lednicki, Ivica Crnković
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

Email: {luka.lednicki,ivica.crnkovic}@mdh.se

Mario Žagar
Faculty of Electrical Engineering and Computing

University of Zagreb
Zagreb, Croatia

Email: mario.zagar@fer.hr

Abstract—In recent years, there has been a clear trend in
research and practice to bring benefits of component based
development into the embedded systems domain. However, one
often neglected aspect in component models is support for
integration of hardware devices like sensors and actuators. In
most component models, communication with such devices is
either left out completely or considered as an integral part of
the software component code. In the latter case, the software
components are highly device-specific, and can hardly be reused
on different platform configurations. This paper introduces
an approach for automatic synthesis of device-specific code
in component models for embedded systems. We divide a
system in reusable elements: device-specific code, platform-
specific code and device-dependant software component code.
Based on a software and hardware model of the system, we
then automatically generate glue-code that creates connections
between these reusable elements. The result of our synthesis is
a system-specific deployable code. The approach is illustrated
by a demonstrator and an implementation example using the
ProCom component model.

Keywords-Component-based; code synthesis; sensors; actua-
tors; embedded systems.

I. INTRODUCTION

Component-based development (CBD) is one of the ap-
proaches suggested to alleviate the constant rise in the
complexity of embedded systems (ES) [1], [2]. Component-
based systems are developed by composing preexisting
components – reusable units that contain not only code, but
also various models, and conform in syntax and semantics
to a component model. The functionality of a system is
defined by a system model, and implemented by the process
of code synthesis i.e. automatic generation of glue-code
that connects the reusable code defined by the components.
Because of restricted processing and memory resources in
(many) ES, most often an efficient code synthesis is very
important, and solutions with no or very small middleware
are preferable over large general-purpose frameworks.

One aspect that is crucial for use of CBD in ES is
communication with hardware devices such as sensors and
actuators. However, inclusion of hardware device-specific
elements in software components decreases the components’
reusability [3]; if a component includes device-specific code,

or code that is specific to a platform, the component cannot
be efficiently reused in case of changes in the underlying
hardware. Therefore, by making software functionality in-
dependent from a specific hardware configuration, and by
providing means to automatically generate the hardware-
specific code, we can make code reuse in embedded systems
more efficient.

In this paper, we present a novel way to provide code
synthesis for component software in the ES domain, which
allows a transparent use of hardware devices in software
models. We do this by first separating software component
code, device-specific code and platform-specific code, while
strictly defining their content and interfaces they can use
to communicate with each other. By this we get system-
independent, reusable units of code. We then use a model
that describes software components, hardware devices and
the deployment platform, to automatically generate glue-
code that connects the mentioned code parts into a de-
ployable system. As a result, we are able to synthesize
code using system models that completely separate high-
level software functionality from hardware specifics. Our
approach is based on the framework for handling interaction
of software components with hardware devices that we
proposed in [4], and implemented in the context of the
ProCom component model [5]. The approach described in
this paper is an extension of principles shown in [6].

The rest of the paper is organized as follows: Section II
gives a brief overview of some of the approaches to treat
hardware-specific code in component models for embedded
systems. In Section III we present the framework we use for
specification of hardware devices. Section IV describes our
approach to hardware-specific code synthesis and gives an
example of the synthesis implementation. A short descrip-
tion of how our work is implemented in the context of the
ProCom component model is given in Section V. Section VI
shows how our approach is used on a real hardware device
example. Finally, Section VII concludes the paper.

563Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

II. RELATED WORK: HARDWARE-SPECIFIC CODE IN
COMPONENT-BASED EMBEDDED SYSTEMS

Synthesis of hardware-specific code has been explored
in model-driven engineering [7], and in specific languages
and models such as AADL [8] or MARTE [9]. However,
automatic generation of glue code for connections to device-
specific code has not been established in component models
for ES.

While looking at component models used in research and
practice, we can see a difference in the level of support
for hardware devices and how they treat hardware-specific
code [10]. In most component models used in research,
hardware-specific code is externalized – not present in
software components and put outside the scope of the
component model. This is not surprising when we take into
account that most of these models are used just for research
purposes and do not have to provide working, deployable
systems as a result. On the other hand, component models
targeting industry must provide support for hardware devices
to be able to generate functioning systems. However, most of
these component models only provide implicit support for
hardware devices, which means that the hardware-specific
code is hard-coded in the software component code.

One example of externalized devices is SaveCCM [11],
where the component code is not allowed to communicate
with hardware. Instead, this communication is supposed to
take place outside the component model and by some means
the values provided as inputs or outputs of the component
framework. Although it enables the reuse of all components,
this approach does not provide support for the whole CBD
life cycle of systems and limits its use in practice.

Rubus [12] (developed by Articus Systems and used for
example by Volvo Construction Equipment) is an example of
a component model used in practice, where all interactions
with hardware devices are included (i.e. hard-coded) in
software components. This approach allows for full code
synthesis, but severely limits the ability to reuse components
with different devices.

The AUTOSAR [13] framework, an initiative of different
industrial partners, defines a component model that provides
a standardized interface for software components in ve-
hicular embedded systems. In AUTOSAR, interaction with
hardware devices is implemented by specialized sensor/ac-
tuator components. These components are still dependent on
specific hardware devices and are not fully appropriate for
reuse. Also, AUTOSAR relies on deployment of components
to an already existing hardware abstraction layer, and not on
full code synthesis.

ProCom [5] is a component model aimed for the em-
bedded systems domain. It relies on code synthesis for
generating efficient code, both regarding memory and pro-
cessor usage. Some of the principles used in code synthesis
for ProCom are described in [14], [15]. A basic support

for modeling of sensors and actuators in the component
model is given by the Framework for Supporting Hardware
Devices [4] (described in details in Section III). However,
current synthesis for ProCom does not take this framework
into account.

As opposed to all methods of treating hardware devices
shown above, we propose a method that will enable explicit
support for these devices and enable automatic synthesis of
system-specific code. Such a synthesis method is currently
not available in component models for ES. We aim to
increase the reusability of components in the ES domain
and provide more flexibility in system development. As a
demonstrator of our approach we have implemented our
hardware-specific code synthesis in the context of the Pro-
Com component model.

III. OVERVIEW OF THE HARDWARE DEVICE
SPECIFICATION FRAMEWORK

To enable an effective code synthesis and efficient code
reuse for hardware devices, we have developed a Hardware
Device Specification Framework. The purpose of the frame-
work is to allow explicit inclusion of hardware devices,
such as sensors and actuators, into component models for
embedded systems. In the framework, hardware devices are
presented as software components, while leaving the com-
ponents free of device- and platform-specific information. It
then enables specification of device- and platform-specific
information, and provides a way to associate it with software
components. The part of the framework metamodel relevant
for this work is shown in Figure 1. The framework includes
three layers: software layer, hardware layer and mapping
layer. The software layer includes device components, which
represent hardware devices as software components, ex-
cluding any device- or platform-specific information. The
lowest, hardware layer, contains information about hardware
devices, the platform and how the two are connected.
The mapping layer enables creating connections between
hardware specific and hardware-independent layers. In the
subsections below we provide a detailed description of each
layer.

A. Software layer

In the software layer, the interaction of software compo-
nents with hardware devices is represented by device compo-
nents and their instances (context-specific representatives).
Device components provide the same component interface
and abide the same execution semantics as all other software
components. Both types of components are treated the same
during design – they can be used equivalently. But opposed
to the ”pure” software components, which implement their
functionality by code, device components do not implement
any functionality, but serve as connection points to which we
can associate device-specific functionality. Their functional-
ity is defined once the component is mapped to a hardware

564Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

device (as described in Section III-C). However, they are in
no way dependent on a specific hardware device or how the
device is connected to the platform.

B. Hardware layer

The actual interaction with hardware devices is specified
in the hardware layer. It is encapsulated in entities called IOs
and hardware devices, and also defined by IO allocation.

Input and output elements (e.g. pins or ports) of the
platform are represented by IOs. An IO provides all infor-
mation needed to communicate through the input or output
it represents. IOs are reusable across different systems.

Each IO references an IO type. IO types are abstract
entities which define functionality that an IO of that type
must provide, along with the data types and structures used.

A hardware device model element represents a physical
sensor or actuator and includes all information that is
specific to that sensor or actuator. However, it does not
cover the information describing how the device is connected
to the underlying platform. Each hardware device entity
refers to one software component from the software layer,
indicating which functionality it can provide. It also defines
the type of IO it requires from the platform. As with IOs,
we can also reuse hardware device entities. Similar to device
components in the software layer, hardware devices also
have their context-specific instances.

Hardware devices contain one or more required IO ele-
ment. Required IOs represent platform IOs that the actual

Software layer

Mapping layer

Hardware layer

Device Component

Component
Mapping

Hardware Device

IO Allocation

IOIO Type

Hardware Device
Instance

Device Component
Instance

Instance of

Instance of

Instance of

Target HWD

Target HWD

Target Component

Target IO

1..1

1..1

1..1

1..1

1..1

1..1

Required IO

IO Type 1..1

Required IO 1..*

Target Req. IO

1..1

1..1

Figure 1. Metamodel of the Hardware Devices Specification Framework.

physical sensor or actuator needs for communication. The
types of these IOs are specified by referring to IO type
elements.

To create an actual system, we need to create IO alloca-
tions, i.e. to describe an IO allocation to reflect the current
system configuration.

C. Mapping layer

The mapping layer allows us to create connections (map-
pings) between elements of the software and hardware
layers. When we map a device component from the software
layer to a hardware device from the hardware layer, we de-
note that the hardware device will be used as the realization
for the device. Once such a mapping is defined we can utilize
any information defined for the hardware device entity (and
IO, if IO allocation is present) in the software layer.

IV. CODE SYNTHESIS

The code synthesis is based on two principles – (a)
separation of reusable code from the device- and platform-
specific code and (b) automatic generation of device- and
platform-specific code based on a system model that in-
cludes software and hardware components. We achieve this
by first defining a way to specify system-independent and
reusable code elements for device- and platform-specific
functionality. Besides just functionality, reusable code el-
ements also define interfaces for communication. Using a
system model we then generate code that utilizes these
interfaces to combine the software component code with
device- and platform specific functionality resulting in a
system-specific deployable solution. An overview of the
synthesis process is given in Figure 2.

Our approach consists of two categories of code: (a) input
code elements which will be used as input to the synthesis,
and (b) generated code that connects the input elements.
An overview of all the code elements used in synthesis and
the relations between them is given in Figure 3. These code
elements are described in detail below.

A. Synthesis Input Code Definition

In the implementation of the solution we used the C
programming language, as C is the language still mostly
used to develop embedded systems. However, the principles
used in this solution are not limited to C. They can easily
be implemented in other programming languages.

The input code is separated into elements that are as
independent as possible from each other, making them fit
for reuse. These four elements are:

• device component code – platform, device and system
independent code,

• IO type code – code that describes capabilities for
different IOs,

• IO code – platform-specific code that implements IO
functionality,

565Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

• hardware device code – device specific code that im-
plements device functionality.

Besides defining parts of functionality, these elements also
define structures and function signatures that will be used as
communication interfaces. Coupling between them is loose:
all function calls are performed using function pointers,
which are assigned during the mapping and allocation phase.
All these elements are system independent and can be reused
in different systems or platform configurations.

1) Device component code: As we want to place device-
and platform-specific code outside software components,
device component code does not provide any functionality.
Instead, it only provides a way to make calls to device-
specific functions once the system model is defined. Device
component code consists of a structure that includes: (a)
definitions of zero or more variables that will be used to
communicate data to and from a hardware device and (b)
pointers that will be used to map and allocate appropriate
device- and platform-specific functionality. Allocation data
(described in Section IV-A2 and Section IV-A4) will be
assigned to a void pointer. For mapping we use a function
pointer to an entry function that will implement device
functionality. This function receives the device component
structure, and with it means to assign or read data and use
appropriate platform IO functions. We describe how these
pointers are assigned in Section IV-B.

2) IO type code: In the IO type code we define an
IO interface structure that will be used to communicate

Reusable Models and Code

System Model

Generated code

Device Component Hardware Device IO

Mapping IO
Allocation

Platform-
Specific

Code

Device-
Specific

Code

Component
Interface

Code

Mapping
Code

IO
Allocation

Code

IO
Type

IO
Definition

Code

Synthesis result

Mapping
Code

IO
Allocation

Code

Platform-
Specific

Code

Device-
Specific

Code

Component
Interface

Code

IO
Definition

Code

Function calls

References

Code input or output
Legend:

<Name>

<Name>

Model element

Code Element

Figure 2. Overview of the synthesis process and results.

through an IO. This interface structure contains pointers
(signatures) for one or more functions that will be used for
the communication. The number of functions can differ for
different kinds of IOs. Some of the functions can also be
used for configuration of the communication channel, rather
than for the communication itself. The code can also contain
definitions of data structures that will be used as arguments
to functions in case the arguments are not basic C types. An
instance of the interface structure will be used to allocate
Hardware Devices to IOs (described in Section IV-B1).

3) IO code: Code defined for IOs provides the platform
specific implementation for functions defined in the interface
structure of the IO type code. The IO code of each physical
platform can be comprised of many C source files, all of
which implement communication just for one specific IO.
Separation of IO code into different files allows us to use
the minimum amount of platform-specific code once we
synthesize the code for the whole system. For an IO source
file to be valid it must implement all the functions defined
in the interface structure of the IO type. Also, each IO code
definition must define an IO interface assignment function
that receives an IO interface structure and assigns function
implementations to the function pointers of the structure.
How these functions are used for the actual allocation is
described in Section IV-B1).

4) Hardware device code: The main purpose of hardware
device code is to provide an implementation of communi-
cation for a specific sensor or actuator. This includes the
protocol used to communicate with the device, possible
adaptation of data and calls to IO functions. To provide
device-specific implementation for a device component, the
hardware device source code must implement a function
which has a signature matching the signature of the com-
ponent entry function. Code for each hardware device also
includes an IO allocation structure that contains instances
of IO interface structures for each IO type that the device
requires. An instance of this structure will be referenced by
a pointer in the device component structure, and can be used
for making platform-specific IO function calls.

B. Generated code

Using a system model, which is based on the previously
described framework, we are able to generate code that
implements the functionality of the system. The code we
generate creates connections between the various input code
elements we defined, using their interfaces.

Code generation is divided into two phases: generation of
IO allocation code and generation of device mapping code.
Listing 5 shows mapping and allocation code generated for
our example.

1) IO allocation code: The IO allocation code provides
connections between instances of device components and
platform IOs. It enables devices to make function calls to
platform IO functions, abstracting away platform specifics.

566Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Allocation CodeMapping Code

IO Code

IO Type Code

Hardware Device Code

Device Component Code

Device Component Struct

 Data Variables [0..*]

 Device Allocation Pointer

 Entry-Function Pointer

IO Allocation Struct

 IO Interface Structure Instance [1..*]

Entry-Function Implementation

 Variable Definition [1..*]

IO Interface Struct

 IO Function Pointer Definition [1..*]

Device Component Struct Instance

Allocation Mapping Function

Entry-Function Mapping Function

IO Interface Assignment Function

 IO Function Assignment [1..*]

IO Function Implementation

Allocation Function

 IO Allocation Function Call [1..*]

IO Allocation Struct Instance

Legend:

Implementation or instantiation

Reference

Value assignment

Data Definition Struct [0..*]

Figure 3. Code elements in our synthesis approach and relations between them. For the elements that can occur multiple times, multiplicity is shown in
square brackets.

To generate IO allocation code we use hardware device
elements, IO elements and IO allocation elements from the
system model, and their respective input code elements.

First, we traverse the model and for each device refer-
enced by IO allocation elements we define an instance of
the IO allocation structure defined by the input code of
the hardware device, giving each instance of the structure
a unique name. Even if a device requires more than one IO
for its functionality, only one such structure is created, as
the structure contains variables for all required IOs.

After that we are able to generate an allocation function
that will assign appropriate IO functions to function pointers
defined in the IO allocation structures. In this function, for
every IO allocation element we create a function call to the
IO interface assignment function defined by the input code
of the referenced IO element. As an argument, we provide
the IO interface structure instance defined in the previous
step of IO allocation code generation. The function call then
assigns the correct platform function calls defined by the
referenced IO to the IO allocation structure generated for
the referenced hardware device. One IO interface assignment
function call is created for each required IO.

2) Mapping code: Device- and platform-specific func-
tionality is provided to software components by generation
of mapping code. For this we use the device component
elements, hardware device elements and device component
mapping elements of the system model.

As a first phase of mapping code generation we create
instances of device component data structures which will

hold mapping data. The instance name is based on the unique
ID of the component instance.

In the next phase we generate allocation mapping code.
This code binds IO allocations generated during IO allo-
cation code generation to device component instances. For
each device component mapping we create a line of code
that assigns an IO allocation structure which represents
the instance of device component referenced by mapping
(generated as part of IO allocation code) to the IO allocation
pointer of device component data structure.

The final part of the mapping code is the entry function
mapping. This code connects device software components
with device entry functions which implement device-specific
functionality. We achieve this by generating code that as-
signs an entry function of the device referenced by the
mapping to the entry function pointer of the data structure
of the device component the mapping is targeting.

V. IMPLEMENTATION

For the purpose of evaluation we have implemented our
approach in the context of the ProCom component model.
The implementation was done using Java. Our automated
synthesis is included in PRIDE [16] – an Eclipse based IDE
for ProCom. It leverages Eclipse Modeling Framework for
model traversal and Java for code generation.

Standard ProCom components are implemented by a
single C entry function that executes when the component is
triggered to perform its functionality. This function receives
a data structure that contains instance-specific component

567Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

data. We adapted these elements to align with our device
component code.

As a way to make function calls to the device-specific
entry function, we have defined a standard entry function that
all device components must implement. This entry function
has only one line of code, which diverts the function call
to the hardware specific entry function assigned to the entry
function pointer of the component instance data structure.

VI. EXAMPLE

We will demonstrate our approach on a real example
using the GDM2004 LCD display module. In code listings
shown for the example we have removed some parts of
the code (e.g. ”include” instructions and use of unique IDs
in naming) that are not relevant to show the principles
of our solution. The example consists of a device com-
ponent instance (DisplayComponent display) which maps
to GDM2004 instance of the GDM2004Device hardware
device. The GDM2004Device requires three IOs of type
OneBitIO (named registerSelect, RW and enable), and one
IO of type IO8BitPort (named data). These requirements are
allocated to platforms IOs PA0, PA1, PA2 and PE. A model
of the example is shown in Figure 4.

A. Device component code

In our example, code that defines the DisplayComponent
device component can be seen in Listing 1. The device
component structure begins at line 1. Lines 2 to 3 contain
data variables that will be used for communication. The
pointer that will reference allocation data is defined on line

<<Hardware Device>>
GDM2004Device

<<Required IO>>
registerSelect

<<IO>>
PA0

<<IO>>
PA1

<<IO>>
PA2

<<IO>>
PE

<<Required IO>>
RW

<<Required IO>>
enable

<<Required IO>>
data

<<IO Type>>
OneBitIO

<<IO Type>>
IO8BitPort

<<IO Allocation>>

<<Hardware Device Instance>>
GDM2004

<<IO Allocation>>

<<IO Allocation>>

<<IO Allocation>>

<<Device Component>>
DisplayComponent

<<Device Component Instance>>
display

<<IO Allocation>>

instanceOf

instanceOf

targetComponent

targetDevice

requiredIO

ioType

ioType

ioType

ioType

targetDevice

targetReq

targetReq

targetReq

targetReq

Figure 4. Model of the GDM2004 example.

6, and line 7 defines the pointer that will reference the device
entry function.

1 typedef struct DisplayComponent {
2 int row;
3 int column;
4 char* text;
5

6 void * ioAllocation; // Pointer to IO
allocation

7 void (*entryFunction) (struct
DisplayComponent*); // Pointer to
device specific entry function

8 } DisplayComponent;

Listing 1. Display component code.

B. IO type code

The IO type code for our example is shown in Listing 2.
On line 2 we can see a definition of the data structure that
will be used to communicate configuration data for the port.
The IO interface structure that defines function pointers for
function used for communication is located at lines 8 to 12.

1 // Data definition
2 typedef struct {
3 int isOutput;
4 int isOpenDrain;
5 } OneBitIO_configData;
6

7 // IO interface structure
8 typedef struct {
9 void (*writeData) (int);

10 void (*readData) (int*);
11 void (*configure) (OneBitIO_configData*);
12 } OneBitIO;

Listing 2. Example of IO type code.

C. IO code

Listing 3 shows the IO code for port PA0 of our example.
From lines 2 to 12 we can see functions that implement
port communication, which adhere to function signatures
defined in the IO type interface structure. The IO interface
assignment function, which assigns functions defined in lines
2 to 12 to an instance of IO type interface structure, is on
lines 16 to 20.

1 // START functions implementing IO
2 void PA0_writeData(int value) {
3 WrPortI(PADR, &PADRShadow, value, 0);
4 }
5

6 void PA0_readData(int* value) {
7 RdPortI(PADR, &PADRShadow, value, 0);
8 }
9

10 void PA0_configure(OneBitIO_configData*
data) {

11 WrPortI(PADDR, &PADDRShadow, data->
isOutput, 0);

12 }
13 // END functions implementing IO
14

15 // Assigning functions for allocation
16 void allocate_PA0(OneBitIO* allocation) {

568Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

17 allocation->writeData = &PA0_writeData;
18 allocation->readData = &PA0_readData;
19 allocation->configure = &PA0_configure;
20 }

Listing 3. Example of IO code.

1) Hardware device code: Hardware device code that
implements functionality for the GDM2004Device defined
in our example is given in Listing 4. The IO allocation
structure for GDM2004Device begins on line 2. It contains
one IO interface structure for each required IO, on lines 3
to 6. The device entry function definition can be seen on
lines 10 to 18. How the allocated IO interface structures are
used can be seen in the GDM2004PrintChar function which
starts on line 26.

1 // Structure for IO allocation
2 typedef struct GDM2004_allocation{
3 OneBitIO registerSelect;
4 OneBitIO rw;
5 OneBitIO enable;
6 IO8bitPort data;
7 } GDM2004_allocation;
8

9 // Implementation of the entry function
10 void entry_GDM2004(DisplayComponent*

instanceData) {
11 int i;
12 GDM2004_allocation* alloc = (

GDM2004_allocation*) instanceData->
ioAllocation;

13

14 GDM2004SetPosition(instanceData->column,
instanceData->row, alloc);

15 for (i=0; i < strlen(instanceData->text;
++i) {

16 GDM2004PrintChar(instanceData->text[i],
alloc);

17 }
18 }
19

20 void GDM2004SetPosition(int column, int row
, GDM2004_allocation* alloc) {

21 /*
22 Implementation skipped
23 */
24 }
25

26 void GDM2004PrintChar(char c,
GDM2004_allocation* alloc) {

27 alloc->registerSelect.writeData(1);
28 alloc->rw.writeData(0);
29 alloc->enable.writeData(1);
30 Delay_60usec();
31 alloc->data.writeData(c);
32 alloc->enable.writeData(0);
33 Delay_60usec();
34 }

Listing 4. GDM2004 HardwareDevice code.

D. IO allocation and mapping code

Listing 5 shows the IO allocation structure created for the
GDM2004 instance of GDM2004Device on line 2. The allo-
cation function shown on lines 3 to 8 contains function calls

to IO allocation functions defined by IO for registerSelect,
RW, enable and data required IOs of the GDM2004Device.

Line 12 of Listing 5 contains an instance of the device
component data structure for DisplayComponent. On line
14 we can find the allocation mapping function, in which
the IO allocation structure instance from line 2 is assigned
to the IO allocation pointer of the DisplayComponent data
structure. The entry function mapping is shown on lines
18 to 20, where we assign the entry function defined
by GDM2004Device to the entry function pointer of the
DisplayComponent data structure.

1 // ***** START ALLOCATION
2 GDM2004_allocation display;
3 void doIOAllocation() {
4 allocate_PA0(&(display.registerSelect));
5 allocate_PA1(&(display.rw));
6 allocate_PA2(&(display.enable));
7 allocate_PE(&(display.data));
8 }
9 // ***** END ALLOCATION

10

11 // ***** START MAPPING
12 DisplayComponent displayComponent;
13

14 void doAllocationMapping() {
15 displayComponent.ioAllocation = &display;
16 }
17

18 void doEntryMapping() {
19 displayComponent.entryFunction = &

entry_GDM2004;
20 }
21 // ***** END MAPPING

Listing 5. Example of generated mapping and allocation code.

VII. CONCLUSION

In this paper, we have presented an approach to code
synthesis for embedded systems which utilizes a system
model to generate hardware-specific code. The system model
we use describes software components, hardware devices
(i.e. sensors and actuators) and inputs and outputs of the
platform, and connections between all these elements. We
provide strict definitions of how to specify interface and
implementation code for the model elements in order to
get reusable units of code that we use as inputs for our
synthesis. During the synthesis process we generate glue-
code that connects these reusable code elements to provide
the functionality defined by the system model.

Compared to having hardware-specific code hard-coded
inside software components, in our approach software com-
ponents are not directly dependant on hardware devices or
how the devices are connected to the platform. The result
of this is more efficient code reuse.

The approach presented in this paper provides a level of
abstraction over hardware devices and the platform. It also
separates the concerns of hardware-independent software
development, hardware-specific software development and
system integration. On a higher level, software systems

569Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

can be developed without knowing the specifics of the
underlying platform. On the other hand, low level hardware-
specific functionality can be implemented independently of
the rest of the system. Both levels can in the end be used as
black-boxes and integrated into systems with no knowledge
of their internals.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation for
Strategic Research project RALF3 and the Swedish Research
Council project CONTESSE (2010-4276). We would like to
thank Jan Carlson for providing valuable comments on the
paper.

REFERENCES

[1] I. Crnkovic and M. Larsson, Building Reliable Component-
Based Software Systems. Norwood, MA, USA: Artech
House, Inc., 2002.

[2] C. Atkinson, C. Bunse, C. Peper, and H.-G. Gross,
“Component-based software development for embedded sys-
tems an introduction,” in Component-Based Software De-
velopment for Embedded Systems, ser. Lecture Notes in
Computer Science, C. Atkinson, C. Bunse, H.-G. Gross, and
C. Peper, Eds. Springer Berlin / Heidelberg, vol. 3778, pp.
1–7.

[3] L. Lednicki, “Support for hardware devices in component
models for embedded systems,” in International Doctoral
Symposium on Software Engineering and Advanced Appli-
cations, August 2011.

[4] L. Lednicki, J. Feljan, J. Carlson, and M. Žagar, “Adding sup-
port for hardware devices to component models for embedded
systems,” in ICSEA 2011, The Sixth International Conference
on Software Engineering Advances, 2011, pp. 149–154.

[5] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković, “A component model for control-intensive
distributed embedded systems,” in Component-Based Soft-
ware Engineering, ser. Lecture Notes in Computer Science,
M. Chaudron, C. Szyperski, and R. Reussner, Eds. Springer
Berlin / Heidelberg, vol. 5282, pp. 310–317.

[6] L. Lednicki, I. Crnković, and M. Žagar, “Towards automatic
synthesis of hardware-specific code in component-based em-
bedded systems,” in SEAA 2012,38th Euromicro Confer-
ence on Software Engineering and Advanced Applications,
September 2012.

[7] S. Burmester, H. Giese, and W. Schaefer, “Model-driven
architecture for hard real-time systems - from platform in-
dependent models to code,” in Model Driven Architecture -
Foundations and Applications, ser. Lecture Notes in Com-
puter Science, A. Hartman and D. Kreische, Eds. Springer
Berlin, Heidelberg, vol. 3748, pp. 25–40.

[8] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the ocarina aadl
tool suite,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 4,
pp. 42:1–42:25, Aug. 2008.

[9] A. Rodrigues, G. Frédéric, and J. Dekeyser, “An mde ap-
proach for automatic code generation from marte to opencl,”
INRIA Lille-RR-7525 [Online]. Available: http://hal. inria.
fr/inria-00563411/PDF/RR-7525. pdf/, Tech. Rep.

[10] J. Feljan, L. Lednicki, J. Maras, A. Petričić, and I. Crnković,
“Classification and survey of component models,” Mälardalen
University, Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-242/2009-1-SE, December 2009.

[11] “The SAVE approach to component-based development of
vehicular systems,” Journal of Systems and Software, vol. 80,
no. 5, pp. 655 – 667, 2007.

[12] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lund-
back, and K.-L. Lundback, “The Rubus component model for
resource constrained real-time systems,” in Industrial Embed-
ded Systems, 2008. SIES 2008. International Symposium on,
june 2008, pp. 177 –183.

[13] H. Heinecke, W. Damm, B. Josko, A. Metzner, H. Kopetz,
A. Sangiovanni-Vincentelli, and M. Di Natale, “Software
components for reliable automotive systems,” in Proceedings
of the conference on Design, automation and test in Europe,
ser. DATE ’08, 2008, pp. 549–554.

[14] E. Borde and J. Carlson, “Automatic Synthesis and Adaption
of Gray-Box Components for Embedded Systems – Reuse vs.
Optimization,” in Computer Software and Applications Con-
ference Workshops (COMPSACW), 2011 IEEE 35th Annual,
july 2011, pp. 224–229.

[15] ——, “Towards verified synthesis of ProCom, a component
model for real-time embedded systems,” in Proceedings of
the 14th international ACM Sigsoft symposium on Component
based software engineering, ser. CBSE ’11, 2011, pp. 129–
138.

[16] E. Borde, J. Carlson, J. Feljan, L. Lednicki, T. Lévêque,
J. Maras, A. Petricic, and S. Sentilles, “Pride - an environ-
ment for component-based development of distributed real-
time embedded systems,” in Proceedings of the 2011 Ninth
Working IEEE/IFIP Conference on Software Architecture, ser.
WICSA ’11, 2011, pp. 351–354.

570Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

	Introduction
	Related Work: Hardware-Specific Code in Component-Based Embedded Systems
	Overview of the Hardware Device Specification Framework
	Software layer
	Hardware layer
	Mapping layer

	Code Synthesis
	Synthesis Input Code Definition
	Device component code
	IO type code
	IO code
	Hardware device code

	Generated code
	IO allocation code
	Mapping code

	Implementation
	Example
	Device component code
	IO type code
	IO code
	Hardware device code

	IO allocation and mapping code

	Conclusion
	References

