
Modeling Crosscutting Concerns with Roles

Fernando Sérgio Barbosa

Higher School of Technology

Polytechnic Institute of Castelo Branco

Castelo Branco, Portugal

fsergio@ipcb.pt

Ademar Aguiar

Department of Informatics Engineering

Faculty of Engineering of University of Porto

Porto, Portugal

ademar.aguiar@fe.up.pt

Abstract—Modularization allows the development of

independent modules and their reuse. However a single

decomposition strategy cannot neatly capture all the systems

concerns. Thus some concerns are spread over several modules

– the crosscutting concerns. To cope with this we need to have

other class composition techniques than those available in

traditional Object Oriented programming languages. One of

such compositions is roles. If roles are used to compose classes

and if a role models a crosscutting concern, then the concern is

limited to the role and not spread over several classes. To

validate this approach we conducted a case study. In the case

study crosscutting concerns were identified in a system using a

clone detection tool and roles were developed to model those

crosscutting concerns. Results show that this approach reduces

significantly the spreading of crosscutting concerns code.

Keywords-Roles; Crosscuting concerns; Code clones.

I. INTRODUCTION

Modularization [1] is one of the most important concepts
in software development. Decomposing a system into
modules allows the independent development of each
module. This shortens development time and allows the
modification of a module without changing other modules.

But a single decomposition strategy cannot capture all
possible views of a module.[2]. We could use multiple
inheritance, but it has so many practical problems that it has
been left out of recent programming languages. Even if we
could use multiple inheritance, there are always concerns
that cannot be adequately decomposed using a single
decomposition strategy [3], and end up scattered among the
various modules. These are called the crosscutting concerns.

A consequence of crosscutting concerns is replicated
code. When classes must implement a crosscutting concern
developers tend to copy-paste the code that deals with it [4].
Thus the presence of code clones in a system is an indicator
that there are crosscutting concerns in that system [5].

An obvious problem of code clones is the increased
system size. But code clone also impairs system’s
maintenance and evolution [6]. A particular problem is the
inconsistence in updating, where a bug in a code block is
propagated to all its clones, and is fixed in most but not all
occurrences. Code clones also have negative effects in
program comprehensibility, evolution, cost and may be an
indicator of design flaws [7].

To prevent such consequences we need to use other
decomposition techniques. Several proposals are available,

like inheritance, mixins [8], traits [9], features [10], aspects
[11] and roles [2][12]. We believe that if we explore the way
roles can be used to compose classes we will find that roles
are capable of modeling crosscutting concerns.

There are many definitions of the role concept in the
literature [2][12], but we are interested in using roles as
components of classes. For that purpose, we use the role
definition used by Riehle [12], where roles are an observable
behavioral aspect of an object. We can use roles to compose
classes, meaning that an object’s behavior is defined by the
composition of all roles it plays.

For modeling crosscutting concerns with roles, we place
each crosscutting concern in a role and classes that deal with
one concern just play the respective role. This way the role
encapsulates the concern code and prevents code clones.

To validate these ideas, we conducted a case study with
the JHotDraw framework. In this case study, we used a clone
detection tool to identify code clones in the framework. We
identified crosscutting concerns by aggregating clones that
deal with the same concern. Each crosscutting concern was
analyzed and, whenever possible, a role that deals with that
concern was developed using JavaStage [13], an extension to
the Java language that supports roles. The results of the case
study indicate that roles can in fact be used to model
crosscutting concerns and reduce code clones from a system.

This paper is organized as follows. The next Section
presents role modeling and how it can address crosscutting
concerns. Section III presents the JHotDraw case study and
its results. Related work is presented in Section IV, and
Section V concludes the paper.

II. MODELING WITH ROLES

Role modeling using static roles was used as an integral
part of the OORam method [14] and by Riehle in [12]. We
took these modeling approaches into the programming level
using roles as blocks for composing classes. To support
roles, we developed the JavaStage language. We will not
discuss JavaStage but refer the reader to [13]. JavaStage
extends java but our approach may apply to other single-
inheritance languages and to multiple inheritance languages.

In JavaStage, a role is a first class entity, so it can be
described using an appropriate type specification. A class
that plays a role type acts according to the role type
specification. Classes may act according to several different
role types. Thus, different clients may have different views
on a class instance.

571Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

A class represents a domain abstraction, its properties
and behavior. But, in JavaStage, a class also defines which
roles it plays and how they are composed. The union of the
operations defined in the class and the operations defined in
the roles constitutes the class interface, and the composition
of all role types constitutes the type of the class. This is to
say that the class interface is the union of the role interfaces
[15]. Because a class may be viewed as a class that plays
only one role then this model is a canonical extension of the
object model [16]. It means that existing software can be
integrated into the role model without changes.

We could achieve the same effect by using multiple
inheritance, defining each role in a separate class. The
composing class would inherit from all classes. The use of
multiple inheritance, however, has many problems. These
come mostly by name collisions when a class inherits from
two or more superclasses that have equally named methods
or fields and duplicated code when a class inherits twice
from the same superclass – the classic diamond problem.

In JavaStage, roles have features like a powerful
renaming mechanism that allows classes to tailor methods’
names for their specific situation; the possibility to play the
same role more than once and the possibility to define
multiple versions of a method [13]. Roles can inherit from
roles and can play other roles thus giving developers a big
range of modeling options.

To exemplify role modeling we present in Figure 1 the
class diagram of a simplified graphical user interface (GUI)
framework based on Java AWT/Swing frameworks.
Framework classes represent the widgets (or components)

that usually appear in a GUI, like windows, buttons, menus,
toolbars, etc. Some components may own other components:
a window may own several toolbars, and a toolbar may own
several buttons. Some clients may be interested on knowing
when the mouse is hovering a component so the Observer
pattern is used. Other instances of this pattern are used as
clients may be interested in other user’s actions or if a
component has lost focus, etc. A component has a collection
of properties that specifies the way it should de drawn.
Properties are represented by name-object pairs, where name
is the property and object represents the property’s value.

Clients that are interested in knowing if a component has
lost focus are not interested in drawing a component or if the
user clicked it with the mouse. For those clients, components
assume the role of FocusSubject and only those operations
related to that role are of interest. For the clients who want to
know about mouse handling actions, components play the
role of MouseSubject. Clients may set or read properties of
the component so, for these, the component plays the role of
PropertyProvider. The CompositeParent role is responsible
for managing a collection of children.

The mentioned roles are depicted on the upper right side
of Figure 1, where we also show the role associations and the
revised class diagram, now using the roles.

A. Role modeling advantages

Role modeling comes with several advantages in terms of
reuse, comprehension, development and documentation [12].
When a class is described as a set of roles it helps separating
the various ways in which a class is used. This means that

CompositeParent

<<role>>
children

addComponent()

removeComponent()

FocusSubject

<<role>>

addFocusObserver()

removeFocusObserver()

CompositeChild

PropertyProvider

<<role>>

putProperty()

getProperty()

hasProperty()

FocusObserver

<<interface>>
*

*

BasicComponent

<<role>>

draw()

setLocation()

getLocation()

setDimension()

getDimension()

focusGained()

focusLost()

DefaultComponent

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseObserver()

removeMouseObserver()

CompositeComponent

children

draw()

move()

addComponent()

removeComponent()

TextField

draw()

Button

draw()

*

FocusObserver

<<interface>>

focusGained()

focusLost()

*

Component

<<interface>>
draw()

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseObserver()

removeMouseObserver()

putProperty()

getProperty()

hasProperty()

MouseObserver

<<interface>>

mouseMoved()

mouseDragged()

*

DefaultComponent

CompositeComponent

draw()

TextField

draw()

Button

draw() CompositeParent

Component

<<interface>>

FocusSubject

CompositeChild

BasicComponent
PropertyProvider

MouseSubject

FocusSubject

BasicComponent

MouseSubject
CompositeChild

PropertyProvider

*

MouseSubject

<<role>>

addMouseObserver()

removeMouseObserver()

MouseObserver

<<interface>>
*

mouseMoved()

mouseDragged()

Figure 1. Example of modelling with roles. On the left: class diagram of the Component Framework. On the right: Roles and their relations in the

Component Framework, and the revised class diagram of the Component Framework, now with roles. Rounded rectangles identify roles played by the class.

Dashed round rectangles represent the interface provided by the role

572Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the documentation can be done in these terms. That helps
clients to better understand and use the class and focus on
whichever aspect they are interested in. Designing the class
can also be done in role terms, thus developers are able to
focus only in one aspect of the class. This enables
independent development of a class with all its benefits in
terms of reduced development time and complexity.

Class relationships are reduced to role relationships.
Because roles focus in a particular view of a class, we need
not to understand the target class in its whole. This facilitates
the understanding and development of these relationships.
Whenever needed the broader perspective can also be used.
Role modeling allows for a transition between the role level
and the class level, without losing any information.

Role modeling also allows for better understanding using
previous experiences. When a developer knows how to use
roles that have a relationship in a system, then when he
encounters different roles with similar relationships the past
experience will allow a better understanding. One such
example is the use of the Observer pattern. When
experienced with a FocusSubject and how it works with a
FocusObserver to use the MouseSubject and a
MouseObserver is much simpler and straightforward.

B. Modeling Crosscutting Concerns

Crosscutting concerns are those concerns that appear
when several modules must deal with the same problem
because one cannot find a single module responsible for it in
the light of a decomposition strategy. This leads to scattered,
replicated code. Its consequences are the opposite of the
benefits of modularizations. Since a module deals with a part
of a problem that is spread over other modules, changes to
that code may affect those modules. This affects independent
development. Maintenance is impaired too because changes
in the code needs to be done in all modules transversely.

Because a role is smaller composition unit than a class
we can put the crosscutting concern in a role, or a set of
roles, and the classes that have the crosscutting concern play
those roles. Any changes to the crosscutting are limited to
the roles thus greatly improving maintenance and reducing
change propagation, or in other words, the crosscutting
concerns become more modular.

Even the simplified GUI framework shows several
examples. The component’s main concept is not to act like a
Focus Subject or a Mouse Subject but it has those roles
superimposed on it. With roles we were able to extract those
concerns from the class, thus reducing the scattering of code.
Furthermore those roles are reusable whenever we need a
class to address any of those concerns, even if it is not part of
the Component hierarchy. We can also argue that being a
PropertyProvider is not the component’s main concern. It
assumes that a property is identified by a name and that
name is a String. It would be more reusable if it used
generics for the property type. We can also use generics to
specify the value type instead of type Object. After a closer
look, the property provider is in fact a map that maps keys to
values. We could reuse a map implementation if we inherited
from a Map class, but that would be conceptually wrong.
Our class is not a map, it plays the role of a property map.

Figure 2 shows the code for that mapper role and the
code for a Component class playing the PropertyProvider
role and also of a Figure class that also plays the same role,
but for figure properties like line color, line width, etc. In
both cases the map uses string as keys and objects as values
and in both cases the methods are getProperty, putProperty
and hasProperty, as defined by the configuration, but they
could use different key/values types and methods’ names.

public role Mapper<KeyType, ValueType> {

 private Map<KeyType,ValueType> map;

 public ValueType get#Thing#(KeyType name){

 return map.get(name);

 }

 void put#Thing#(KeyType name, ValueType value){

 map.put(name, value);

 }

 public boolean has#Thing#(KeyType name){

 return map.containsKey(name);

 }

}

class DefaultComponent implements Component {

plays Mapper<String,Object>(

 Thing = Property) mapper;

}

class DefaultFigure implements Figure {

plays Mapper<String, Object>(

 Thing = Property) mapper;

}

Figure 2. Definition of the Mapper role with configurable methods and

two classes playing the role

III. CASE STUDY

A. Case Study Subject

To asses how roles are capable of modeling crosscutting
concerns we applied them to the JHotDraw framework.
JHotDraw is a Java GUI framework for technical and
structured Graphics. JHotDraw is structured around four
main inheritance hierarchies. These hierarchies reflect the
main classes used in the framework. These are the Figures,
Views, Tools and Handles.

JHotDraw has been used in works for the detection of
crosscutting concerns for aspect mining [17] so it is a
suitable candidate for this study, where we want to assess
how roles handle those crosscutting concerns.

B. Case Study Setup

We searched for replicated code using CCFinderX [18]
an established clone detection tool used in the aspect mining
works [17]. We used the standard options of CCFinder.

We are interested in crosscutting concerns, so we are
interested only in clones that are not solvable with traditional
refactorings [19]. One of such refactorings is the Extract
Method that usually deals with code inside a unique class. So
to filter out such clones we only considered clones that
appeared in, at least, two files. This also filter clones that do
not deal with crosscutting concerns as a concern must be
present in at least two classes to be considered a crosscutting

573Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

concern. For simplicity and space reasons we will refer
crosscutting concerns simply as concerns.

The first output included 271 clone sets. After filtering
we ended up with 146 clones. After a manual inspection 41
false clones were removed leaving a final 105 sets. Some
clones are not really identical, but as they focused on the
same concern so we did not remove them. This will account
for some of the unresolved concerns.

We grouped clones according to the concern they dealt
with. We identified a total of 43 concerns. From those 43
concerns we removed 5 because 2 could be resolved by
refactoring alone, 1 was deprecated code and 2 were classes
pending substitution.

After this selection we again analyzed the clones and, if
possible, we’ve built a role encapsulating the concern. We’ve
decided not to change any class interface so the overall
framework is unchanged. We’ve also set a rule not to change
the concern implementation to retain the author’s intent.
Only minor changes were allowed, as they wouldn’t
compromise it. We only developed roles that respect the role
concept. We detected some clones that could be removed
using a different inheritance hierarchy. We did not use roles
to reduce that replicated code, because changing the
inheritance hierarchy was a better solution

Roles were developed with JavaStage. The JavaStage
compiler and the developed JHotDraw framework, can be
found at http://www.est.ipcb.pt/pessoais/fsergio/javastage.

C. Case Study Results

Results are shown on Table 1. For each concern it shows
how many clones were associated and how many classes
were affected. It also shows the number of lines of code
(LOC) that the clone had, the lines of code that were used by
Roles and the ratio between them. For the concerns where
roles failed it states the reason why they failed.

We can see that from the 38 concerns only 8 (21%) were
not resolved with roles. This seems to indicate that roles are
suited to model crosscutting concerns. The final outcome is
better than these numbers indicate as we will discuss.

LOC are a good measure on the effort that each approach
requires but it is not a good measure on how the modularity
issues are handled. One can write more lines of code but if
the resulting system is more modular it is a better system.

We counted as LOC the requirements statements that
roles must declare. We also counted as LOC the roles’ plays
directive. Assume one concern that presents 8 lines of
replicated code in each class which could be resolved with a
simple role. We would expect this role to have the same 8
LOC. That is not so because we do not count the class
declaration as a clone LOC but count the role declaration as
a solution LOC. Roles may also require methods, so these
requirements are counted as LOC. Thus for the 8 LOC clone
the role would have 1 more fixed, 1 more for each player and
1 more for each requirement. If the role requires 3 methods
and the clone appears in two classes then the clone has 16
LOC and the role solution would count 14 LOC. That may
not seem a great improvement but LOC do not account for
the modularity and maintenance issues. Removing the clone
gives the system a great advantage in modularity terms.

TABLE I. IDENTIFIED CONCERNS WITH THE NUMBER OF ASSOCIATED

CLONES AND AFFECTED CLASSES. IT ALSO SHOWS THE LOC FOR EACH

APPROACH AND RESPECTIVE RATIOS.

clone class Original Roles Roles /

LOC LOC Original

Drawing Handles 8 15 64 40 63%

Setting up the undo activity before

executing a Command
2 8 56 44 79%

BringToFront/SendToBack Commands 1 2 20 12 60%

Handle creation 11 20 70 87 124%

Drawing polygons 1 2 12 11 92%

Palette Listener 1 2 20 17 85%

DisplayBox persistence 2 5 35 12 34%

DisplayBox handling 6 8 58 29 50%

DesktopListener Subject 2 3 63 45 71%

Changing connections 3 3 98 53 54%

Finding connectable figure 1 3 98 53 54%

Testing command executability 5 7 14 14 100%

Floating text holder 2 2 47 36 77%

DrawingViewListener Subject 2 4 63 26* 41%

Setting text in a text Figure 2 2 36 22 61%

Enumerator 1 3 33 11* 33%

Figure Listener that resends notifications 2 3 35 23* 66%

Menu enabling 1 2 20 14 70%

Version control 1 2 12 9 75%

Selected button manager 1 2 18 12 67%

Text attributes management 2 2 206 120 58%

Updating DrawingView Strategy 1 2 29 26 90%

Connection insets computing 1 3 10 7 70%

Undo/Redo Commands 1 2 32 31 97%

Changing connection handles 1 2 20 19 95%

Polygon and PolyLine Handles 3 2 32 28 88%

Tools and Commands Dispatchers 6 4 89 32* 36%

Figure/Handle and Enumerator 1 2 33 2* 6%

Polygon locator 1 2 13 20 154%

Drawing editor 1 3 54 28* 52%

Reason

Desktop initial configurations 1 2

Persistence (read/write) 3 6

UndoActivity 13 24

Creating UndoActivity 14 18

Handle manipulation starting action 3 5

Point is inside Figure 3 6 code too small

DrawingView Listener 1 2 perfomance issues

Mouse motion handling 1 2 code too small

After other roles was just a

line of code

Too much configuration

UndoActivity inner classes

declaration and constructor

Similar but not identical code

Too much configuration

Concern

* = reused from library

1) Modelled Concerns
Roles succeeded in 30 (79%) of the 38 concerns. This

indicates that roles are capable of reducing replicated code
and modeling crosscutting concerns. Comparing the LOC
ratio, one finds that, in average, roles only have 68% of the
original code, so the effort of developing the role system is
smaller. Taking the absolute LOC value, the original system
has 1390 LOC and roles have only 883 LOC. This means
that roles reduced the replicated code in 36,5%.

In 6 concerns we were able to reuse/place roles from a
role library [20] we developed to capture the basic behavior
of the Gang of Four design patterns [21]. This explains the
great difference in LOC in these concerns. From all the
concerns roles resolved, two exhibit a higher number of LOC
than the original implementation.

574Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The “Handle creation” concern deals with the creation of
handles for each figure. We moved the handle creation to a
handle creator class and the role class methods on that class.
Since some clones only have similar code we had to
reproduce every method in this creator class. The class code,
plus the code original classes use to play the role and the
definition of the role leads to more lines of code than the
original implementation. But the role has one advantage: it
can dynamically change the handle creator.

The “Polygon Locator” is responsible for returning a
point inside a polygon given a point index. It is used in two
classes but one of them uses an anonymous class. Currently
JavaStage’s roles cannot be applied to anonymous classes so
we had to develop an inner class. This code and the role
configuration lead to a higher LOC, because the original
code size was not enough to compensate for this overhead.

2) Unresolved concerns
A surprising result is that the two concerns with the most

clone sets and class involved are unresolved with roles. This
is due to the nature of the clones. They are clones only in the
structure and not on the code itself. The ”Creating undo
activity” concern creates an undo activity object for each of
the various tools and commands supported by the
framework. Each tool class has an UndoActivity inner class
hence the undo activity creation is just a line of code
instantiating an object of the respective inner class. Because
each inner class constructor has different parameters in
number and types, roles could not resolve this concern.
UndoActivity concern clones are due to the inner classes,
because they all have the same name and constructors with
the same structure, even if not equal. Another example of
such a concern is the “Handle manipulation starting action”:
code is similar but not quite identical and most code would
disappear with refactoring.

 Another example is “Persistence”: because figures must
be streamed they have a write and read method with similar
structure, but not quite identical code. We reduced this
duplicated code with our DisplayBoxed role, though.

Another unresolved concern is the “DrawingView
listener”. An overriding method is redefining the original,
allegedly for performance issues we failed to understand.

One unresolved clone, “Desktop Initial configuration”,
dealt with a Desktop’s panel initialization, which initializes
panel titles and adjusts a scrollPane. Each possible
initialization is similar so we could configure a role for every
way a scroll pane is configured and then reuse them. But
knowing each possible role would require more effort than to
know how to configure the scroll pane.

The other unresolved concerns were a single line in the
form of return getSomeObject().doSomething().
Since the first method returns different objects that in turn
call different methods, role configuration would be harder
than writing the code itself.

Had we not considered some of these concerns as
crosscutting concerns, we would count only 4 as unresolved.

3) Threats to Validity
One threat to this study results is that we only considered

a single system. For results to be more decisive we might
need to do the same test with more systems. Nevertheless the

nature of roles allows us to say, with some confidence, that
results for other systems would not be that different.

The clone detecting settings can also affect the detected
clones that would lead to different concerns. That and the
removal of clones from the same file could have removed
important clones. However, we would need to reduce the
amount of clone sets to a manageable number. We even go
under the limit of the minimum 30 tokens recommended in
[18] for limiting false clones. So while different settings
would result in some different clones we believe that our
settings provided a good result in detecting meaningful
concerns.

IV. RELATED WORK

Feature Oriented Programming (FOP) decomposes the
system into features [10], which are the main abstractions in
FOP during design and implementation. Features reflect user
requirements and incrementally refine each other. FOP relies
on a step-wise refinement of applications by adding new
features or refining existing ones. FOP is mainly used in
Software Product Lines and program generators. In FOP,
Mixins are used to implement features [8]. Each mixin layer
contains the code each class needs for a given feature and are
composed into a static component. Roles can be used instead
of mixins, as they offer more ways of configurations and
don’t have mixins limitations like a linear composition order.

Aspect-Oriented Programming is another approach that
tries to modularize crosscutting concerns [11]. But AOP is
not close to OO and requires learning many new concepts.
And while the modularization of crosscutting concerns is the
flagship of AOP several authors disagree [22][23]. Concepts
like pointcuts and advices are not easy to understand. The
effects of these constructs are also more unpredictable than
any OO concept. A particular one is the fragile pointcut. This
problem arises when simple changes made to a method code
make a pointcut either miss or incorrectly capture a joint
point thus incorrectly introducing or failing to introduce the
necessary advice. Thus simple changes in the class code can
have unsought effects [24].

The obliviousness feature of AOP means that a class is
aspect unaware so aspects can be plugged or unplugged as
needed. But it also introduces problems in comprehensibility
[25]. To fully understand the system we must not only know
the classes but also have to know the aspects that affect each
class. This is a major drawback when maintaining a system,
since the dependencies aren’t explicit and there isn’t an
explicit interface between both parts. With our approach all
dependencies are explicit and the system comprehensibility
is increased when compared to the OO version [26]. We do
not have the obliviousness of AOP as the class knows and is
aware of the roles it plays. But any changes to the class code
are innocuous to the role, as long as their contract is fixed.

We do not believe our approach can replace AOP. They
are different and approach different problems. We believe
that for static concerns our approach is more suitable while
AOP is better suited for (un)pluggable concerns.

 Traits [6] offer a way of composing software that is
somewhat similar to Mixins [6]. A trait is the primitive unit
of code reuse, like our roles, which means that only traits can

575Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

be used to compose classes. Traits can also be used to
compose other traits. But traits only provide methods and not
state and access levels. A class composed with traits can be
seen either as a flat collection of methods or as being
composed by traits. This flat property means that the code
inside the trait can be seen as the code inside the class, for
example, a super reference inside the trait code refers to the
superclass of the class that uses the trait. In our approach we
can also see a class as simply a set of methods, forgetting
that it plays a role, but we have not this flat property, as a
super reference in a role refers to the superrole.

V. CONCLUSION AND FUTURE WORK

We have presented a new way of modeling crosscutting
concerns. Using roles we have a finer grain composition
technique that allows the crosscutting concerns to be
composed into the classes without its code being placed in
the class itself.

We modeled crosscutting concerns by developing a role
that addressed it. The crosscutting concern’s code is
therefore limited to the role. To better model those concepts
roles support state and visibility control. Classes play the role
and acquire the role behavior. Changes to the concern
implementation are limited to the role.

We validated our approach developing roles for the
JHotDraw framework and eliminated nearly all of the
existing crosscutting concerns that exhibited duplicated code.
We even reused some roles from our role library showing
that they are really reusable.

For future work we are developing a role version of the
Sun’s java compiler and the Spring framework, using
JavaStage. Results so far are promising as we already reused
some of our library roles, like an Observer and Visitor. The
use of these roles in those case studies can eliminate a great
amount of duplicated code.

REFERENCES

[1] Parnas, D. L., (1972): On the criteria to be used in
decomposing systems into modules. Commun. ACM 15, 12,
Dec. 1972, 1053-1058

[2] Kristensen, B. B., (1995): Object-oriented modeling with
roles, in Proceedings of the 2nd International Conference on
Object-Oriented Information Systems, Springer-Verlag.

[3] Tarr, P., Ossher, H., Harrison, W. and Sutton Jr., S. M.
(1999), N degrees of separation: multi-dimensional separation
of concerns, Proceedings of the 21st international conference
on Software engineering, New York, NY, USA

[4] Miryung Kim, Lawrence Bergman, Tessa Lau, and David
Notkin, An ethnographic study of copy and paste
programming practices in oopl, Proceedings of the 2004
International Symposium on Empirical Software Engineering
(Washington, DC, USA), ISESE ’04, 2004, pp. 83–92.

[5] Bruntink, M. van Deursen, A. van Engelen, R. Tourwé,
T., On the use of clone detection for identifying crosscutting
concern code, IEEE Transactions on Software Engineering,
Vol. 31, No. 10, (2005)

[6] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do Code Clones Matter? In Proc. Int. Conf. on Software
Engineering, pages 485–495. IEEE Computer Society, 2009.

[7] C. Roy and J. Cordy. A Survey on Software Clone Detection
Research. Technical Report 2007-451, School of Computing,
Queen’s University at Kingston, 2007.

[8] G. Bracha, and W. Cook. Mixin-Based Inheritance. In
Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications /
Proceedings of the European Conference on Object-Oriented
Program-ming, pages 303–311, 1990. Ottawa, Canada.

[9] S. Ducasse, N. Schaerli, O. Nierstrasz, R. Wuyts and A.
Black: Traits: A mechanism for fine-grained reuse. In
Transactions on Programming Languages and Systems. 2004.

[10] S. Apel and C. Kästner. An Overview of Feature-Oriented
Software Development, in Journal of Object Technology, vol.
8, no. 5, July–August 2009,pages 49–84

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
W.G. Griswold. An overview of AspectJ. In proceedings of
ECOOP 2001, Budapest, Hungary, (LNCS, vol. 2072),
Springer; 327–335, 2001

[12] D. Riehle Framework Design: A Role Modeling Approach,
Ph. D. Thesis, Swiss Federal Institute of technology, Zurich.
2000

[13] Barbosa, F. and Aguiar, A. (2012). Modeling and
Programming with Roles: Introducing JavaStage, In the 11th
International Conference on Intelligent Software
Methodologies, Tools and Techniques (SoMeT_12), Genoa,
Italy, to appear.

[14] T. Reenskaug, P. Wold, and O. A. Lehne. Working with
objects - the OOram software engineering method. Manning,
1996.

[15] Steimann, F., (2001): Role = interface: a merger of concepts,
Journal of Object-Oriented Programming 14(4): 23–32.

[16] Chernuchin, D., and Dittrich, G. (2005). Role Types and their
Dependencies as Components of Natural Types. In AAAI Fall
Symposium: Roles, an interdisciplinary perspective.

[17] Ceccato, M., Marin, M., Mens, K., Moonen, L, Tonella, P.
and Tourwe, T. A qualitative comparison of three aspect
mining techniques, Proceedings of the 13th
InternationalWorkshop on Program Comprehension
(Washington, DC, USA), IWPC ’05, 2005, pp. 13–22

[18] Kamiya, T., Kusumoto, S. and Inoue, K. (2002), Ccfinder: a
multilinguistic tokenbased code clone detection system for
large scale source code, IEEE Trans. Softw. Eng. 28, no. 7.

[19] Fowler, M., (1999), Refactoring: Improving the design of
existing code, Addison-Wesley, Boston, MA, USA.

[20] Barbosa, F. and Aguiar, A. (2011). Generic roles, a test with
patterns In 18th Conference on Pattern Languages of
Programs, PloP 2011 Oct 21-23, Portland, OR, USA

[21] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., (1995):
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley.

[22] Steimann, F., The paradoxical success of aspect-oriented
programming“, in OOPSLA '06, Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-Oriented
Programming Languages, Systems, and Applications (2006)

[23] Przybyłek, A.(2001). Systems Evolution and Software Reuse
in Object-Oriented Programming and Aspect-Oriented
Programming , J. Bishop and A. Vallecillo (Eds.): TOOLS
2011, LNCS 6705, pp. 163–178.

[24] Kästner, C., Apel, S., Batory, D., 2007: A Case Study
Implementing Features using AspectJ. In:11th International
Conference of Software Product Line Conference (SPLC
2007), Kyoto, Japan

[25] Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari,
N., Cai, Y., Rajan, H., 2006: Modular Software Design with
Crosscutting Interfaces. IEEE Software 23(1), 51–60 (2006)

[26] Riehle, D. and Gross, T. 1998. Role Model Based Framework
Design and Integration.” In Proceedings of the 1998
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’98). ACM Press

576Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

