
AO-WAD: A Generalized Approach for Accessible Design within the Development
of Web-based Systems

Adriana Martín1,2

1Department of Exact Sciences, Caleta Olivia
University of Patagonia Austral (UNPA-UACO)

Santa Cruz, Argentina
2GIISCo, Computer Science Department,

University of Comahue (UNCo)
Neuquén, Argentina

e-mail: adrianaelba.martin@gmail.com

Viviana Saldaño1, Gabriela Miranda1,
Gabriela Gaetán1

1Department of Exact Sciences, Caleta Olivia
University of Patagonia Austral (UNPA-UACO)

Santa Cruz, Argentina
e-mails: {vivianas / gmiranda /
ggaetan}@uaco.unpa.edu.ar //

Abstract— Web Engineering (WE) methods have evolved to
support different concerns during the development process of
current Web-based systems, as context-awareness, Business-to-
Business (B2B) process modeling, Rich Internet Applications
(RIAs) and live-regions or quality factors to improve users’
experience. Therefore, developers have conceptual tools to
focus on these concerns in advance, but unfortunately, the
situation is not the same to early accessibility design. In this
paper we provide a briefly overview of our proposal, called
Aspect-Oriented Web Accessibility Design (AO-WAD), and
generalize its use within some of the best known WE
approaches to provide accessibility support through Aspect-
Orientation techniques. We embed AO-WAD into OOHDM,
UWE and OOWS methods and propitiate an ease
understanding through a motivating example.

Keywords- Web Accessibility; WE Approaches; UI Design;
Aspect-Orientation.

I. INTRODUCTION
Nowadays, the advance of the Internet and the emerging

technologies associated to the Web are universalizing
information systems, allowing access to any connected
potential user. The term “Web application” [1] refers to a
new family of software applications specially designed due
to the high growth of commercial activities on the Internet.
These systems are being implemented in very short periods
of time, without support of appropriate tools. For this reason,
Web applications have low quality and very difficult
maintenance. In most cases, development of Web application
has been “ad hoc”, lacking systematic approach, quality
control and assurance procedures. Therefore, there is now
great concern about how Web-based systems are developed
to promote integrity and quality.

Web Engineering (WE), which is still an emerging
discipline, encourages a process driven by systematic
approaches to develop high quality Web-based systems. In
the last decade, many WE methodological approaches, as
Object-Oriented Hypermedia Design Method (OOHDM)
[14], UML-based Web Engineering (UWE) [4], Object-
Oriented Web Solution (OOWS) [3] and Web Site Design
Method (WSDM) [16], have been proposed and evolved to
provide support by means of abstract mechanisms that make
easier the conceptualization and development of this kind of
Web applications.

In contrast, the state-of-the-art shows that there are not
many proposals for the early design with accessibility
principles in mind and besides, even fewer proposals,
provide conceptual tools to fully support accessibility nature
to migrate to other WE approaches.

In general, a proposal for including accessibility design
within systematic and unified Web development works only
in association with a host WE approach. Therefore, there is a
high dependence between host’s process and deliverables
and the proposed conceptual tools to support Web
accessibility. The consequences are clear, since failing the
design principle “low coupling” hinders embedding and easy
connection with other WE approach. For example, Plessers
et al. [13] is a well-known proposal that generates
annotations for visually impaired users automatically from
explicit conceptual knowledge existing during the WSDM
[16] design process. The proposal prioritizes accessibility
support using a rule-based mapping model to drive
accessibility annotations, but by means of WSDM’s
modeling concepts to which these annotations are tightly
bound. On the other hand, Moreno et al. [11] defines several
constructs in UML meta-model to support the abstraction of
Web accessibility concepts following the standard WCAG
[18][19]. Thus, the proposal can be easily implanted into
approaches following the MDA paradigm, but at expense of
not fully addressing the non-functional, generic and
“crosscutting” features of accessibility.

Our proposal for accessible design, called Aspect-
Oriented Web Accessibility Design (AO-WAD) [6][7][9],
recommends including accessibility concerns systematically
within methods for Web application development. AO-WAD
is born to join OOHDM [14] prioritizing accessibility at the
very beginning of the Web design process. While OOHDM
provides the main development framework, Aspect-
Orientation ensures handling naturally the non-functional,
generic and crosscutting characteristics of the accessibility
concern within the framework.

At this point, let us define what is (and what is not) Web
accessibility, and why it is a good idea to model its
requirements as softgoals to be “satisficed” [2]. In short,
Web accessibility is the ability to access the Web. However,
you will never be perfectly accessible to everybody. From
this point of view and since there is not a simple binary
opposition between accessible and inaccessible [15],

581Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

accessibility requires more loosely defined criteria, as the
one proposed in [2] for non-functional requirements.

In this paper, we introduce AO-WAD as an example of
having complete commitment to accessibility through
Aspect-Orientation techniques without losing generality
when developing within WE approaches. Supporting this
statement, we develop a motivating example within
OOHDM [14], UWE [4] and OOWS [3] as host methods,
which are some of the most widespread and mature WE
approaches.

This document is organized into eight sections as
follows: in Section II we briefly introduce AO-WAD, while
in Section III we explain the way our proposal provides
accessibility support to OOHDM, UWE and OOWS Web
development processes. Then, in Sections IV, V and VI we
apply AO-WAD to a motivating example using as hosts
these three WE approaches. In Section VII we achieve some
insights about including accessibility design within Web
development processes applying Aspect-Orientation
techniques. Finally, in Section VIII we present the
conclusions and future work.

II. AO-WAD IN A NUTSHELL
The model we envisage to deal with accessibility

concerns within a WE approach is illustrated in Figure 1 [6].
Step 1 (Figure 1 (1)) manages Web application requirements
looking for those that involve accessibility needs. This is
because it is at the user’s interface level where accessibility
barriers finally show, so we are particularly interested in
discovering accessibility requirements at the user interface
(UI) design. Then, Step 2 (Figure 1 (2)) proposes an early
capture of accessibility concrete concerns by developing
two kinds of diagrams: the User Interaction Diagram (UID)
with accessibility integration points [6] and the Softgoal
Interdependency Graph (SIG) template [6] for Web Content
Accessibility Guidelines (WCAG) 1.0. Step 3 (Figure 1 (3))
aids designers making decisions through the abstract UI
model (Figure 1 (3.1)), and then, at Step 4 (Figure 1 (4))
toward its implementation through the concrete UI model
(Figure 1 (4.1)). Thus, given a user’s task, the SIG diagram
provides the WCAG 1.0 accessibility checkpoints that
“crosscut” the UI widgets (both, abstract and concrete ones;
Figure 1 (3.1) and (4.1) respectively), to help to an
accessible user experience.

Figure 1 (3) shows that at Step 3, our approach provides
a supporting tool to assist developers in the implementation
of cases, and on the creation of their corresponding models
by using reusable components (for a detailed description of
AO-WAD and its contribution to the area of accessible
design see [6]).

In the following section, we show how AO-WAD can be
implanted to work not only with OOHDM [14], but also
with UML-based Web Engineering (UWE) [4] as one of the
most popular and recognized Object-Oriented WE
approaches.

Figure 1. An overview of AO-WAD

III. SYSTEMATIC WEB DEVELOPMENT AND
ACCESSIBILITY DESIGN

AO-WAD was developed in the spirit of model-driven
paradigm to provide accessibility support within WE
approaches. WE approaches are generally approaches as
model-driven, because they address the different concerns
involved in the development of a Web application using the
following primary artifacts: (i) separate models (such as
content, navigation and presentation), and (ii) model
compilers to produce (semi) automated generation of most
of the Web application’s implementation from the original
models [10]. AO-WAD focuses on preserving model-driven
principles to enrich these artifacts (UI models and model
transformations) with accessibility concerns. Thus, the
integration of AO-WAD at the design level is immersed in a
Web application development process.
In Section 2, we describe AO-WAD main process and
interaction with OOHDM deliverables to model
accessibility concerns in an Aspect-Oriented manner during
Web developments. Figure 2 summarizes the embedding of
AO-WAD within OOHDM Model-Driven Development
process. The UID [17] is the conceptual tool used by
OOHDM [14] to state transformations between Web
application requirements (Use Case model) and the
Conceptual, Navigation and UI models. AO-WAD
propitiates the same principle between Web applications
requirements and accessible UI models. The interaction
between OOHDM models links and reinforces accessibility
needs by applying two conceptual tools: the UID with
integration points and SIG template for accessibility. The
SIG diagram conveys the accessibility knowledge through
WCAG 1.0 operationalizing softgoals [6] required to be
applied at UI model. Due to accessibility nature, these
accessibility softgoals “crosscut” the UI model more than

582Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

once causing “crosscutting symptoms”. At this point, AO-
WAD proposes to address these symptoms by modularizing
softgoals into accessibility aspects. As Figure 2 shows, the
deliverable of the process is an accessible and clean design,
which means an OOHDM UI model enriched with
accessibility concerns but free of “crosscutting symptoms”. !

!
!
!
!

!
<< USER INTERFACE MODEL >>

<< ACCESSIBILITY ASPECTS >>

!

ABSTRACT CONCRETE

<< ACCESSIBILITY >>
 !

! SIG DIAGRAMS

UID
DIAGRAMS

extended with

INTEGRATION

POINTS

<< REQUIREMENTS MODEL >>

!

<< NAVIGATION MODEL >>

!
<< CONCEPTUAL MODEL >>

!

AO-WAD

Figure 2. AO-WAD embedded into OOHDM Model-Driven

Development process

As another good example of an established WE
approach, UWE is based on OMG (modeling and metadata
specifications) and uses UML for the analysis and design of
Web applications. Figure 3 summarizes the embedding of
AO-WAD within UWE Model-Driven Development
process. In UWE [4], the Requirements model consists of
two parts: (i) use cases of the Web application and their
relationships and, (ii) activities describing use cases in detail.
In particular, the Activity diagram is the conceptual tool used
by UWE to describe more accurately each use case.

!
!

<< REQUIREMENTS MODEL >>

<< ACCESSIBILITY >>

USE CASES

!
!

<< ACCESSIBILITY ASPECTS >>

!

<< PRESENTATION MODEL >>

!

<< NAVIGATION MODEL >>

!

<< CONTENT MODEL >>

!

<< PROCESS MODEL >>

!

SIG DIAGRAMS

ACTIVITY

DIAGRAMS

extended with

INTEGRATION

POINTS

AO-WAD

Figure 3. AO-WAD embedded into UWE Model-Driven Development

process

UWE uses the Activity diagram to state transformations
between Web application requirements and the Content,
Navigation and Presentation models. Thus, as Figure 3
shows, AO-WAD embeds into UWE extending the Activity
diagrams with integration points and through the SIG
diagrams convey accessibility concerns as WCAG 1.0
operationalizing softgoals, which “crosscut” the

Presentation model causing “crosscutting symptoms”. At
this point and as we explained before, AO-WAD proposes
to address these symptoms by modularizing softgoals into
accessibility aspects. Figure 3 shows the deliverable of the
process is an accessible and clean design, which means a
UWE Presentation model with accessibility concerns but
free of “crosscutting symptoms”.

OOWS extends an Object-Oriented software production
method (called OO-Method [12]), for providing
methodological support for Web application development.
Figure 4 summarizes the embedding of AO-WAD within
OOWS Model-Driven Development process. In OOWS [3],
the Requirement model extends the OO-Method Task model
to capture not only the structural and behavioral
requirements (as happens in non-Web applications) but also
navigational requirements using two extra diagrams: (i) a
Task taxonomy, which hierarchically specifies the tasks that
the users should achieve when interacting with the Web
application, and (ii) a Task definition, which describes the
interactions that users require from the Web application and
the information that is exchanged in each interaction, using
UML Activity diagrams and CRC cards [20], respectively.
In particular, the OOWS Task definition model identifies
and describes interaction points between the user and the
Web application, which are very useful for our purpose.

As Figure 4 shows, AO-WAD can focus on this
methodological support to embed into OOWS extending in
first place, the Task definition model (Activity diagrams and
CRC cards) with integration points and then, conveying
accessibility concerns through the SIG diagram as WCAG
1.0 operationalizing softgoals. Again, AO-WAD proposes
softgoals modularization into accessibility aspects to be
injected into the Navigational and Presentation model.
!

!
<< REQUIREMENTS MODEL >>

<< ACCESSIBILITY >>

OO-METHOD
TASKS !

!

<< ACCESSIBILITY ASPECTS >>

!

SIG DIAGRAMS

AO-WAD
OOWS

 TASKS
TAXONOMY

!
OOWS

 << USER MODEL >>

!
OO-METHOD

<< CLASS DIAGRAM >>

<< DINAMIC MODEL >>

<< FUNCTIONAL MODEL >>

TASK

DEFINITION
extended with

INTEGRATION

POINTS

 << NAVIGATIONAL MODEL >>
 << PRESENTATION MODEL >>

Figure 4. AO-WAD embedded into OOWS Model-Driven Development
process

In order to ease understanding of AO-WAD within
systematic Web development processes, we develop a
motivating example in the following section, working with
OOHDM, UWE and OOWS as host WE approaches.

IV. AN ACCESSIBLE UI FOR THE STUDENT’S LOGIN
We describe the embedding of AO-WAD within

OOHDM, UWE and OOWS approaches using the following
use case specification “Login a User given the User’s ID
and Password”:

Use Case: Login a User given the Users ID and Password
Brief Description: This use case describes the User login
Primary Actor: User

583Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Description
Main Success Scenario:
Step Action

1. The system requests that the User enters his/her ID and
Password.

2. The User enters his/her ID and Password.

3. The system validates the ID and Password and logs the User

Extensions:
Step Branching Action

3.a The User enters an invalid ID and/or Password; the application
displays an error message; the use case ends.

This example is simple but extremely representative

mainly because of two reasons: (i) increasingly, business
and government agencies are adopting a Web presence for
sales and services to their customers, clients and citizens
and, (ii) it clearly explains all of the issues concerning to
accessible content that come into play when we think about
how people with different capabilities interact with a Web
page to input information [15]. The use case above
describes the Web application’s requirements for the user
login and functionality that comprises user-application
interaction; as we can see at the first step of the main
success scenario, the user is requested by the application to
enter his/her ID and Password. Since very often a
specification based only on use cases is not enough [17],
different kinds of refinement techniques are used to obtain a
more detailed specification of functional requirements.
OOHDM applies UID technique [17] to model user-system
interactions and to specify the information that requires
input from the user and choices that allow changes between
interactions. UWE follows the principle of using UML
whenever possible for specification and refines
requirements with Activity diagrams for the main stream of
the task to be performed. While OOWS, proposes the Task
Taxonomy and Definition models [3] to capture Web
application requirements, and in particular, the last one is
the key model for specifying the interaction between the
user and the Web application. Figure 5, illustrates the UID,
the Activity diagram and also the Task Definition model),
which provide a more detailed specification to the login use
case within OOHDM, UWE and OOWS approaches,
respectively. As we can see in Figure 5, an Activity diagram
and an Information template implemented with the data
technique CRC card, compound the OOWS Task Definition
model.

As we already see in Section 2, looking at Step 1, AO-
WAD proposes to examine the Web application
requirements for the use case above, to identify accessibility
concerns during the user-system interaction. It is clear in
this specification that the FORM element is the key UI
element to help achieve an accessible student’s login.
Following, in Sections V and VI we focus on modeling
issues at Steps 2 (Figure 1 (2)) and 3 (Figure 1 (3))
respectively, as the main steps when implanting AO-WAD
within WE approaches.

UWE ACTIVITY DIAGRAM

OOWS TASK DEFINITION DIAGRAM = ACTIVITY DIAGRAM + INFORMATION TEMPLATE

<<user Action>>

LOGINFORM
Enter User ID and Password

<<system Action>>

VALIDATINGDATA
Check User ID and Password

<<system Action>>

USER

YES

<<user Action>>

VALIDATINGERROR

NO

OOHDM UID DIAGRAM

 <<input>>
Enter User ID
and Password

<<validate>>
Check User ID
and Password

[INVALIDDATA]

ERROR !!!

[VALIDDATA]

USER

< 1 >

ID
 PASSWORD

SIU Guarani
 < 1.2 > LOGINFORM

<<output>>
USER YES

<<output>>
ERROR

NO 1

OOWS TASK DEFINITION
DIAGRAM = ACTIVITY

 Identifier: T1
Entity: USER
Specific
Data:

Name Description Nature IPs
Name Name of the USER String output (USER, 1)

: : : :
ID ID of the USER String input (USER, validate)
PASSWORD Password of the USER String Input (USER, validate)

Figure 5. Requirements Specification with UID (left), Activity Diagram
(right) and Task Definition Model (bottom)

V. SPECIFYING ACCESSIBILITY CONCRETE CONCERNS
When developing with OOHDM, AO-WAD proposes at

Step 2.1 extending the UID diagram with integration points
to support an early registration of accessibility concerns.
This conceptual tool attaches an accessibility integration
point to each one of those UI elements with impact on the
dialog required by the use case functionality and modeled
by the UID. Looking for the same modeling purpose, AO-
WAD Step 2.1 can be also satisfied when developing with
UWE, and OOWS extending the Requirements model of
these WE approaches. When developing with UWE, the
Activity diagram is enriched with accessibility integration
points. Likewise in OOWS, the Task Definition model
provides user-application interaction points (IPs) enabling
AO-WAD accessibility integration point to be easily
attached. Figure 6 illustrates the UID (left), the Activity
diagram (right) and the Task Definition model (bottom),
extended with an integration point that allows an early
record of accessibility concerns for the FORM UI element --
i.e. HTML related controls. Also, Figure 6 shows two
possible ways of attaching the accessibility integration
points to these diagrams and model: (i) including a UML
Note modeling construct or (ii) defining an Object
Constraint Language (OCL) expression. As Figure 6
(bottom) shows, OOWS aids the Activity diagram with an

584Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Information template, whose CRC card can be also extended
to reinforce the specification of the accessibility integration
point for the FORM UI element. As we see, the integration
of Step 2.1 proposed by AO-WAD into the Requirement
model of WE approaches is straightforward.

<<input>>
Enter User ID
and Password

<<validate>>
Check User ID
and Password

OOWS

<<user Action>>

LOGINFORM
Enter User ID and Password

…

< 1 >

ID
PASSWORD

SIU Guarani

< 1.2 > LOGINFORM

…

Y

An Accessibility integration point
for an HTML related controls

?The LOGINFORM must satisfy WCAG 1.0 …?

context UserLogin
inv: self.LOGINFORM !

includes (“Accessibility integration point”)

UML NOTE

OCL CONSTRAIN

OOHDM UWE

 Identifier: T1

Entity: USER
Specific
Data:

Name … IPs

Accessibility
integration points

: : : :
ID … Input (USER, validate) LOGINFORM
PASSWORD … input (USER, validate)

Figure 6. UID (left), Activity Diagram (right) and Task Definition Model
(bottom) with Accessibility integration points

Then, AO-WAD proposes at Step 2.2, the specification
of accessibility softgoals through a SIG tree. When
developing with OOHDM, the SIG diagram is a
consequence of instantiating the SIG template taking the
UID with integration points as input --i.e the early
registration of accessibility concerns for the FORM UI
element, shown by Figure 6 (left), which is core to the
required functionality. The SIG diagram specifies
accessibility operationalizing softgoals to be satisficed for
reaching the required WCAG 1.0 level of compliance.
Applying the same modeling purpose, the Activity diagram
extended with integration points, shown by Figure 6 (right
and bottom, respectively), provides the required input for
developing the SIG diagram within UWE and OOWS.
Although the SIG template is not a UML specification tool,
it can be easily transformed into an XML tree structure and
work with other UML diagrams within the philosophy of
the model-driven paradigm. Therefore, there are no major
problems for including Step 2.2 proposed by AO-WAD
during the development process of WE approaches under
consideration.

VI. SOLVING ACCESSIBILITY CROSSCUTTING SYMPTOMS
AO-WAD proposes at Step 3, the specification of

accessibility aspects to avoid “crosscutting symptoms”
resulting from applying accessibility operationalizing
softgoals to elements comprising the UI model. At the UI
modeling stage, OOHDM delivers an Abstract UI model
[14] whose vocabulary is established by the Abstract
Widget Ontology extended by AO-WAD [6] to support new
elements required by current UI, which are dynamic and
with a high degree of complexity. Similarly, UWE delivers
a Presentation model [4] from a Meta-model for modeling

UI elements. Presentation requirements are specified in
OOWS using a Presentation model that is strongly based on
the Navigational model and uses the navigational contexts
as basic entities to define the presentation properties;
working together, these models capture the essential
requirements for the construction of Web UI [3].

!
!!

 IndefiniteVariable IndefiniteVariable

SimpleActivator

ElementExhibitor

LOGINFORM
ElementExhibitor CompositeUIElement

OOHDM ABSTRACT UI MODEL

!

LOGINFORM

UWE
PRESENTATION MODEL

!

OOWS
NAVIGATIONAL MODEL

<<view>>
USER

-Name
-ID
-PASSWORD

FILTER: { ID , PASSWORD }
ATTRIBUTE: ID, PASSWORD
FILTER TYPE: EXACT

[USER]

<<context>>
LOGIN

!

OOWS
PRESENTATION MODEL

<<context>>
LOGIN

<<view>>
USER

 PATTERN: REGISTER PATTERN: REGISTER

CARDINALITY: STATIC, 1

OOWS WEB UI

!
DATA ENTRY ZONE:
LOGINFORM!

Figure 7. Abstract Interface Model in OOHDM (left), Presentation

mModel in UWE (right) and Navigation-Presentation Models and Web UI
in OOWS

Figure 7 shows the Abstract UI model delivered by
OOHDM (left), the Presentation model provided by UWE
(right), and the Navigation-Presentation models and Web UI
provided by OOWS (bottom), for the screenshot (top)
corresponding to the login example. In first place, AO-
WAD recommends discovering “crosscutting symptoms”
that manifest when applying accessibility operationalizing
softgoals to the UI model --i.e. OOHDM Abstract Interface
model, UWE Presentation model and OOWS Navigational-
Presentation models and Web UI. These operationalizing
softgoals are spread out and intermixed through the
components of the login FORM UI element, causing
“scattering” and “tangling” symptoms. Then, AO-WAD
prescribes eliminating these symptoms through a
modularization process that applies aspects to provide
accessibility support at the user’s technology and layout.
Thus, aspects modularize operationalizing softgoals to be
satisficed for properly convey the accessibility concerns
required by UI elements. As Figure 8 depicts through a
pseudo code, Aspect-Orientation provides a mechanism
called “weaving”, which requires that each aspect must
specify “where or how” should be invoked and “what”
should be injected into the core --i.e. a concrete UI model.

VII. DISCUSSING WE APPROACHES FROM THE
ACCESSIBILITY PERSPECTIVE

We have been working for a while on accessibility [5]
and particularly on accessibility design at early stages of
Web applications development [6][7][8][9]. Particularly, we
have been applying concepts from Aspect-Orientation in

585Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

association with the WCAG 1.0 document to deal with
accessibility concerns within WE approaches.

!

ASPECT II. LSRELATEDCONTROLS
POINTCUT ALL INTERFACE WIDGETS WITH
CompositeUIElement.LoginFORM == HTML related controls
PROPERTY ADVICE ADD ACCESSIBILITY CONDITION
12.3 groupRelatedControls == HTML fieldset element AND
HTML legend element !
12.4 explicitAssociation == HTML for element.!

<< UI MODEL ASPECT II >>
ACCESSIBLE LOGINFORM

ASPECT I. TSRELATEDCONTROLS
POINTCUT ALL UI ELEMENTS WITH
CompositeUIElement.LoginFORM == HTML related controls
PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS
9.4 tabOrderControl == HTML tabindex element !
9.5 keyAccessControl == HTML accesskey element !
10.2 promptPosition == HTML for element !
10.4 defaultCharacters == HTML value element.

!

<< UI MODEL ASPECT I >>
ACCESSIBLE LOGINFORM

!
OOHDM

ASTRACT INTERFACE MODEL

UWE
PRESENTATION MODEL

OOWS

NAVIGATIONAL-PRESENTATION MODEL
AND WEB UI

Figure 8. Specification of Accessibility Aspects conveying Accessibility

Concerns

Since the model-driven paradigm provides a good
framework to develop for the Web 2.0, we believe that a
proposal to somehow improve the users experience should
be able to work within any WE approaches. Although AO-
WAD is conceived within OOHDM to fully address
accessibility features, its application can be generalized to
work with other approaches, such as UWE and OOWS
methods. The process proposed by AO-WAD (Figure 1) can
be normalized to handle accessibility concerns through two
conceptual tools: the accessibility integration points and
SIG template techniques. These tools are core to AO-WAD
generalization since they provide the required support to
manage accessibility concerns within any WE development
processes. The accessibility integration points technique
provides early registration of accessibility concerns, while
the SIG template technique allows instantiation for
specifying concrete WCAG operationalizing softgoals to be
applied [6]. These diagrams can be easily implanted into
WE Requirements models, such as UIDs in OOHDM,
Activity diagrams in UWE and Task Definition model in
OOWS (Figures 5 and 6). Then, crosscutting symptoms are
solved by the modularization of WCAG operationalizing
softgoals into accessibility aspects to enrich WE
Navigational and Presentation/UI models, such as Abstract
UI in OOHDM, Presentation model in UWE and,
Navigational-Presentation models and Web UI in OOWS
(Figures 7 and 8). So, a first step in the normalization of
AO-WAD for its generalization can be synthetized as
follow: (1) extending requirements with accessibility
integration points, (2) specifying the SIG diagram and, (3)
modularizing WCAG operationalizing softgoals into
accessibility aspects to be injected. Finally, since AO-WAD
is developed to work with the model-driven paradigm, we
would like to highlight advantages/disadvantages of this
paradigm and how benefits/affects AO-WAD. On one hand,
applying systematic and unified model-driven approaches
brings the benefit of having full documentation and
automatic application generation at the expense of
introducing some bureaucracy into the development process.
Since our proposal suggests the early treatment of the
accessibility concerns through models, we may still be

influenced by this reality and its disadvantages --i.e., time
and cost consuming, complexity, learning effort, etc. On the
other hand, using models and taking advantages of an
iterative and incremental development process to deal with
accessibility concerns, allows: (i) going back from UI
models to Navigation models to look for alternatives in the
navigation path, (ii) assessing the need and relevance of
these alternatives to the functionality under develop, and
(iii) going forward from Navigation models to UI models to
check the accessibility of the UI related to these alternatives.
Thus, the accessibility of all the alternative navigation paths
that may compromise the desired functionality can be
evaluated within AO-WAD.

AO-WAD supports accessible Web applications design
by embedding Aspect-Orientated techniques into WE
development approaches to proper address the non-
functional, generic and “crosscutting” features of the
accessibility nature.

VIII. CONCLUSIONS AND FUTURE WORK
The application of the model-driven paradigm to the

domain of Web development has resulted in well-known
WE approaches, which can be particularly useful because of
the continuous evolution of Web 2.0 applications,
technologies and platforms. The new generation of Web
applications must offer user interfaces that enhance the
experience and access to all Web users. In this context, we
believe that WE approaches provide suitable models to
carry with the improvements required by the application
under development. In this paper we briefly introduce AO-
WAD, which provides complete support to accessibility
concerns by enriching WE models. Following OOHDM,
UWE and OOWS processes, in this work we focus our
efforts on the generalization of AO-WAD. We show that
AO-WAD is flexible enough to be embedded within any
WE approach, and therefore this can be a starting point that
propitiates industry adoption.

As future work, we will continue working to complete
the normalization of AO-WAD and validate its generalized
use to systematic developing of accessible Web
applications. Since, UWE and OOWS approaches provide
tools for partial/full automating their design and/or
implementation stages, we will analyze also the interaction
of AO-WAD with these tools.

REFERENCES
[1] Baresi L., Garzotto F., and Paolini P. From Web Sites to Web

Applications: New Issues for Conceptual Modeling. ER’2000
Workshop on Conceptual Modeling and the Web, LNCS
1921.Springer-Verlag, 2000.

[2] Chung, L. and Supakkul, S.: Representing FRs and NFRs: A
Goal-Oriented and Use Case Driven Approach. SERA (2004)
doi:10.1007/11668855_3

[3] Fons, J., Pelechena, V., Pastor, O., Valderas, P., and Torres,
V. Applying the OOWS Model-Driven Approach for
Developing Web Applications. The Internet Movie Database
Case Study. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L.
(eds.) WE, pp. 65-108. Springer (2008)

586Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

[4] Koch, N., Knapp, A., Zhang, G., and Baumeister, H.: UML-
based Web Engineering: An Approach based on Standards.
In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) WE,
pp. 157–191. Springer (2008)

[5] Martín, A., Cechich, A., and Rossi, G.: Comparing
Approaches to Web Accessibility Assessment. In: Calero, C.,
Moraga, M.Á., Piattini, M. (eds.) Handbook of research on
Web information systems quality, pp. 181–205. Information
Science Reference, Hershey (2008)

[6] Martín, A., Rossi, G., Cechich, A., and Gordillo, S.
Engineering Accessible Web Applications. An Aspect-
Oriented Approach. World Wide Web Journal, 13(4), 2010,
419-440 doi:10.1007/s11280-010-0091-3

[7] Martín, A., Mazalú, R., and Cechich, A. Supporting an
Aspect-Oriented Approach to Web Accessibility Design.
ICSEA (2010), Francia, doi:10.1109/ICSEA.2010.10

[8] Martín A., Cechich, A., and Rossi, G. Accessibility at Early
Stages: Insights from the Designer Perspective. W4A (2011),
India, doi: 10.1145/1969289.1969302

[9] Mazalú, R., Huenuman, F., Martín, A., and Cechich, A. AO -
WAD: A Supporting Tool to Aspect-Oriented Web
Accessibility Design. ASSE (2011), Argentina.

[10] Moreno, N., Romero, J., and Vallecillo, A. An Overview of
Model-Driven Web Engineering and the MDA. In: Rossi, G.,
Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:
Modelling and Implementing Web Applications. pp. 109-
155. Springer-Verlag, London (2008)

[11] Moreno, L., Martinez, P., and Ruiz, B. A MDD Approach for
Modeling Web Accessibility. WOST (2008), USA,
doi:10.1.1.163.9478

[12] Pastor, O., Gómez, Insfrán, E., and Pelechano, V.: The OO-
Method Approach for Information Systems Modeling: From
Object-Oriented Conceptual Modeling to Automated
Programming. Inf. Syst. 26(7): 507-534 (2001)

[13] Plessers, P., Casteleyn, S., Yesilada, Y., De Troyer, O.,
Stevens, R., Harper, S., and Goble C.: Accessibility: A Web
Engineering Approach. WWW (2005)
doi:10.1145/1060745.1060799

[14] Rossi, G. and Schwabe, D.: Modeling and Implementing Web
Applicactions with OOHDM. In: Rossi, G., Pastor, O.,
Schwabe, D., Olsina, L. (eds.) WE, pp. 109–155. Springer
(2008)

[15] Thatcher, J., Burks, M., Heilmann, Ch., Henry, S., Kirpatrick,
A., Lauke, P., Lawson, B., Regan, B., Rutter, R., Urban, M.,
and Waddell, C.: Web Accessibility - Web Standards and
Regulatory Compliance. Friendsof ED, USA (2006)

[16] De Troyer, O., Casteleyn, S., and Plessers, P.: WSDM: Web
Semantics Design Method. In: Rossi, G., Pastor, O., Schwabe,
D., Olsina, L. (eds.) WE, pp. 303–351. Springer (2008)

[17] Vilain, P., Schwabe, D., and Sieckenius de Souza, C.: A
Diagrammatic Tool for Representing User Interaction in
UML. UML (2000) doi:10.1007/3-540-40011-7_10

[18] W3C: Web Content Accessibility Guidelines 1.0. (WCAG
1.0). http://accessibility.w3.org/TR/WAI-WEBCONTENT/
(1999). Accessed 15 April 2009

[19] W3C: Web Content Accessibility Guidelines 2.0 (WCAG
2.0). http://accessibility.w3.org/TR/WCAG20/ (2008).
Accessed 25 January 2010.

[20] Wirfs-Brock, R., Wilkerson, B., and Wiener, L. Designing
Object–Oriented Software. Prentice–Hall, 1990.

587Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

