

An Evaluation Framework for Requirements Envisioning in Agile Methods

Waleed Helmy

Faculty of Computers & Information.

Cairo University

Cairo, Egypt

Amr Kamel

Faculty of Computers & Information.

Cairo University

Cairo, Egypt

Osman Hegazy

Faculty of Computers & Information.

Cairo University

Cairo, Egypt

w.helmy@fci-cu.edu.eg

a.kamel@fci-cu.edu.eg

o.hegazy@fci-cu.edu.eg

Abstract—A common agile practice is to perform some high-

level requirements envisioning early in the project to gather

and document business requirements during the initial phase

of the project. The goals of requirements envisioning are to

develop a common vision, identify the business goals, and

identify the initial requirements for the system at a high-

level. This paper presents an evaluation framework for the way

the requirements envisioning can be done in the agile methods.

Keywords-Requirements Envisioning; Agile Requirements

Envisioning, Envisioning in Agile Methods.

I. INTRODUCTION

Information system development methodologies refer to

a standard process followed in an organization to conduct all

the steps necessary to analyze, design, implement, and

maintain information systems [2]. They are developed to

assure that software systems met established requirements.

There are a number of methodologies used to develop and

improve the systems such as the traditional waterfall,

incremental development, prototyping, and spiral [13].

These methodologies impose a disciplined process upon

software development with the aim of making software

development more predictable and more efficient. They do

this by developing a detailed process with a strong emphasis

on planning aspired by other engineering methodologies.

However, these traditional systems development

methodologies sometimes fall short in the new business

environment [14]. They are too "heavy" to keep up with the

pace of new business software development projects.

In response to the problems of the traditional

methodologies, the agile methodology has evolved in the

mid-1990s. Highsmith and Cockburn in [12] wrote that

"what are new about agile methods is not the practices they

use, but their recognition of people as the primary drivers of

project success, coupled with an intense focus on

effectiveness and maneuverability. This yields a new

combination of values and principles that define an agile

world view".

While Nerur and Balijepally in [3] defined agile

methodologies as people-centric, that recognize the value of

skilled people and their relationships bring to software

development. They also explained in their paper that Agile

methods focus on providing high customer satisfaction

through three principles: quick delivery of quality software;

active participation of concerned stakeholders; and creating

and acting effectively toward changes. They added that big

upfront designs, plans and extensive documentation are of

little value to practitioners of agile methods. In [4] agile is

defined as a software development method that is people-

focused, communication-oriented, flexible (ready to adapt to

expected change at any time), speedy (encourage rapid and

iterative development of the product in small releases), lean

(focuses on shortening timeframe and cost and on improved

quality), responsive (reacts appropriately to expected and

unexpected changes), and learning (focuses on improvement

during and after product development).

However, this paper focuses only on the agile methods

and the way the requirements envisioning can be done in the

agile methods. A common agile practice is to perform some

high-level requirements envisioning early in the project to

help come to a common understanding as to the scope of

what you're trying to accomplish. The goals at this point are

to identify the business goals for the effort, develop a

common vision, and quickly identify the initial requirements

for the system at a high-level. This initial requirements

envisioning effort is on the order of hours or days, not

weeks or months, as we see on traditional projects.

The next section presents the agile software

development life cycle. Section III gives an overview on

agile requirements envisioning. Section IV discusses four

agile methods namely XP, Scrum, Feature Driven

Development, and Agile modeling. Section V presents an

evaluation framework for requirements envisioning in four

agile methods. The last section presents the research

conclusion.

II. AGILE SDLC

 Agile software development life cycle is comprised of

six phases: Iteration -1/Pre-Planning, Iteration 0/Warm Up,

Construction, Release/End Game, Production, and

Retirement [11]. Here is a description of each phase.

A. Iteration -1: Pre-Project Planning

This phase includes the following activities:

- Define the business opportunities

- Identify a viable for the project

- Assess the visibility

594Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Iteration 0/Warm Up: Project Initiation

The first week or so of an agile project is often referred

to as “Iteration 0” (or "Cycle 0"). The goal during this

period is to initiate the project by:

- Garnering initial support and funding for the

project.

- Starting to build the team.

- Setting up the environment.

C. Estimating the project: Construction Iterations

During construction iterations agilists incrementally

deliver high-quality working software which meets the

changing needs of our stakeholders. This can be achieved

by:

- Collaborating closely with both our stakeholders

and with other developers

- Implementing functionality in priority order

- Analyzing and designing

- Ensuring quality

- Regularly delivering working software

- Testing, testing, and yes, testing.

D. Release Iterations(s): The "End Game"

During the release iteration(s), also known as the "end

game", we move the system into production. There are

several important aspects to this effort:

- Final testing of the system.

- Rework. There is no value testing the system if

you don't plan to act on the defects that you

find. You may not address all defects, but you

should expect to fix some of them.

- Finalization of any system and user

documentation.

- Training. We train end users, operations staff, and

support staff to work effectively with our system

- Deploy the system

E. Production

The goal of the Production Phase is to keep systems

useful and productive after they have been deployed to the

user community. This process will differ from organization

to organization and perhaps even from system to system, but

the fundamental goal remains the same: keep the system

running and help users to use it.

F. Retirement

The goal of the Retirement Phase is the removal of a

system release from production, and occasionally even the

complete system itself, an activity also known as system

decommissioning. Retirement of systems is a serious issue

faced by many organizations today as legacy systems are

removed and replaced by new systems. You must strive to

complete this effort with minimal impact to business

operations. If you have tried this in the past, you know how

complex it can be to execute successfully.

III. AGILE REQUIREMENTS ENVISIONING

Agile requirements activities are evolutionary (iterative

and incremental) and highly collaborative in nature.

Initially, requirements are explored at a high level via

requirements envisioning at the beginning of the project and

the details are explored on a just-in-time (JIT) basis via

iteration modeling and model storming activities. The

strategy is to take advantage of modeling, which is to

communicate and think things through without taking on the

risks associated with detailed specifications written early in

the lifecycle, a traditional practice referred to as "Big

Requirements Up Front" [1]. For the first release of a

system you need to take several days, with a maximum of

two weeks for the vast majority of business systems, for

initial requirements and architecture envisioning. There are

several models to envision the requirements which are:

High-level use cases (or user stories) - The most detail that

we would capture would be point form notes for some of the

more complex use cases, but the majority just might have a

name. The details are best captured on a just-in-time (JIT)

basis during construction.

User interface flow diagram - This provides an overview

of screens and reports and how they're inter-related.

User interface sketches - Sketch out a few of the critical

screens and reports to give your stakeholders a good gut

feeling that you understand what they need.

Domain model - A high-level domain model shows major

business entities and the relationships between them. Listing

responsibilities, both data attributes and behaviors, can be

left until later iterations.

Process diagrams - A high-level process diagram that

shows some of the critical processes, are likely needed to

understand the business flow.

Use-case diagram - Instead of a high-level process diagram

you might want to do a high-level use case diagram instead.

IV. AGILE METHODS

Agile methods, generally, promote a disciplined project

management process that encourages frequent inspection

and adaptation, a leadership philosophy that encourages

teamwork, self-organization and accountability, a set of

engineering best practices that allow for rapid delivery of

high-quality software, and a business approach that aligns

development with customer needs and company goals [9].

A. Extreme Programming

XP uses story cards for elicitation [5]. A user story is a

description of a feature that provides business value to the

customer. Use cases, on the other hand, are a description of

interactions of the system and its users and do not

mandatory have to provide business value.

Before story cards can be written, customers have to

think about what they expect the system to do. This process

can be seen as brainstorming. Thinking about a specific

functionality leads to more ideas and to more user stories.

595Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Every story is discussed in an open-ended way before

implementation. Initially, developers ask for enough details

to be able to estimate the effort for implementing the story.

Based on these estimates and the time available, customers

prioritize stories to be addressed in the next iteration. XP

emphasizes writing tests before coding. Acceptance tests are

defined by the customer and are used to validate the

completion of a story card. XP is based on frequent small

releases. This can be compared with requirements review

and with evolutionary prototyping.

B. Scrum

The main Scrum techniques are the product backlog,

sprints, and daily scrums [5]. With regard to Requirements

Engineering the product backlog plays a special role in

Scrum. All requirements regarded as necessary or useful for

the product are listed in the product backlog. It contains a

prioritized list of all features, functions, enhancements, and

bugs. The product backlog can be compared with an

incomplete and changing (a kind of “living”) requirements

document containing information needed for development.

For each sprint (= 30 day development iteration), the highest

priority tasks from the backlog are moved to the sprint

backlog. No changes are allowed to the sprint backlog

during the sprint. I.e. there is no flexibility in the

requirements to be fulfilled during a sprint but there is

absolute flexibility for the customer reprioritizing the

requirements for the next sprint. At the end of a sprint,

a potentially shippable product is delivered and a sprint review

meeting is held that demonstrates the new functionality to

the customer and solicits feedback [10]

C. Feature Driven Development

As the name implies, features are an important aspect of

Feature Driven Development (FDD). A feature is a small,

client-valued function. Features are to FDD as use cases are

to the Rational Unified Process (RUP) and user stories are

to XP – they’re a primary source of requirements and the

primary input into your planning efforts.

FDD is a short iteration process for software

development focusing on the design and building phase

instead of covering the entire software development process

[6]. In the first phase, the overall domain model is

developed by domain experts and developers. The overall

model consists of class diagrams with classes, relationships,

methods, and attributes. The methods express functionality

and are the base for building a feature list. A feature in FDD

is a client-valued function. The items of the feature list are

prioritized by the team. The feature list is reviewed by

domain members [7]. FDD proposes a weekly 30-minute

meeting in which the status of the features is discussed and a

report about the meeting is written. Reporting can roughly

be compared with requirements tracking.

D. Agile Modeling

The basic idea of Agile Modeling (AM) is to give

developers a guideline of how to build models that help to

resolve design problems but not ’over-build’ these models

[8]. Like XP, AM points out that changes are normal in

software development. AM does not explicitly refer to any

RE techniques but some of the practices support several RE

techniques (e.g., tests and brainstorming). AM highlights

the difference between informal models whose sole purpose

is to support face-to-face communication and models that

are preserved and maintained as part of the system

documentation. The later are what is often found in RE

approaches.

V. AN EVALUATION FRAMEWORK

Table 1 presents an evaluation framework for

requirements envisioning in agile methods. The framework

compares four agile methods: Scrum, extreme

Programming, Feature Driven Development, and Agile

Modeling Driven Development with respect to three

evaluation criteria: Activities, Participants, and Time Frame.

TABLE 1: AN EVALUATION FRAMEWORK FOR REQUIREMENTS
ENVISIONING IN AGILE METHODS

 Criteria

 Agile

Method

Activities

Participants

Time Frame

XP

Initial Requirements

Modeling, Initial

Architecture

Modeling

All Team

Members

Hours

or

days

Scrum

X

All Team

Members

Hours

 or

days

FDD

Build an Object

Model

All Team

Members

Hours

 Or

days

AMDD

Initial Requirements

Envisioning, Initial

Architecture

Envisioning

All Team

Members

Hours

 Or

 days

 XP encompasses the initial requirements modeling and

initial architectural modeling aspects of the agile software

development lifecycle. This phase includes development of

the architectural spike and the development of the initial

user stories. From a requirements point of view it suggests

that you require enough material in the user stories to make

a first good release and the developers should be sufficiently

confident that they can’t estimate any better without actually

596Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

implementing the system. Every project has a scope,

something that is typically based on a collection of initial

requirements for your system. Although the XP lifecycle

does not explicitly include a specific scope definition task it

implies one with user stories being an input into release

planning. User stories are a primary driver of the XP

methodology – they provide high-level requirements for

your system and are the critical input into your planning

process. The implication is that you need a collection of

user stories, anywhere from a handful to several dozen, to

get your XP project started. The second aspect of the

exploration phase focuses on your system architecture. The

architecture within an XP project is less formal than in

traditional methodologies, with a preference for keeping

your system flexible – XP recommends that you embrace

change, whereas architecture-driven approaches advise you

to build the skeleton the system first because some things

are difficult to change. The XP approach is to identify a

metaphor that describes how you intend to build your

system. The metaphor acts as a conceptual framework,

identifying key objects and providing insight into their

interfaces. The metaphor is defined during an architectural

spike early in the project, during the first iteration or during

a pre-iteration that is sometimes referred to as a zero-feature

release (ZFR).

In scrum project life cycle, there are no structured

activities for requirements envisioning. The requirements

are treated like a prioritized stack, pulling just enough work

off the stack for the current iteration. At the end of the

iteration, the system is demoed to the stakeholders to verify

that the work that the team promised to do at the beginning

of the iteration was in fact accomplished. But, where does

the product backlog come from? It is actually the result of

initial requirements envisioning early in the project.

An FDD project starts by building overall domain

model to envision the requirements. The goal of envisioning

is to identify the scope of the effort, the initial architecture,

and the initial high-level plan. As with other agile software

development processes, systems are delivered incrementally

by FDD teams.

The envisioning activity in agile modeling includes two

main sub-activities, initial requirements envisioning and

initial architecture envisioning [4]. These are done during

iteration 0, iteration being another term for cycle or

sprint. The envisioning effort is typically performed during

the first week of a project, the goal of which is to identify

the scope of your system and a likely architecture for

addressing it. To do this you will do both high-level

requirements modeling and high-level architecture

modeling. The goal isn't to write detailed specifications that

prove incredibly risky in practice, but instead to explore the

requirements and come to an overall strategy for your

project. Finally and as shown in table 1, we need to take

several days, with a maximum of two weeks for the vast

majority of business systems, for initial requirements and

architecture envisioning.

VI. CONCLUSION

Agile requirements envisioning aims to develop a high

level understanding of the project. This allows the initial

identifications of requirements for the system at the

beginning of the project. This paper presented an evaluation

framework for requirements envisioning in four agile

methods: XP, Scrum, Feature Driven Development, and

Agile Modeling. The results showed that clear specification

of activities in the agile requirements envisioning process is

missing and there is a lack of a set of activities and

techniques that practitioners can choose from. Hence, there

is a need to develop a structured approach that clearly

outlines the activities of the agile requirements envisioning

process and suggests techniques or practices that can be

used.

REFERENCES

[1] Ambler, S., "Examining the "Big Requirements Up Front

(BRUF) Approach",

http://www.agilemodeling.com/essays/examiningBRUF.htm,

retrieved: October, 2012.

[2] Hoffer, H., George, J., and Vlacich, J., "Modern Systems

Analysis and Design", Pearson Prentice Hall, 2006.

[3] Nerur, S. and Balijepally, V., "Theoretical reflections on agile

development methodologies", Communication of the ACM,

vol. 50, pp. 79-83, 2007.

[4] Qumer, A. and Sellers, B., "An evaluation of the degree of

agility in six agile methods and its implacability for method

engineering”, Information and Software Technology, 2007.

[5] Eberlein, A., Maurer, F., and Paetsch, F., "Requirements

Engineering and Agile Software Development", Proceedings

of the Twelfth International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises,

2003.

[6] Pekka, A., Outi, S., Jussi, R., and Juhani, W., "Agile software

development methods - Review and analysis", Publications,

No. 478, 2002.

[7] Peter, C., Eric, L., and Jeff, L., "Java Modeling in Color with

UML", Prentice Hall PTR, Chapter 6, 1999.

[8] Scott, W., "Agile Modeling", John Wiley & Sons, 2001.

[9] http://en.wikipedia.org/wiki/Agile_software_development,

retrieved: October, 2012.

[10] Meng, X.,Wang, Y., Shi, L., and Wang, F., "A process pattern

Language for Agile Methods", 14 th Asia-Pacific Software

Engineering Conference, 2007.

[11] Ambler, S., "The Agile System Development Life Cycle",

www.ambysoft.com/essays/agileLifecycle.html, retrieved:

October, 2012.

[12] Highsmith, J. and Cockburn, A., "Agile Software

Development: The Business of Innovation", IEEE Computer,

Vol. 34, No. 9, pp. 120 – 127, 2001.

[13] Sommerville, I., "Software Engineering", Addison

Wesley, 7th edition, 2004.

[14] Seyam, M. and Galal-Edeen, G., "Traditional versus Agile:

The Tragile Framework for Information Systems

development", the International Journal of Software

Engineering (IJSE), Vol. 4, No. 1, pp. 63-93, ISSN: 1687-

6954, 2011.

597Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

