
The Dilemma of Tool Selection for Agile Project Management

Gayane Azizyan
Ericsson AB

Stockholm, Sweden
gayane.azizyan@ericsson.com

Miganoush Magarian
SAP Innovation Center

Potsdam, Germany
miganoush.magarian@sap.com

Mira Kajko-Mattsson
KTH Royal Institute of Technology

Stockholm, Sweden
mekm2@kth.se

Abstract—Even if agile project management tools grow in
number and complexity, companies still face difficulties in
selecting tools that fit their needs. One such company is
Company A, a multinational company that has experienced a
great need for a tool supporting their multi-layered
management of requirements and projects. For this reason,
they commissioned us to perform a detailed analysis of their
tool usage needs, placing much stress on adherence to their
processes and all the roles involved. In this paper, we present
our journey towards selecting the right tool for Company A
and the problems encountered when trying to reach our goal.
The tool selection process was based on (1) a study of tool
features such as usability and extensibility, and (2) observation
of the company’s process and elicitation of the company’s tool
usage needs. Our results show that even if there are many tools
on the market, it was still difficult to find an appropriate tool.
The reasons were the following: (1) a study of general tool
features could not provide enough information to account for
the company’s needs, (2) even people possessing the same role
in the company prioritized different features differently;
hence, it was difficult to utilize their feedback for selecting a
tool, and, finally, (3) even after having observed the company’s
process, it was still difficult to find an adequate tool. The tools
simply could not support the company’s multi-level
requirements management process. Moreover, they suffered
from poor usability as well as imposed their own terminology
and process. Overall, the agile tools studied were not a good
match for supporting the company’s agile project management
needs.

Keywords-components; agile; tool; process; adoption

I. INTRODUCTION
 Agile methods sneaked into Company A’s overall
processes in an unofficial way about four years ago. No
official decision for introducing them was made. Neither
was there any process facilitating its introduction. Different
teams simply started using agile practices on their own,
mainly for implementation-level activities, such as tracking
the status of tasks. With time, however, even management
started using agile practices for managing and tracking
requirements. As tool support, they mainly used MS Excel,
Word, and PowerPoint for storing and managing
requirements and product backlogs and MS PowerPoint for
managing projects. The development teams, on the other
hand, used simple physical tools such as paper, sticky notes,
and whiteboards.

As the use of agile methods grew at Company A, the
company experienced that the simple tools were insufficient
for and unsupportive in managing large numbers of
requirements and projects. Hence, Company A expressed a
great need for a better tool. For this reason, they
commissioned us to help them with agile tool selection. Our
task was to perform a detailed analysis of their tool usage
needs where great stress would be placed on adherence to
their processes and all the roles involved.

In this paper, we present the results of our attempt to find
an appropriate agile project management tool to meet
Company A’s tool support needs. The company wishes to
stay anonymous in this paper, and therefore, we use a
fictitious name, Company A, when referring to it. The
remainder of this paper is organized as follows. Section 2
presents the research steps conducted during our study.
Section 3 gives a brief description of the company. Section
4 lists and describes the criteria used for evaluating
currently existing tools. Section 5 presents the tool
evaluation results. Sections 6 and 7 describe the company
needs based on our observations of its processes and current
state of practice. Finally, Section 8 concludes with final
remarks.

II. RESEARCH STEPS
Our research was conducted in six main steps: (1)

Literature study, (2) Company need identification, (3) Tool
selection, (4) Tool evaluation, (5) Company observation, and
(6) Analysis of results.

During the Literature study step, we went through the
existing literature dealing with tool evaluations and
adoptions in agile contexts. Although we looked through
many scientific and non-scientific sources, we did not find
any objective, detailed evaluations of agile project
management tools. The articles we found were limited to
high-level discussions of classes of agile tools to be used in
different team types [1], tool evaluations aimed at meeting
needs of some specific company [2], and tool evaluations
solely focused on open-source tools [3]. Other resources
included lists of agile tools, as well as some general
discussions of their usage [4]-[6]. The Literature study step
resulted in awareness that our study was unique. We could
neither relate it nor base it on somebody else’s results and
experience. Based on our findings in this step, we
understood that companies met their agile tool needs either

605Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

by developing a custom tool [7][8], or by selecting an
existing tool primarily based on factors such as the tool’s
popularity [9][10].

In the Company need identification step, we studied
Company A and its agile environment. Our goal was to get
acquainted with the company’s process and tool support. To
achieve this, we studied the company’s processes, projects,
and product documentation, as well as had a series of
meetings with three company representatives possessing the
roles of a Project Manager, a Scrum Master, and a Line
Manager. This step resulted in the identification of a
preliminary list of high-level tool support requirements and
provided a basis for defining tool properties. To ensure that
we had an exhaustive list of such properties, we made an
additional literature study during which we elicited
requirements that were imposed by Scrum practices [2].
Altogether, we collected 21 properties. We presented them
to the company representatives and got them accepted as
tool evaluation criteria to be used in the Tool evaluation
step. The criteria are presented in Section 4.

In the third step, Tool selection, we looked through
agile tools available on the market and selected six tools for
a detailed study. The selection was influenced by the
following criteria: (1) the company’s interest in particular
tools, (2) tool popularity [6][11][12], (3) support for the
agile methods used at the company, (4) deployment options,
(5) availability of integration options with other systems, (6)
licensing, and (7) supported platforms. The selected tools
were VersionOne [13], Scrumworks [14], Rally [15], Scrum
Desk [16], Silver Catalyst [17], and Agilo [18]. Table 1
briefly summarizes their properties.

The Tool evaluation step was conducted in two sub-
steps. First, the authors of this paper made their own
evaluation of the selected tools. The goal was to rate the
tools according to the selected criteria and gather an in-
depth understanding of how well the chosen tools supported
the criteria. The results of this sub-step would then be
matched to the company’s tool needs to be elicited in the
next sub-step, during which the company representatives
weighed the criteria by assigning a quantitative measure of
how important each criterion was for the company’s needs.

A range of 0-10 was used for rating both the tools and the
criteria. We chose this wide range of values in order to
achieve richer granularity in the tool evaluation results, and
to have more options for making our choice

In the first sub-step, when doing our own tool
evaluation, we used demo versions of the selected tools.
Here, we studied their documentation and executed sample
test projects. We then individually rated each evaluation
criterion for every tool. Finally, we discussed the ratings,
removed all types of inconsistencies and ensured that we
reached agreement on every rated value.

After reaching consensus on the rated values, we
calculated the total and total normalized ratings for every
tool. Here, as given by (1), we first summed up the rating
t
iu of each tool t over all criteria to yield a total rating tU

for each tool t. Further, as given by (2), we divided the total
ratings by the number of criteria (N), to yield a total
normalized rating .

 ∑= t
i

t uU (1)

 UN
t =

Ut

N
 (2)

The first sub-step resulted in a list of ratings for each
criterion, which was used as a base for the evaluation in the
second sub-step.

The second sub-step was conducted in form of
interviews, with seventeen company representatives
possessing the roles of Developer, Scrum Master, Designer,
Agile Project Manager, Program Manager, Product
Manager, Development Manager, and Line Manager.
During the interviews, we first presented and explained the
list of tool evaluation criteria. The representatives then
assigned their weights to each criterion.

After having collected all the data from the company
representatives, we summed up the assigned weights to

TABLE I. SUMMARY OF THE EVALUATED TOOLS

Tool name Methods Deployment Integration License Platforms

VersionOne
Scrum, XP,
DSDM

Hosted,
Local

Connectors for a wide range of development
tools. [19] Commercial

Windows, Linux,
Mac OS X

ScrumWorks Pro Scrum
Hosted,
Local

Bugzilla [20], JIRA [21], Eclipse IDE[22], MS
Excel [23] Commercial

Windows, Unix
Mac OS X

Rally Scrum
Hosted,
Local

Connectors for a wide range of development
tools. [24]

Commercial,
Free

Windows, Linux,
Mac OS X

ScrumDesk Scrum
Hosted,
Local

Microsoft Team Fuoundation Server[25], Mantis
[26]

Commercial,
Free Windows

SilverCatalyst
Scrum, XP, FDD,
Kanban.

Hosted,
Local SVN [27], Trac [28], Wikis

Commercial,
Free

Windows, Linux,
Mac OS X

Agilo Pro Scrum
Hosted,
Local Trac, SVN, Eclipse IDE Free

Windows, Linux,
Mac OS X

606Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

calculate average weights . The goal was to
calculate the final rating of each criterion of tool t
according to (3). Here t

iu is the rating assigned by us in the
first sub-step.

10

ic
t
it

i

wu
r

×
= (3)

After studying the results, we realized that the second

sub-step proved to be inadequate for appropriately
identifying the company’s needs. First, we observed that
different roles and personalities had great impact on the
assigned weights. Even interviewees with the same role
provided completely different ratings. Second, due to their
narrow view of the company’s process, and due to their
unawareness of the overall tool requirements, the
interviewees had trouble in quantifying their needs by
means of numbers.

All this made it meaningless to calculate averages. We
became aware that this step would not help us in identifying
the company’s needs to be fulfilled by the selected tool. A
deeper analysis was required. This had led us to the creation
of the next research step, the Company observation step.

During the Company observation step, we conducted a
detailed on-site observation of the company’s agile process.
The observation lasted for two months, during which we
observed the process, conducted interviews, and studied the
company’s product documentation. All these tasks were
performed in parallel. We followed the executed process
and attended several meetings, such as Scrum of Scrums
meetings, daily meetings, and management meetings. We
conducted interviews with the company representatives, the
same representatives that were involved in the Tool
evaluation step.

The interviews took the form of informal discussions
that were guided by a semi-formal and semi-structured
questionnaire. We chose this over a more formal, structured
approach because we felt that most of the interviewees did
not have a clear a priori picture of the setbacks and
hindrances in their daily work. Hence, informal discussions
served better for studying the daily work, identifying pain
areas, and eliciting wishes for improvements. The
questionnaire used in this step is presented in Table 2. Last
but not least, we studied the internal company documents,
such as the product backlog, documents describing new
requirements, process documentation, and the like. This had
helped us to improve the quality and effectiveness of our
observations and interviews.

Throughout the Company observation step, we
continuously analyzed the gathered information and drew
out a diagram of the existing process, its inputs, outputs, the
roles involved, the tools used, and the difficulties in the tool

TABLE II. COMPANY INTERVIEW QUESTIONNAIRE

1 How do you work with the existing system?
2 What do you like about the existing system? What works well for

you?
3 What pain areas do you see in your daily work? What is

inconvenient or annoying for you?
4 Is there anything you would like to have changed or improved?

How?
5 Is there anything you would like to have added to the tools you are

using? Any specific features or capabilities?

usage. As a result of this step, we identified six main tool
support needs. These six needs served as input to the final
step, Analysis. Here we tried to match these needs with the
features of the evaluated agile tools in an attempt to find
adequate tool support for the company. The results of the
Analysis step are presented in Section 7.

III. COMPANY DESCRIPTION
Our case study was conducted at Company A, which is a

large software development company with a complex
structure. The department we collaborated with is spread
over three locations: Stockholm in Sweden, Shanghai in
China, and Rijen in Holland. The different sites collaborate
on one large project. The company is hierarchically
structured into six different nodes working on different
product parts where each node is further divided into
different teams spread over several locations. In total, the
department has 85 people that are distributed over eight
teams, out of which four are situated in Stockholm. It is
these four teams that were involved in our case study.

Company A, just as any other company, has many
different roles that are involved in management and
development. By a “role” we mean a set of responsibilities
that are assigned to an individual or a group of individuals.
Below, we list and briefly describe the roles that are of
interest to this paper. We would like to point out, however,
that some of these roles lacked formal definitions at the
company. For this reason, we describe them just as we had
understood them. In our descriptions, we only list the
responsibilities that lie within the scope of this paper.
• Program Manager responsible for the operational steering

of activities within a program and accountable for
deliveries. This role is also responsible for promoting
agile ways of working, for release planning, keeping
progress visible, as well as planning, assigning and
following the program budget.

• Solution Product Manager (SPM) responsible for
strategic planning, pricing, commercial packaging,
marketing, and setting product and professional service
requirements. This role acts as a business builder and
maintains a competitive position for the product.

• Solution Architect responsible for ensuring that the
product is scalable and reusable.

• Agile Project Manager (APM) responsible for prioritizing
and managing the product backlog.

607Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

• Release APM role corresponding to an APM with the
added responsibility of having an overall understanding of
the product specifications, as well as presenting the
product to the business owners.

• User eXperience Designer (UXD) corresponding to any
person qualified in User eXperience Design [29].

• Developer corresponding to any development team
member.

• Scrum Master responsible for maintaining and steering
the Scrum process.

• Line Manager responsible for a particular product line.

IV. EVALUATION CRITERIA
The twenty-one criteria that were used for evaluating the

tools are the following:
• Extensibility referring to whether the tool can be
modified or extended. Here, we evaluated whether a tool
provided access to the source code, and whether it was
offered on a commercial or open source license.
• Usability concerning the general usability of the tool.
Here, we rated the tools solely for their ease of use, also
taking into account whether it was necessary to study tool
documentation and tutorials.
• Connectivity describing the connectors, or plug-ins,
provided by the tool vendors such as Integrated
Development Environments (IDEs), bug-tracking systems
or traditional project management tools. Here, we evaluated
the availability of such connectors; we also took into
account both their number and variety.
• Searching referring to the searching capabilities of the
tool. Here, we evaluated the availability of searching
options, taking into account the searching factors.
• Grouping standing for the capability to group items in a
product backlog. We evaluated whether the tool enabled
grouping of product backlog items.
• Simultaneous editing implying whether multiple users
could simultaneously edit the same artifact in the tool.
While this might seem a basic requirement for tools, we still
consider it mainly due to the absence of such options in
basic tools such as spreadsheets used for storing backlogs.
• Story status tracking referring to the opportunity to
track the status of a user story. Here, we evaluated whether
the tool allowed to record progress of the story. The status
could simply be represented as a string,
• Group status tracking enabling grouping of product
backlog items. We evaluated whether it was possible to
track the status of the group.
• Overall status tracking referring to the options of
viewing the overall project status. This could imply a high-
level summary view of the Sprint backlogs, or a chart
showing the number of completed product backlog items
over time. For this criterion, we evaluated whether the tool
provided feedback on project status and what kind of status
reports it generated.

• Sorting/Filtering standing for the sorting and filtering
options. Here, we evaluated whether the tool provided
sorting and filtering services and whether it could sort by
several criteria and filter by typing in keywords.
• Sprint backlog dealing with the ability to create and
manage a Sprint backlog. Here, we evaluated whether it was
possible to prioritize and order Sprint backlog items.
• Estimation concerning the estimation ability of user
stories and tasks. For this criterion, we evaluated whether it
was possible to enter estimations of user stories and tasks,
and how flexible the estimation measures were.
• Stories. Here, we evaluated the options offered for
creating and describing user stories. Specifically, we
evaluated whether it was possible to group stories into epics.
• Tasks referring to the tasks required for implementing a
user story. We evaluated whether it was possible to break
down user stories into smaller tasks in a Sprint backlog.
• Testing. Here, we evaluated the support for testing tasks.
This could be realized in form of connectors to testing tools
or by enabling the creation of special testing tasks.
• Teams referring to team management. For this criterion,
we evaluated whether it was possible to create teams within
the tool, assign team members, and make changes to the
team capacity over time.
• Planning covering the ability to support Sprint planning,
that is, selecting items from the product backlog and
entering them in a new Sprint. We evaluated whether this
was possible, and whether the capacity of the created Sprint
was automatically matched to the team assigned to that
Sprint.
• Progress referring to the status of the story or task on a
greater level of detail. Here, we evaluated whether the tool
enabled entering the amount of work performed on a story
or task, and whether it was also possible to see how much
work remained.
• Board covering the provision of a virtual task board for
storing user stories and tasks. Here, we evaluated the
availability of a task board, and, if so, whether it was
interactive and whether it was possible to drag and drop
tasks and user stories on the board.
• Burndown describing whether the tool included Sprint
burndown charts, whether they were updatable, and how
visually clear they were.
• Remote workplace relating to the opportunity to access a
tool remotely. Most often, this implies that a tool needs to
be deployed as a web application so that the user can access
the application even outside the office network. Here, we
evaluated whether such an opportunity was available.

V. TOOL EVALUATION
In this section, we present the tool evaluation results. We

first present the results of our evaluation according to the
twenty-one criteria described in the previous section. We
then describe the elicitation of the company’s tool needs and
motivate why it became unsuccessful.

608Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

V.1 Our Own Tool Evaluation
As a result of our evaluation, we discovered that all the

evaluated tools focused on team-level rather than
management-level aspects. The tools included features such
as advanced virtual task boards for facilitating development
within the teams, but provided only rudimentary
requirements and project management support. Moreover,
tools covering more features were complicated to use.

The results of our tool evaluation are summarized in
Figure 1 and Table 3. The evaluation had led us to a number
of conclusions. First, we noticed that the tools were targeted
towards Scrum Masters and development teams rather than
managers. Five out of the six tools studied provided virtual
task boards, as well as possibilities to break down user
stories into more detailed tasks and functions for storing and
managing the tasks.

The second, more important conclusion concerned the
usability of the tools studied. Tools with higher usability
offered less features, and tools which provided many
features had a notably lower usability. This can be seen in
the pivot chart shown in Figure 2 where the ratings of
VersionOne and Silver Catalyst are presented. On average,
VersionOne provides more features such as Connectivity,
Grouping, and Group status tracking, while Silver Catalyst
has a rating of 0 for several criteria. However, VersionOne
has a usability rating of 5, which is much lower compared to
the rating of Silver Catalyst, which is 10. It took us great
effort to get accustomed to working with VersionOne due to
its many features and customization options. Silver Catalyst,
on the other hand, had a very simple and intuitive interface
that was pleasant to use.

V.1 Elicitation of Company’s Tool Needs
During the elicitation of the company’s tool needs, the

company representatives assigned weights to each criterion.
After studying their feedback, however, we had to reject all
the results achieved in this step, for the following reasons.
First, it became clear that even interviewees with the same
role provided sometimes contradictory ratings. Second, due
to their limited view of the company’s process and
unawareness of the overall tool requirements, the
interviewees had trouble in quantifying their needs by
means of numbers.

Since the ratings provided by the company
representatives strongly varied, it is meaningless to show
them all in this paper. For illustrative purposes, however, we
show three sample responses in Table 4 and Figure 2. Table
4 shows the weights and average weights assigned to all the
criteria by three different Scrum Masters whereas Figure 2
shows a pivot chart comparing the two contradicting
weights assigned by two different Scrum Masters.

Looking at the presented values makes it obvious that
different people possessing the same role assigned weights
in radically different ways. For example, for the Progress

Figure 1. Summary chart of the total normalized rating t

NU for each tool

Figure 2. Comparison of the ratings of VersionOne and Silver Catalyst

TABLE III. RATINGS, TOTAL RATINGS, AND TOTAL NORMALIZED
RATINGS FOR ALL CRITERIA AND ALL TOOLS

609Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

criterion (see Table 4), Scrum Master A assigned a weight
of 0, while Scrum Master B assigned a weight of 10. The
average weight for the Progress criterion is 5.3. This does
not in any way reflect the company’s overall need; neither
does it reflect the individual needs. For instance, Scrum
Master A saw no tool support need for tracking the team’s
progress since his team members were good at reporting the
progress during stand up meetings every day, while Scrum
Master B’s team members were not good at reporting their
progress and, therefore, it was necessary to track it via a
tool. A similar conclusion can be made for the overall Status
Tracking criterion.

It is interesting to compare the Progress criterion with
the Sorting/Filtering criterion. The average ratings for these
criteria were nearly the same – 5,3 and 5,7, respectively.
However, unlike the greatly varying ratings assigned to the
Progress criterion, all three Scrum Masters assigned
weights of nearly the same value (5, 6, and 6) for
Sorting/Filtering. Therefore, in this case we may draw a
conclusion that the Sorting/Filtering criterion is of roughly
the same importance to all Scrum Masters, and this is
accurately reflected in the final average rating of 5,7. In
contrast, the actual importance of the Progress criterion was
lost after calculating its average value.

Calculating average weights for people of different
roles, such as APMs and Scrum Masters, resulted in even
less meaningful weights. Each role only saw the problems
and requirements in their own area and daily work, and
therefore, while rating they did not pay heed to the overall
process and needs. In some cases, they made incorrect
assumptions about the needs of others. For example,
managers gave high ratings to virtual task boards, deeming
it an important feature for the teams to have, while in reality
the teams preferred to work with physical tools such as
whiteboards. Thus, it became especially meaningless to
calculate average ratings for different roles.

TABLE IV. WEIGHTS ASSIGNED BY THREE SCRUM MASTERS

The conclusion drawn from these results was that a
similar evaluation method could not, and should not be used
for determining the company’s needs and for selecting tools.

VI. COMPANY OBSERVATION
In this section, we describe the results of our company

observation. We first describe the status of the agile process
at Company A. We then evaluate the process using the
results of our interviews and our own observations.

VI.1 Status of the Agile Development Process at Company A
The overall process at Company A consisted of four

main phases, (1) Requirements definition, (2) Requirements
management, (3) Project management, and (4)
Development. Figure 3 presents a simplified diagram of the
company’s process. We gathered an understanding of this
process from the replies to interview Question 1 presented
in Table 2, as well as our own direct observations.

In the Requirements definition phase, new requirements
were brought in from the customers in form of high-level
specifications. They were all described according to a
predetermined template and recorded in an MS PowerPoint
file. For the sake of following the course of events and their
related documents, we call this file the Requirements
Description File. No specific reason was provided to why
MS PowerPoint was being used. However, our impression
was that the Program Managers, SPMs, APMs and Release
APMs involved in the creation of requirements were
accustomed to using MS PowerPoint. Once requirements
had been created, they were then sent to the Release APM
for approval

In the Requirements management phase, the new
requirements were discussed, prioritized and decided upon.
First, roles such as SPMs, Business Owners, APMs, UXDs,
the Solution Architect, and the Release APM attended
meetings during which the requirements were discussed and
prioritized. To provide a basis for the meetings, the
requirements from the Requirements Description File were
put on a list that was stored in an MS Word document. We
call this list New Requirements List. It contained a table
with the requirement ID, a brief summary of some of the
information taken from the Requirements Description File,
and the requirement owner’s name.

Once prioritization had been made, the prioritized
requirements were manually added to a list of the existing
requirements, which was stored in an MS Excel spreadsheet.

Figure 3. Overview of the company process

610Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

We call this list Prioritized Requirements List. It contained
hundreds of requirements, along with a summary of
information, such as, for instance, which requirements were
defined for which customers. Still, the detailed descriptions
of the requirements were stored in the Requirement
Description Files in MS PowerPoint. Thus, at the end of this
phase information about the same requirements was
recorded in three different places: Requirement Description
Files, New Requirements List and Prioritized Requirements
List.

In the Project management phase, APMs and
development teams broke down the requirements from the
Prioritized Requirements List into lower-level, functional
tasks. These tasks were then added to a list stored in another
MS Excel spreadsheet, which we call Product Backlog. No
links were provided to relate the backlog items to the high-
level requirements, and vice versa. The backlog items were
continuously updated, edited, and prioritized by different
teams on different nodes. To make this possible, the
Product Backlog was stored on a shared network drive, so
that everyone on the internal company network could access
it. At this point, requirements were described in four
different places – the three files mentioned above and the
Product Backlog.

Although the Product Backlog was accessible to
everyone working on it, the company still encountered
problems prioritizing the backlog items. In an ideal
scenario, the prioritization should be made on a requirement
level. In the company’s scenario, however, this was not the
case. Dependencies between different backlog items
belonging to different requirements strongly affected the
order in which the individual backlog items needed to be
implemented. This complicated the process of prioritizing
the requirements and monitoring their fulfillment. To add
zest to it, some Product Backlog items belonged to two
different requirements, creating many-to-many
relationships.

In the Development phase, APMs together with the
teams of different nodes performed Sprint planning. Here,
they selected the highest prioritized items from the common
Product Backlog, agreed on which node would implement
them and included them in the team’s respective Sprint
Backlogs. The Sprint Backlog items were then recorded on a
piece of paper affixed on a wall. They were further broken
down into tasks and written on sticky notes. The
information about the actual work that was done by the
teams was not recorded anywhere else other than on the
walls. At the end of the Development phase, the information
about one requirement was stored in six different places,
namely the four files that had been created at the end of the
Requirements management phase, and two new places – the
Sprint Backlog and sticky notes.

VI.2 Our Observations

The above-described scenario entailed a number of
difficulties when managing and maintaining hundreds of

requirements stored in different places. Using the feedback
from Question 3 in Table 2 (the question dealing with the
pain areas of the company’s process), we conclude that
there were two main problems (1) lack of visibility and (2)
lack of traceability.

Lack of visibility implied that different roles, especially
the managerial ones, had no insight into the overall agile
process. Lack of traceability implied that there was no link
between the six artifacts storing information about the
requirements. Both problems made it impossible to track the
status of the requirements and to make sure that they had
been completed.

The usage of different files for storing requirements
created big difficulties. The files included hundreds of
items, and it was difficult to detect similar requirements,
group related requirements, as well as find their
relationships, conflicts and duplicates. It was difficult to
navigate among the files in order to get a complete overview
of the requirements. In many cases, the contents in the files
were not consistent. Changes made to one file were not
always reflected in other files.

Many issues arose while using the Product Backlog,
since it did not support simultaneous editing. Several nodes,
teams, and APMs used the same Product Backlog, and they
were thus unable to make any changes while somebody else
was editing it. This naturally led to progress hindrance and
frustration.

Using the answers to Question 2 in Table 2 (dealing with
the satisfaction with the current process), we discovered that
the teams saw no problems with the process and its
supporting tools. They were quite satisfied with it. They did
not wish to change the process and to replace the physical
walls with virtual task boards. This, however, was not the
case with the mangers. The interviewed managers were not
directly satisfied with the process and the tool supporting it.

Since the Sprint Backlog was only recorded on the walls,
managers had no overview of the work progress in the
teams. Moreover, they were usually too busy to attend the
Sprint demos, which further meant that they were not
always aware of what was completed and what was not
completed. They did not always have good insight into the
development process; they had no apprehension of team
velocities, focus factors and other data. All this created
difficulties in planning for future steps, managing resources,
and dealing with customers.

Another difficulty faced by the managers was lack of
access to release planning tools. Managers were forced to
manually create release time plans by making drawings in
MS PowerPoint and MS Word. To get an overview, they
had to print them out on several sheets of paper and affix
them on the walls. Due to the unavailability of a proper
reporting tool, as well as lack of supporting data, they were
also unable to create much needed reports providing various
statistics on, for instance, number of incoming requirements
and their rate of completion, task load on different nodes or
teams, or number of requirements per customer. Finally, due

611Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

to lack of support for tracking changes to requirements,
managers had to manually find out who made these
changes, when, and why.

In general, we conclude that except for the
implementation phase, all the process phases lacked
appropriate tool support for the reasons described above. All
this had led to a very cumbersome and clumsy management
process. Using this as feedback along with the answers to
Questions 4 and 5 in Table 2, (questions eliciting needs for
change), we extracted the company’s six primary tool
support needs. They are all displayed in Table 5 and
motivated and matched to the selected tools in the section to
come.

VII. COMPANY NEEDS AND TOOL FEATURES
In this section, we describe the company’s needs listed

during the Company observation phase and presented in
Table 5. We then match each need against the features
offered by the tools that had been evaluated during the Tool
evaluation phase of our research.

Need 1: Support for management levels
The first need experienced by the company was support

for management levels. The development teams were
satisfied with the used physical tools. The managers, on the
other hand, lacked tool support in the three management
phases – Requirements definition, Requirements
management, and Project management. They needed to store
all their requirements in one centralized location. They
needed a tool that would enable them to track the status of
the requirements throughout all the management phases as
well as to create various status reports. A similar need has
been observed in [30].

In order to adequately support the above-described need,
it would be necessary – though by no means sufficient – for
a tool to provide support for hierarchical, multi-level
requirements management. The tool should make it possible
to store and track all the information that is stored in the
Requirements Description, the New Requirements List, the
Prioritized Requirements List, and the Product Backlog.

Looking at our tool evaluation from the point of view of
this need, we saw that three out of the six tools studied
provided the option of grouping Product Backlog items. One
of the tools even included an artifact equivalent to the New
Requirements List. However, none of the tools supported the
hierarchical structure of the company’s process. In fact, none
of the evaluated tools supported high-level requirement

TABLE V. SUMMARY OF THE COMPANY'S NEEDS

Company needs for Agile Tool Support
1 Support for management levels
2 Simple and easy-to-use interface
3 Customized views for different roles
4 Support for the company’s agile process
5 Adherence to company-specific terminology
6 Flexibility to adapt to process changes

definition, decision-making and prioritization in an agile
process. Finally, none of the tools provided support for
creating status reports.

The tools studied provided extensive support for the
development level. All of them received a high rating in the
provided options for breaking down Product Backlog items
into tasks and for storing the tasks. They also provided
detailed options for estimating the tasks and entering
information regarding the work completed on the tasks.
Finally, as many as five of the six evaluated tools provided
virtual task boards. From the perspective of the company’s
need, however, these features were unnecessary and even
undesirable, since the company wished to continue using
physical walls for storing the Sprint Backlog and the team-
level tasks. The company management had, however, a need
to have an overview of the development phase in form of
team velocities and completion of the Product Backlog
items. This means that although there was no need to use
virtual task boards, at least some information from the teams
had to be channeled up for status tracking. Some of the
evaluated tools had good support for status tracking, but
none of them included artifacts for storing and handling the
company’s three levels of requirements. This made it
impossible to use the tools to get a progress overview at the
company.

Summing up, the tools studied focus on supporting team-
level aspects of the agile process, such as virtual boards and
support for Sprint planning. They do not provide enough
coverage for the agile project management process that was
desperately needed by the company.

 Need 2: Simple and easy-to-use interface
The second need experienced by the company was simple

and easy to use interface to be possessed by the tool. The
tools used by the company were PowerPoint files, Word
files, spreadsheets, slides, and sticky notes. All these are
considered to be simple tools, and yet their usage became
complicated because they did not adequately meet the
company’s needs. A similar need was reported in [31].

The company representatives expressed the need for “just
enough” tool support, with simple, easy to use interfaces.
This was valuable for the company since it had a complex
structure, with multiple teams, roles, and process steps, and it
was not desirable to introduce a tool that would further
complicate daily work.

A requirement of simplicity implied that the tool had to
be closely tailored to the company’s process and it had to
provide all the necessary features without providing the
unnecessary ones. Our tool evaluation, however, revealed
that the tools studied could not satisfy this need. They fell
into two categories: (1) they were either simple and had
pleasant interfaces, but did not offer advanced features, or
(2) they were very complex and offered a wide array of
options, but they were not easy to use. In general, we
discovered that the inclusion of more features and options
led to a decreased usability.

612Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Need 3: Support for the company’s agile process
The third need that the company experienced was

support for company’s agile process. The company had a
complicated organizational structure and a multi-step
requirements management process, where numerous people
of different roles were involved.

The company wished to keep and have power over their
process. It is highly undesirable for a company to be forced
to introduce changes to their process in order to adopt a
particular tool. Instead, the tool should be adapted to the
company structure, the product it manages and the team
setup. A tool should enable a workflow similar to that of the
company, as well as store and display the information that is
relevant to the company.

None of the tools satisfied this need. The tools studied
were either simple and lightweight, or powerful and
complex. The powerful and complex tools, such as Rally,
imposed process adaptations. Even the simpler tools, such as
Silver Catalyst, imposed their own process.

Need 4: Customized views for different roles
All roles were using the same spreadsheets and slides

while working with requirements at the company. All the
useful information had to be displayed in the same place.
This created an overload of information for all the roles
involved. For example, a UX designer did not need to see the
same information as an APM performing a breakdown of
Product Backlog items, while SPMs were mostly interested
in looking at reports and charts.

The company needed to have different views for different
roles in order to make their daily work simpler and more
manageable. Hence, the fourth need identified concerned
customized views for different roles.

Our tool evaluation revealed that the more advanced
tools did account for a few different roles, but the views they
provided and the information they displayed were not
sufficient. The existing agile project management tools have
failed to predict the need for all the views and custom reports
that a company might need, especially in case of a large
company with a large number of different roles.

Need 5: Adherence to company-specific terminology
The terms, concepts and abbreviations used at the

company were quite complex and differed from the
terminology used outside the company. For example, the
company used the term “opportunity card” instead of “high-
level requirement.” The term was used by a large number of
people and in a large number of documents. Changing this
term to fit a particular tool was not an option. The company
needed a tool that made it possible to adhere to the
terminology already in place.

Not surprisingly, the tools we evaluated imposed their
own terminology. Hence, they did not fulfill this need. For
example, some tools used the concept of a “feature” to
describe groups of Product Backlog items. In the company,
however, features were certain groups of functionalities, and
the term did not coincide with the way it was used in agile
project management tools.

Need 6: Flexibility to adapt to process changes
Changes in the process models and the ways of working

were not an infrequent occurrence at the company. Adhering
to the agile vision of continuous improvement, there was a
drive to continuously learn from retrospectives and make
process improvements. The company needed a tool that
would not only support their current process, but would also
accommodate process changes and an evolving company
structure. Thus, the company’s sixth need was flexibility to
adapt to process changes.

Five out of six evaluated tools were of commercial
availability and could not be extended to add or remove
desired features. They simply did not support an evolving
company process. Hence, they did not fulfill this need.

VIII. CONCLUSION
Despite the growing availability and complexity of agile

tools, there is lack of tool selection guidelines and case
studies. In this paper, we have attempted to shed some light
on the matter by presenting the results of a case study of
agile tool selection conducted at Company A – a company
with a complex process and hierarchical requirements
structure. As part of our research, we performed an
evaluation of six agile tools available on the market using a
detailed list of evaluation criteria.

During our attempt to select an adequate tool for
Company A, we found out that the tool evaluation criteria,
though well defined, proved to be insufficient for specifying
the company’s needs. We, however, do not reject
evaluations of this type as an important aid in identifying
needs. They have to be complemented with extensive
observational studies and detailed interviews, similar to the
study reported in this paper.

Even after having extracted and identified the company’s
needs, we had difficulties in finding an adequate tool. The
tools focused more on team-level aspects of development
and did not cater to the multi-layer requirements
management process of the company. The tools available on
the market imposed their own process and were
cumbersome and difficult to use. They were not flexible
enough to accommodate changes in the company’s process,
and they lacked support for the creation of reports. Further,
the tools did not cater to the needs of all the roles present at
the company, and, in most cases, imposed their own
terminology. Overall, we conclude that the studied tools
have not met Company A’s agile project management
needs.

It might be expected that other large companies with
complex structures also face a similar dilemma. As future
work, we plan to look into custom tools, or a combination of
custom tools and tools from the market, in order to find out
whether they might successfully meet the needs of such
companies. We also plan to find out how current tools
support distributed, multi-cultural agile environments that
currently encounter many types of different problems [32].

613Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

REFERENCES
[1] M. Dubakov and P. Stevens, “Agile tools. The good, the bad

and the ugly,” TargetProcess Inc., 2008.
[2] G. Dowst. Reviewing agile process management tools. Part 1

and 2 [Online]. Available:
http://consultingblogs.emc.com/gavyndowst [retrieved:
October, 2012].

[3] B. Swanson (2009 Sep. 25). Comparing open source agile
project management tools. [Online]. Available:
http://olex.openlogic.com/wazi/2009/comparing-open-source-
agile-project-management-tools [retrieved: October, 2012].

[4] CMC Media Inc. (2007 Apr.). Agile Tooling: A Point,
Counter-Point Discussion [Online]. Available:
http://agile.techwell.com/articles/weekly/agile-tooling-point-
counter-point-discussion [retrieved: October, 2012].

[5] G. Goth, “agile tool market growing with the philosophy,”
IEEE Software, 2009, pp. 88-91.

[6] Mountain Goat Software. All products. [Online]. Available:
http://userstories.com/products [retrieved: October, 2012].

[7] S. H. Rayhan and N. Haque, “Incremental adoption of Scrum
for successful delivery of an IT project in a remote setup,” in
Proc. AGILE 2008 Conference, IEEE Computer Society,
Toronto, Canada, 4-8 August 2008, pp. 351-355.

[8] M. Cottmeyer, “The goods and bad of Agile offshore
development,” in Proc. AGILE 2008 Conference, IEEE
Computer Society, Toronto, Canada, 4-8 August 2008, pp.
362-367.

[9] E. Uy and R. Rosendahl , “Migrating from SharePoint to a
better Scrum tool” in Proc. AGILE 2008 Conference, IEEE
Computer Society, Toronto, Canada, 4-8 August 2008, pp.
506-512.

[10] F. Cannizzo, G. Marcionetti, and P. Moser, “Evolution of the
tools and practices of a large distributed Agile team” in Proc.
AGILE 2008 Conference, IEEE Computer Society, Toronto,
Canada, 4-8 August 2008, pp. 513-518.

[11] VersionOne Inc.. State of Agile Development Survey 2009
[Online]. Available:
http://pm.versionone.com/StateOfagileSurvey.html [retrieved:
October, 2012].

[12] P. Behrens, “agile Project Management (APM) tooling survey
results,” Trail Ridge consulting, December 2006.

[13] VersionOne Inc. [Online]. Available:
http://www.versionone.com [retrieved: October, 2012].

[14] CollabNet Inc. ScrumWorks. [Online]. Available:
http://www.open.collab.net/products/scrumworks/?q=scrumw
orks [retrieved: October, 2012].

[15] Rally Software Development Corp. AgileZen [Online].
Available: http://agilezen.com [retrieved: October, 2012].

[16] ScrumDesk Co. [Online]. Available:
http://www.scrumdesk.com [retrieved: October, 2012].

[17] Silver Stripe Software Pvt. , Ltd.. Silver Catalyst [Online].
Available: http://toolsforagile.com/silvercatalyst [retrieved:
October, 2012].

[18] Agile42 Gmbh. Agilo [Online]. Available:
http://www.agile42.com/cms/pages/agilo [retrieved: October,
2012].

[19] VersionOne Inc. Integrations [Online]. Available:
http://community.versionone.com/sdk/Documentation/Integra
tions.aspx [retrieved: October, 2012].

[20] Bugzilla org. [Online]. Available: http://www.bugzilla.org/
[retrieved: October, 2012].

[21] Atlassian Pty Ltd. JIRA issue and project tracking [Online].
Available: http://www.atlassian.com/software/jira [retrieved:
October, 2012].

[22] Eclipse org. [Online]. Available: http://www.eclipse.org
[retrieved: October, 2012].

[23] Microsoft Inc. MS Excel. [Online]. Available:
http://office.microsoft.com/en-us/excel [retrieved: October,
2012].

[24] Rally Software Development Corp. Rally Connectors
[Online]. Available:
http://www.rallydev.com/agile_products/integrations/connect
ors/ [retrieved: October, 2012].

[25] Microsoft Inc. Visual Studio Team Foundation Server
[Online]. Available: http://msdn.microsoft.com/en-
us/vstudio/ff637362.aspx [retrieved: October, 2012].

[26] Mantis Bug Tracker. [Online]. Available:
http://www.mantisbt.org [retrieved: October, 2012].

[27] Subversion SVN [Online]. Available:
http://subversion.apache.org [retrieved: October, 2012].

[28] Trac [Online]. Available: http://trac.edgewall.org [retrieved:
October, 2012].

[29] Wikipedia. User experience design [Online]. Available:
http://en.wikipedia.org/wiki/User_experience_design
[retrieved: October, 2012].

[30] M. Kajko-Mattsson. “Problems in agile trenches”. In Proc. of
the Second ACM-IEEE international symposium on
Empirical software engineering and measurement (ESEM
'08). ACM, New York, NY, USA, 2008, pp. 111-119.

[31] G. Azizyan, M. K. Magarian, and M. Kajko-Matsso “Survey
of Agile Tools Usage and Needs” in Proc. AGILE 2011
Conference, IEEE Computer Society, Salt Lake City, UT,
USA, 8-12 August 2011, pp. 29-38.

[32] M. Kajko-Mattson, G. Azizyan, and M. K. Magarian
"Classes of distributed Agile problems" AGILE 2010
Conference, IEEE Computer Society, Orlando FL, USA, 9-13
August 2010, pp. 51-58.

614Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

