
Framework for Better Efficiency of Automated Testing

Work-in-Progress Paper

Martin Filipsky, Miroslav Bures and Ivan Jelinek

Department of Computer Science and Engineering

Czech Technical University

Prague, Czech Republic

{filipma2, buresm3, jelinek}@fel.cvut.cz

Abstract—The paper introduces our design of a framework

for test automation, which utilizes both recording and scripting

approaches to help quality-assurance engineers with their test

automation efforts. Characteristic problems of test automation

are a low efficiency and/or high maintenance costs.

The framework cuts down those drawbacks using a technique

of abstraction, a clever structure of test cases, and reusable

common test case retrieval from recorded tests. Finally, the

approach is robust to a test script ageing and is technology-

independent as well as testing-tools independent.

Keywords-automated testing; functional tests; quality

assurance; test efficiency; test recording

I. INTRODUCTION

With the increasing importance and complexity of
information systems, software vendors and system
integrators are facing numerous challenges. Current
technologies are rapidly changing. New technologies and
ideas like Cloud computing [9], Virtualization [5], or
Software as a service [4] are coming; but, budgets intended
for software products and IT projects are cut down. On the
other hand, customers require more and more features, a
better performance, a higher reliability, and a first-rate
availability for less money. Who wants to compete and be a
market leader, has to be more efficient than his competitors.
Since testing costs represent a significant part of total costs
of development, we focused on areas where we see a
potential to improve a testing process using test automation.

The area of automated testing of software applications is
facing a number of issues and challenges like an insufficient
expertise to automate tests, technological issues, and/or
demand on a fast and effective test development and
execution. One of the most serious problems revolving
around test automation is that test scripts are getting
inaccurate and obsolete with changes in an application under
test. As the result, automated testing is limited mostly to
regression tests, smoke tests and performance testing. A
utilization of automated testing in a sense of a replacement of
manual testing is not quite often.

Even solutions of some issues (automated test
development/debugging, or maintenance [18], [13]) may
increase the efficiency of the process of test automation.
Moreover, a number of defects would decrease in final
applications released to production environments. Some
techniques used to speed up the process of test automation

and to increase the efficiency are already adopted by many
quality-assurance (QA) teams, like using Mockups [20] or
generating test cases from application models [23]. Mockups
may be very useful when QA teams have enough time to
prepare and develop tests against an application prototype.
Agile software development methodologies [17] bring
additional requirements on a development of automated
tests. Test recording approaches are very useful in such cases
because they do not require a time-consuming preparation.
Testers can start to develop automated tests immediately.
Furthermore, if those test recordings are transformed into
abstract tests organized in test suites, the resultant effort and
costs will decrease significantly.

The main goal of our research is a definition and a
validation of a meta-model among requirements on
automated tests, an application under test (AUT) and test
scripts to record test cases using the defined meta-model and
to create a structure of tests having common parts of the
recorded tests broken down into reusable pieces for an easier
and cheaper test maintenance.

This paper is structured as follows: We start by giving an
overview on related research in Section 2. In Section 3, we
describe the concept of the framework. In Section 4, we
conclude with a summary and an outlook.

II. RELATED WORK

Many research teams are interested in test automation of
various kinds like unit testing, functional, GUI or regression
testing, and performance testing. Unit test automation is
being successfully theoretically covered. Some approaches
focus on a generation of test data [8] or a generation of test
cases [23] from models of AUTs. For example, Xu [23]
introduced an approach based on high-level Petri nets as
finite state test models for an automated test generation and a
test execution. On top of that, he developed a model-based
Integration and System Test Automation tool. This premise
may be seen as a drawback in agile software methodologies
where specifications and models frequently do not exist at
the moment when the functional test automation is required.
For a generation of test cases, a detailed model of AUT
including use case diagrams and user scenarios is required
prior the testing process can start. Those generated test cases
might not be possible to execute without additional pre-
processing. Missing object IDs may prevent from that as the
objects cannot be identified in the AUT. For example, if a
development team uses dynamic objects with insufficient

615Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

unique object properties or with dynamically generated IDs.
Approaches were introduced for web application modelling
in [2], [16], and [22].

Koopman, Plasmeijer and Achten [15] introduce a
model-based testing system for on-the-fly testing of thin-
client web applications specified by Extended State
Machines. The approach is proposed for plain HTML (no
Flex, no JavaApplets). They do not discuss more general
solutions for rich clients and/or other platforms, like
mainframe panels (applications for terminal emulators),
which leads to technological limitations (e.g., different
objects, and application behavior) of the approach. Beek and
Mauw [1] present an approach for a conformance, black-box
testing of thin internet applications. Besson, Beder and
Chaim [3] introduced an approach of test automation for
acceptance testing. In general, approaches based on Finite
State Machines (FSM) are quite often as presented Jia and
Liu [14].

In comparison to test automation efforts based on model-
based approaches, where test scripts are generated from
models, Stepien, Peyton and Xiong [21] describe a testing of
web applications using TTCN-3 language [6] and [19] which
is a specification-based approach. An XML specification-
based approach of testing of web applications is presented by
Jia and Liu [14]. The specification-based approaches [6],
[10], [19], and [21] are close to our intentions, but they did
not utilize the test recording in their approaches.

The mentioned approaches are either limited by a
technology or they require a model, or another detailed
specification of AUT. In comparison to the mentioned
approaches, we are focusing on a feature to build a structure
of test cases on-the-fly while the user is recording tests.
Furthermore, the proposed framework recognizes input data
and uses them as test parameters. Both the features are a key
to a reusability of tests or parts of tests, which might
significantly decrease total costs of test maintenance.

García, Dueñas, and Parada introduced recently a couple
of approaches for automated functional testing based on the
navigation of web applications in [10], [11], and [12]. Their
concept is to automate functional tests using UML diagrams
[7] as an input for an automated test case generation driven
by the navigation in the AUT. Compared with our proposed
technique, a model or at least a part of the model of the AUT
has to be available before the testing actually starts. They
also presented an alternative to the test case generation for
agile strategies. They can record tests in order to skip a phase
of formal design. Unlike the presented approach, we lay
emphasis on the feature of a detection of reusable test parts.

III. PROPOSED SOLUTION

Standard approaches of functional test automation are

usually based on:

1. A plain test recording of test cases.

2. Test scripting using a programming language.

3. An automation framework.

A facility for test recording records a user activity while
testing AUT and the resultant test is captured in any

Figure 1. High-level architecture of the proposed solution.

programming language, e.g., in Java. If an advanced
technique is used like an object repository, the tests are
relatively fine but the maintenance is getting more difficult
in comparison to projects utilizing scripting and/or different
automation frameworks (code redundancy, no code
optimization, object duplicity, and usually no parameters
among tests).

Second approach is typically for experienced QA

engineers. It is time-consuming and requires being well

prepared. On the other hand, testers can fully utilize a power

of object oriented programming and can develop highly

reusable code (tests) with low maintenance costs.

The automation frameworks are driven by data (a flow is

controlled by input data), by keywords (the flow usually

does not depend on input data, test scripts completely

control a test run) and by a model (the test flow depends on

a model of AUT). The model-driven frameworks are worth

in cases where the system changes dramatically and new test

scripts can be easily regenerated from the model. Hybrid

approaches are common (e.g., Data-Keyword, but not

Recording-Scripting), and they combine the best features of

single approaches.
The challenges described above lead us to several areas

of our interest. We are working on a definition of a meta-
model of test cases which is a key premise of an efficient test
recording. The meta-model will be used in a process of
building a smart structure of tests from the recorded test
cases. Another field of our interest is a reusability of
recorded tests. We are working on algorithms that will
identify common test parts in the structure of tests and
reorganize them.

Our intention is to integrate solutions of single problems
in one test automation framework (Fig. 1) among test
requirements, testing tools and AUTs. The framework is
intended to be modular as well as platform-independent. We
are focusing on a utilization of benefits of both the recording
and scripting approaches (i.e., fast test automation and good
maintenance costs). There are two options how the
automation framework should support user efforts to
automate test cases (Fig. 2). Either the user does not have a
test case automated yet or the user has already automated a
test case. In the first case, the user records the test case,
which is converted on-the-fly into the meta-model, using the
recording facility. All relevant objects (buttons, links, data,
strings etc.) are currently captured into an object repository
without additional duplicities. In the second case, the
automation framework records a new sequence of

616Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 2. The concept of the framework based on test recording.

user activities while the user is executing altered parts of the
test case. The user selects a relevant part of the test case to be
updated and the new sequence of recorded steps is mapped
into the current test and all relevant parts of other recorded
tests, which use the updated part. If the user records more
than two test cases in the test suite, the framework detects
common parts, which are typically frequent and repeating
activities like a login to the AUT. Therefore, we let the user
record the complete test suite in order to run scanning
algorithms, which will detect common test sequences in the
recorded test cases. The detected common test sequences can
be excluded from the test suites afterwards and represented
as new subunits of test cases as it is presented on Fig. 3.

Figure 3. Test Cascades. Gray parts identified by scanning algorithms

represent the common parts in test cases.

For instance, if each test case contains a login to a
system, the procedure of logging in can be extracted and
called from all test cases automatically. One change in the
common test sequence (reusable part) takes effect in all
calling tests. An example is shown on Fig. 4. Since we need
to get an organized structure of test cases with reusable test
parts for a better test maintainability, we have to find longest
common subsequences of user activities in the test suite. In
other words, we have to find a mapping of steps among all
tests in the test suite. If such a mapping exists, those steps
can be excluded from tests and the new reusable part, which
is referenced from these tests, can be created. Obviously, a
problem might to find a suitable level of a step count in the
sequence. Remaining problems to be solved are questions

Figure 4. An example of mapping steps in common test sequences

between two test cases.

of handling data dependencies, a problem of a test
parameterization and a problem of recursive calls to reusable
units.

In addition to the recording, the user has still an option to
design test cascades manually (consider test cascades as an
automatically generated structure of test cases from test
recordings) and to design and script test cascades in a
domain-specific language (DSL). In DSL, we specify the test
cases from the end user’s point of view and it enables to
work with the meta-model of test cases. Syntax of DSL
comes out from simple English, but we are also planning a
graphical version of the DSL, which will be identical to the
standard text version represented by Tab. 1.

TABLE I. AN EXAMPLE OF THE DOMAIN-SPECIFIC LANGUAGE FOR A

TEST CASE REPRESENTATION

Object

Type

Object

Name
Action Parameters

Recovery

Scenario

Browser MyBrowser Open www.cvut.cz
CloseIfNot

Available

Button Submit Click StopTest

Table MyTable Validate StopTest

TextBox Search Set Test automation SkipStep

A requirement on simple English is beneficial for non-

experienced QA engineers who do not know standard
programming languages like Java. Thus, they can
immediately start to alter their recorded test cases. The
second benefit of the DSL is a fact that a complexity of the
solution will be hidden for end users. Objects are stored in an
object repository. For this object repository, storage available
in testing tools like, e.g., HP QuickTest Professional can be
used. An alternative is to use an internal object repository of
the framework.

The automation framework gives the QA engineers an

option of inspection that helps them to detect common

mistakes in the design of automated tests. For example, web

applications may have different responses depending on

system loads, which lead usually to synchronization issues.

617Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The concept of test cases represented by the meta-model

with the test cascades provides a robust solution to changes

in the application. For example, if a new step is added into

a current business process or if an object is altered in the

AUT, a modular structure of test cascades supports an

update in one place, which will take effect in all places. The

higher level of abstraction of test cases together with a

support of generation of test scripts for different testing

tools helps to prevent tests from test script ageing.

IV. CONCLUSIONS AND FUTURE WORK

We carried out a research of the current state-of-the-art
and we have found out that the problem of building reusable
test cascades from test recordings is covered insufficiently.
There are either approaches for on-the-fly testing (usually
limited by a technology like plain HTML), e.g., [1], [3] or
[15] or approaches requiring to prepare a model of AUT like
in [6], [19] or [20]. A more general concept utilizing the test
recording is missing. Based on that, we have designed a
framework for automation of functional tests with no need to
have a model of the AUT. We have designed the structure of
the meta-model, used in the proposed solution.

Currently, we are working on a detailed design of the
meta-model. In parallel with that, we are conducting a
research of a problem of transformation test recordings i.e.,
the transformation of test scripts from standard programming
languages to the meta-model. Besides that, we are dealing
with a problem of seeking out the longest common test
sequences. The goal is to build test cascades from recordings
with no need of a post-processing. As a consequent task, we
are going to solve a problem of test parameterization i.e., to
detect input parameters and dependencies among them.

Finally, we are preparing to conduct experimental
observations on real industrial projects with comparisons of
costs and results of the manual testing, the conventional
automated testing using the test recording and/or the plain
test scripting, and the automated testing using the proposed
automation framework.

REFERENCES

[1] H. M. A. van Beek and S. Mauw, “Automatic Conformance

Testing of Internet Applications”. In Lecture Notes in
Computer Science, 2004, Volume 2931, Formal Approaches
to Software Testing, Page 1106.

[2] H. M. A. van Beek, “Specification and Analysis of Internet
Applications”. In PhD thesis, Technical University
Eindhoven, The Netherlands, 2005. ISBN 90-386-0564-1.

[3] F. M. Besson, D. M. Beder, and M. L. Chaim, “An
Automated Approach for Acceptance Web Test Case
Modeling and Executing”. Lecture Notes in Business
Information Processing, 1, Volume 48, Agile Processes in
Software Engineering and Extreme Programming, Part 2,
Pages 160-165.

[4] G. Blokdijk, "SaaS 100 Success Secrets - How Companies
Successfully Buy, Manage, Host and Deliver Software As a
Service (SaaS)", Emereo Pty Ltd. USA, 2008. ISBN 978-0-
9804-7164-9.

[5] M. Cafaro and G. Aloisio (Eds.), "Grids, Clouds and
Virtualization". 1st Edition., Springer, 2011. ISBN 978-0-
85729-049-6.

[6] ETSI ES 201 873-1: “The Testing and Test ControlNotation
version 3”, Part1: TTCN-3 Core notation, V3.2.1, February
2007.

[7] M. Fowler, "UML Distilled: A Brief Guide to the Standard
Object Modeling Language". Addison-Wesley Professional,
3rd Edition, 2003. IBSN-13: 978-0321193681.

[8] S. Fujiwara, K. Munukata, Y. Maeda, A. Katayama and T.
Uehara, "Test data generation for web application using a
UML class diagram with OCL constraints". In Innovations in
Systems and Software Engineering, 2011, volume 7, Number
4, Pages 275-282.

[9] B. Furht and A. Escalante (Eds.), "Handbook of Cloud
Computing". 1st Edition., Springer, 2010. ISBN 978-1-4419-
6524-0.

[10] B. García, “Contribution to the Automation of Software
Quality Control of Web Applications”. In PhD thesis,
Universidad Politécnica de Madrid, Spain, 2011. ID code
9017.

[11] B. García, J. C. Dueñas, “Automated Functional Testing
based on the Navigation of Web Applications”. WWV 2011,
Reykjavik, Iceland, June 2011.

[12] B. García, J. C. Dueñas, H. A. Parada, “Functional Testing
based on Web Navigation with Contracts”. IADIS
International Conference (WWW/INTERNET09). Rome,
Italy. Nov. 2009.

[13] D. Hoffman,"Cost Benefits Analysis of Test Automation".
STAR West, 1999.

[14] X. Jia and H. Liu, “Rigorous and Automatic Testing of Web
Applications”. In Proceedings of the 6th IASTED
International Conference on Software Engineering and
Applications (SEA 2002), pages 280–285, Cambridge, MA,
USA, Nov. 2002.

[15] P. Koopman, R. Plasmeijer, and P. Achten, “Model-Based
Testing of Thin-Client Web Applications”. Lecture Notes in
Computer Science, 2006, Volume 4262, Formal Approaches
to Software Testing and Runtime Verification, Pages 115-
132.

[16] F. Lanubile and T. Mallardo, “Inspecting Automated Test
Code: A Preliminary Study”. In Lecture Notes in Computer
Science, 2007, Volume 4536, Agile Processes in Software
Engineering and Extreme Programming, Pages 115-122.

[17] R. C. Martin, "Agile Software Development, Principles,
Patterns, and Practices". 1st Edition., Prentice Hall, 2002.
ISBN: 978-0135974445.

[18] B. Pettichord, "Seven Steps to Test Automation Success".
STAR West, 1999.

[19] R. L. Probert, B. Stepien, and P. Xiong, “Formal testing of
web content using TTCN-3”. In TTCN-3 User Conference
2005, June 2005.

[20] J. M. Rivero, G. Rossi, J. Grigera, J. Burella, E. R. Luna, and
S. Gordillo, “From mockups to user interface models: an
extensible model driven approach”. In Lecture Notes in
Computer Science, Volume 6385, Pages 13-24, 2010.

[21] B. Stepien, L. Peyton, and P. Xiong, “Framework testing of
web applications using TTCN-3”. In International Journal on
Software Tools for Technology Transfer (STTT), 2008,
Volume 10, Number 4, Pages 371-381.

[22] Y. Wu and J. Offutt, “Modeling and Testing Web-based
Applications”. GMU ISE Technical ISE-TR-02-08,
Information and Software Engineering Department, George
Mason University, Fairfax, USA, Nov. 2002.

[23] D. Xu, “A Tool for Automated Test Code Generation from
High-Level Petri Nets”. In Lecture Notes in Computer
Science, 2011, Volume 6709, Applications and Theory of
Petri Nets, Pages 308-317.

618Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/0302-9743/
http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/0302-9743/
http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/978-3-540-73100-9/
http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/978-3-540-73100-9/
http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/0302-9743/
http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/0302-9743/
http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/978-3-642-21833-0/
http://c80.www.springerlink.com.4004366bb80e8c853fb68f87a365ff08.dialog.cvut.cz/content/978-3-642-21833-0/

