
Requirement-based software testing with the UML: A systematic mapping study

Nesa Asoudeh
Carleton University, Dept. SCE

Ottawa, Canada
nasoudeh@sce.carleton.ca

Yvan Labiche
Carleton University, Dept. SCE

Ottawa, Canada
labiche@sce.carleton.ca

Abstract- Our goal is to determine the current state of the
art in requirement based testing in a UML context. We
combined an automated search in digital libraries with a
manual search in related journal and conference venues.
The search resulted in about 1,300 papers. After applying
inclusion/exclusion criteria, we selected 100 papers as our
final set of primary studies. Classification results based on
several criteria lead us to interesting observations such as: A
small proportion of the primary studies evaluate techniques
through experiments and one-third of the techniques are
simply illustrated with an example; More advanced selection
criteria exist in literature than those used in primary studies.

Keywords- Requirement based testing; systematic mapping
study; model driven development; requirement engineering;
Unified Modeling Language.

I. INTRODUCTION

At least half of the effort to develop a working
program is devoted to testing [4]. Undetected errors in
software can cause substantial financial loss or even
catastrophic results in safety critical systems. Detecting
faults as early as possible during the software development
is an effective means of reducing testing cost since the cost
of fixing an error increases with the time between its
introduction and detection.

Requirement-based testing (RBT) aims at starting
testing-related activities as early as possible during
software development, specifically deriving test cases (or
test case specifications) from the requirements of the
software under test [1]. RBT addresses two major issues:
first, validating that the requirements are correct,
complete, unambiguous and logically consistent; and
second, designing a necessary and sufficient, from a black
box point of view, set of test cases from those
requirements to ensure that the design and code fully meet
those requirements. Some of the benefits of and reasons
for RBT are: (1) Creating tests early; (2) Allowing test
engineers to find inconsistencies and ambiguities in
requirements; (3) Leading to test data independent of any
particular implementation; (4) Allowing conformance
testing; (5) Reducing testing costs, since testing starts
early; (6) Reducing software time to market.

These suggest that RBT can be an efficient and
effective approach to software verification and validation.
Note also that RBT is mandatory in some software
development projects, e.g., airborne software developed
according to the DO-178B/C standard [23].
There are numerous methods for representing software
requirements (e.g., formal specification, plain text, the
Unified Modeling Language) and more than one of them is
typically used [7]. As a result, there are many approaches
to RBT and, in spite of a great deal of research, to the best

of our knowledge, there exists no systematic literature
review [8] on this topic. There have been some surveys
(e.g., [13, 14]) on model-based testing (MBT), a testing
activity that aims at (automatically) deriving test cases
from a model specifying the intended behaviour of a
software [18]. However, RBT and model based testing are
not interchangeable. Not any model used in MBT can be
used for RBT. On the other hand, a model-based approach
is one possible way to elicit requirements, and therefore
RBT often uses models.

This paper reports on a systematic mapping study [8]
on RBT, thereby identifying and classifying the available
research (papers) in this area. A systematic mapping study
is an important piece of work since it provides a wide
overview of a research topic and establishes if research
evidence exists in the area. It also provides an indication of
the quantity of the evidence, prior to conducting a
systematic literature review. During a systematic mapping
study a classification scheme is defined and then used in
an analysis phase to determine the coverage of the
categories of the scheme. Petersen et al. discuss the
differences between these two analyses [16].

More specifically, we are interested in RBT in the
context of a UML-based software development [15]. The
reason for reducing the scope of the research is threefold:
(1) the UML is now the de-facto standard for analysis and
design of object-oriented software [15], (2) not reducing
the scope this way would lead to more research papers
than what can likely be possibly managed, and (3) not
reducing the scope would lead to testing techniques of
widely different nature, which would complicate the
review and the comparison (e.g., RBT from a Petri net
model would have different capabilities than a technique
based on UML sequence diagrams simply because of the
more formal basis of that modeling notation).

Section II discusses the protocol we followed in our
systematic mapping study. Section III presents descriptive
statistics about the search of RBT techniques. Section IV
discusses the comparison criteria we used to compare the
identified testing techniques and the results of the
comparison. Section V discusses threats to validity.
Section VI concludes the paper.

We dedicate a fair amount of the paper to the search
protocol and the comparison criteria. Our intent is to
disclose enough details to readers’ scrutiny and allow
adequate conclusions to be drawn from the identified RBT
techniques, to limit threats to the validity of the results, to
allow replications, extensions and comparisons in future
works (by us or others) [8].

II. REVIEW METHOD

We followed standard procedures [8, 16] whereby the
first step is a planning activity. The most important

623Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

planning activity is formulating the research questions.
Our research questions are: RQ1—What are the current
approaches to RBT? RQ2—What are the main
characteristics of these approaches? Following planning,
we identify relevant research works using an identification
procedure (section II.A) and a selection/rejection
procedure (section II.B).

A. Search Strategy
Most literature reviews, including mapping studies,

involve automatically searching digital libraries with a set
of keywords. Unfortunately, search engines embedded in
digital libraries relevant to software engineering are not
designed to support such reviews [5]. Therefore, one may
miss relevant papers when only relying on such search
engines. We complemented the automated search with a
manual search, which is also recommended by others [5].

Manual Search. The focus was collecting recent papers
on RBT, published between January 2006 and June 2011;
We started in 2006 since UML 2.0 was officially released
in July 2005 and we felt OMG's improvements to the
UML specification would lead to increased opportunities
for automated UML-based testing. This assumption is
somewhat confirmed by our analysis (Section IV). We
selected conference and journal venues (available in our
online technical report [3]) that, from our past experience
as researchers in the domain, we knew would likely
publish work on RBT and UML based testing. Since the
automatic search was conducted in parallel with the
manual search, venues that had multiple relevant papers
appearing in the automatic search were added to the list of
relevant venues for the manual search [3].

Automatic Search. We searched five digital libraries
that were highly relevant to software engineering and have
been recommended by others [5, 8]: IEEE Xplore, ACM
Digital Library, SpringerLink, Scopus and Inspec, during
the period 1990-2011. Based on our research questions, we
formulated the initial query string (Q0):

Q0 “Requirement based testing” OR
“Requirement Driven Testing” OR “Specification
based testing” OR “Specification Driven
Testing”

Given our focus on RBT, we also performed a survey
(though not as systematic as a mapping study) of
requirement modeling techniques [10] and the definition of
the word requirement itself (see [3] for details). We
identified techniques as varied as natural language
specifications to diagrammatic notations that specify

system behavior (e.g., state machine) or interaction
scenarios (e.g., sequence diagram). Considering that we
are interested in testing techniques to be used in a UML
context, we selected the following requirement
modeling/specification techniques: use case, sequence
diagram, activity diagram, state machine diagram, natural
language. We selected this subset of UML diagrams, and
not other diagrams like timing diagrams though they could
be used to specify requirements, since these diagrams have
been shown to be the most used by practitioners [6, 12].
We thus formulated the following additional queries:
Q1 “use case” AND test*
Q2 “sequence diagram” AND test*
Q3 “activity diagram” AND test*
Q4 (“statechart” OR “state machine” OR “state

diagram”) AND test*
Q5 “natural language” AND requirement AND

test*
We kept word “requirement” in Q5 since otherwise

query “natural language” AND test* was returning
too many false positives, e.g., RBT techniques in other
engineering disciplines than software engineering. We
added this query because use case descriptions are usually
written in natural language.

Because we had an interest in safety critical and
embedded real-time systems we added the following two
queries as well (in these two queries we also kept word
“requirement” for the same reasons as previously):
Q6 “safety critical” AND requirement AND

test*
Q7 “embedded” AND “real time” AND requirement

AND test*
As illustrated above, we followed Kithenham's

recommendations [8] and identified terms as well as
synonyms and alternative spellings that were specific to
our research questions, and then used ANDs and ORs to
construct sophisticated queries.

We searched the selected five digital libraries with
those queries, accounting for the slightly different formats
the search engines required. The search with Q0 was
performed in October 2010 and the one with Q1-Q7 was
performed in June 2011. The search was performed within
the title, abstract and keywords of papers.

B. Article Selection: Inclusion/Rejection Criteria
Our article selection entailed several steps (Figure 1).

During the initial, manual plus automated search, any
paper discussing an approach related to some testing
activities from software requirements was added to the set
of relevant papers.

Throughout the manual search, after scanning the list
of papers in a conference proceeding or a journal issue, we
considered all the papers that had a title relevant to
software verification and validation. We then selected the
ones that discussed any kind of RBT technique by reading

Figure 1.Paper selection process

624Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the abstracts, introduction and conclusion sections. In a
few cases we had to use the full text of the paper to make
the final decision. For each selected paper, we also
examined the list of references to find potential additional
relevant papers.

We followed a similar procedure during the automatic
search. However, we had to strengthen the exclusion
criteria. Whenever possible, we used the filters provided in
digital libraries to limit the scope of search to computer
engineering or related areas. But, we still obtained many
papers from other disciplines like mechanical engineering
or civil engineering. We also excluded those papers.

After removing duplicates (obtained from different
databases, from both the manual and automated searches)
we defined a more precise set of inclusion/exclusion
criteria to select the final set of primary studies:

1. We excluded papers on testing based on design
artifacts, such as testing from design patterns
specified in a class diagram;

2. We excluded papers that discussed testing model
transformations;

3. We excluded papers discussing concepts like test
case prioritization, test case optimization, test effort
estimation, test planning and coverage analysis;

4. When we had several papers describing one single
approach by the same author(s), we only considered
the most recent one and if available the most recent
journal paper, assuming that we would then obtain
the most complete description of the approach;

5. We only included papers that discussed testing
based on the UML diagrams mentioned previously.

III. RESULTS

The manual search resulted in a total of 147 papers, 51
of which are journal papers. Merging results of the manual
and the automatic searches led to a set of 1,275 papers.
After removing duplicates, we obtained a set of 702
papers. Applying our set of inclusion/exclusion criteria
resulted in 100 unique papers as the final set of primary
studies. The complete list of papers as well as descriptive
results of automatic and manual searches are available in a

technical report [3].

IV. ANALYSIS

Our analysis entails comparison (Section IV.A) and
classification (Section IV.B). We also observed evolutions
over time (Section IV.C).

A. Comparison
We have defined seven criteria to compare primary

studies, based on our research questions, to help us to
extract from each paper data that we are interested in.
Requirement Model: The UML diagram used to model
requirements is one of the most influencing factors when
selecting and comparing testing techniques.
Test Model: In some papers, test cases are extracted
directly from the requirement model in which case the test
model is the same as the requirement model. In other
papers, the requirement model is transformed into an
intermediate model, which is used to generate test cases.
Level of Automation: We have defined four levels of
automation: manual, partially automated, fully automated,
and automatable. A partially automated technique entails
some steps that require human expertise (e.g., expertise in
the testing technique, in the system under test, in the
domain of the system under test) while a fully automated
technique does not. Automatable means that some steps of
the technique are described with enough clarity and
precision (e.g., an algorithm in pseudo code) to be
automated. Should those steps be automated, the technique
would then become either fully automated or partially
automated (depending on whether some steps still require
human expertise). If a primary study does not indicate that
any of the steps can be automated, and therefore, the
evaluation discussed in the paper (if any) is manual, then
the technique is said to be manual.
Testing Level: We use a well known classification of
testing levels [2]: acceptance testing, system testing,
integration testing, module testing and unit testing.
Selection Criteria: These are the criteria being used to
derive test cases from the test model. (Note that we make a
difference between a selection criterion—a criterion being
used to create tests, and a coverage criterion—a criterion
to evaluate the coverage of an existing test suite, since
creating technology and tool support for the latter is
usually simpler than for the former.) Also we consider
whether the selection criteria are based on the requirement
model or some intermediate model when the test model is
not the requirement model. This is important since in the
latter case the mapping between the model element of the
test model being exercised and elements of the
requirement model is not necessarily straightforward.
Empirical Evaluation Technique: Since empirical
evaluation has become an important part of software

Table 1. Automatic Search (descriptive statistics)
IEEE Inspec Scopus ACM Springer

T R T R T R T R T R
Q0 64 49 123 86 133 87 26 11 20 12
Q1 124 38 290 83 589 93 46 12 52 22
Q2 30 19 61 38 154 74 20 10 8 6
Q3 25 21 45 33 98 46 20 13 6 3
Q4 405 130 NA NA NA NA 21 7 114 37
Q5 38 10 194 38 89 15 18 4 14 3
Q6 75 12 286 42 209 26 20 3 21 3
Q7 113 9 399 16 189 10 21 2 21 4

625Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

engineering research [20] and it is becoming more and
more common to provide empirical data to support an
idea, we compared primary studies according to the kind
of empirical evaluation they provide. Different taxonomies
of empirical evaluation techniques exist and we selected
one that distinguishes between an experiment, a case
study, and an example [22]. To distinguish between
experiments and case studies we use the notion of a state
variable [22]. In an experiment, the state variable can take
on different values to recognize the differences between
various situations, e.g., a controlled situation and the
situation under investigation, whereas the state variable
assumes only one value in a case study. On the other hand,
an example covers only some parts of a technique.
Empirical Evaluation Material: We want to distinguish
between papers that show application of the proposed
approach in an industrial context from the ones that show
application on a smaller application or fractions of it, or
from the ones that illustrate application on a toy example.

Others, before us, have described criteria to compare
software testing techniques. Neto and Travassos discuss
criteria similar to ours but in the context of model-based
testing [13, 14]. We report on a smaller amount of
information in this paper since this is only a conference
paper whereas they reported on the result of a complete
literature review. More specifically, among the 18
different criteria they discuss, seven are similar to ours,
two are not adequate to our situation (e.g., they consider
whether a technique is structural or functional, whereas we
only deal with the latter), and the remaining attributes will
be used in a future publication. Our future publication will
also compare the empirical results reported in primary
studies: for instance, in the software testing community,
researchers are typically interested in studying the cost
(e.g., in terms of number of test cases generated) and
effectiveness (at finding faults, either real or seeded). Our
set of criteria and the one of Neto and Travassos are
subsets of the larger, more extensive characterization
schema for software testing techniques [21].

B. Classification
In this section, we classify the primary studies (papers)

based on our seven comparison criteria.
Requirement Model. Figure 2 (a) summarizes the

different UML diagrams that are used in primary studies.
(We use only one term to refer to the UML 1.x and UML
2.x terminologies with respect to the state model.)
Sequence and statechart diagrams have the highest number
of hits. This is not surprising since these are probably the
most used diagrams to specify behavior and interactions,
and therefore functional requirements. Also, the statechart
diagram is the most precisely defined UML diagram and
therefore one of the most appropriate diagrams to derive

tests from. We also noticed that 38 papers used more than
one diagram as requirement model. This is a large amount
and can be a result of the fact that usually more than one
UML diagram is used during requirement engineering.
The most common combination of models is use case
diagram and either sequence diagram or activity diagram
to model use case scenarios (17 papers). These 17 papers
represent 77% of all the papers that rely on use cases for
RBT. This is likely due to the fact that use cases and
textual use case descriptions, although used a lot in
requirement engineering, are not precise enough to be used
alone during testing. Other common combinations are
class diagram plus sequence diagram (six papers),
sequence diagram plus statechart (four papers), and
activity diagram plus statechart (three papers).

Test Model. 45% of the primary studies generate test
cases directly from the requirement model: Figure 2 (b).
The UML diagram that is the most used as a test model,
either alone or in a combination with other diagrams, is the
activity diagram (16 papers). The sequence diagram (13
papers) and statechart diagram (12 papers) come next. In
55% of the papers, the requirement model is transformed
either into a formal model like Linear Transition System
[17] or an intermediate data structure like communication
tree [18] to generate test cases. This may be due to the lack
of formality of UML or the desire to use a test model for
which a testing technique already exists.

Level of Automation. Figure 2 (c). A lack of clear
description for several steps of the proposed techniques

(a) Requirement model (b) Test model

(c) Level of automation (d) Empirical evaluation

Figure 2. Classification according to (a) the requirement model, (b)
the test model, (c) the level of automation, and (d) the empirical
evaluation

626Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

prevented us from classifying 5% of the primary studies.
About 29% of the primary studies discuss automated tool
support under the form of a single tool supporting several
steps. These are a subset of the partially automated and
fully automated primary studies. The rest of the
(partially/fully) automated techniques discuss several
pieces of tool support (but not a single bundle). Though
not shown in Figure 2 (c), we note that all the techniques
that use a formal model as test model are at least either
partially automated or automatable. Equally interesting,
70% of the papers describing a manual process or that we
were not able to classify are the ones that derive tests
directly from the requirement model (i.e., the requirement
model and the test model were the same), regardless of the
kind or formal basis of requirement model used.

Testing Level. As expected, the majority of the primary
studies (86%) describe a system testing technique. This is
in accordance with the fact that system testing is designed
to verify whether the assembled system meets its
specification [2], and that requirements provide this
specification. Other testing levels are integration testing
(8%), unit testing (3%), and acceptance testing (2%). We
also found one paper addressing non-functional testing
(robustness testing). This small amount is not necessarily
surprising since the diagrams we selected are more used to
specify functional requirements than non-functional ones.

Selection Criteria. Since selection criteria depend on
the test model, we do not classify primary studies based on
this criterion: it would not be fair to say one technique
does not use a criterion supported by another technique
simply because they rely on different test models.
However, we look at criteria used for similar test models.
Some of the most used criteria for different diagrams are:
state, transition for the statechart diagram; use case
scenarios for the use case diagram; activity, transition,
action for the activity diagram; message sequence path for
the sequence diagram. We argue that, considering the
extensive literature on test selection criteria, the criteria
used in primary studies are among the simplest ones that
exist. For instance, an activity diagram being very similar
in structure (and purpose) to a control flow graph, it is
surprising that other graph-based control- and data-flow
criteria [2] are not experimented with. This also applies to
sequence or statechart diagrams .

Four of the primary studies focus solely on empirical
evaluation of different requirement based testing
techniques either by means of case studies or experiments.
We consider this to be a small proportion (4%) of
empirical evaluations of different techniques, and this
shows that there is room for more empirical studies in the
area of RBT. Since these papers do not propose any new
approach, we d not include them in the classification, but
we have discussed them separately [3].

Empirical Evaluation. We found primary studies
without any kind of empirical evaluation: Figure 2 (d).
Only 22% of the primary studies have performed
experiments to evaluate their approaches. This can be due
to constraints in terms of length on what can be reported in
a conference or workshop paper. Therefore we decided to
analyze conference and workshop papers separately from
journal papers and book chapters with respect to this
comparison criterion (see figure 3). As expected
experiments are used more often in journal papers while
the most used empirical evaluation techniques in
conference and workshop papers are case studies and
examples. Note that we found two journal papers (out of
21) with no data on any empirical evaluation. The two
journal venues are not listed in the Excellence in Research
for  Australia (ERA) journal and conference rankings;
Nevertheless, the two papers were listed in the results of
our automatic search.

Empirical Evaluation Material. The most occurring
evaluation materials are toy example (34 papers), fraction
of real world applications (18 papers), and industrial
applications (13 papers). 16 studies include no discussion
of the empirical evaluation material whatsoever: this
includes the ten studies with no evaluation, indicating that
six studies that report on an evaluation do not provide
details on the experimental material.

C. Time Trends
Since the UML has evolved over time we speculated

that our results would vary accordingly. Figure 4 (a) shows
an increase in the number of primary studies around the
year 2005. This can be caused by two factors. First, the
more precise semantics of UML 2.0, released in 2005,
might have made the UML more appropriate for testing.
Second, 2006-2011 is the overlapping period between the
manual and automatic searches. Therefore, the manual
search could be the main cause of this increase. To better
identify the root cause of the increase, we identified the
papers found by only one or the other type of search and
the papers found by both searches during the overlapping
period 2006-2011: Figure 4 (b). The figure starts in 2005
to better present the trend for the automatic search. It
shows that the trend is mostly due to the automated search.

Figure 3. - Classification of journal and conference papers based on
empirical evaluation method

627Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

We therefore conclude that the increase is due to the
release of UML 2.0.

V. THREATS TO VALIDITY

In any research work, there might be factors that can
jeopardize validity. Our work is no exception and we need
to discuss threats to validity. Systematic literature reviews
and mapping studies are typically performed by a group
composed of multiple researchers. In order to limit the
threat of not having many researchers involved in the
process, we followed guidelines [8] whereby we clearly
defined and documented the important steps of the study
including the review protocol, the research questions, the
search strategy, the inclusion/exclusion criteria. These
aspects are paramount to our study and results and this is
the reason why we devoted a fair amount of space to
describe them in this paper.

As mentioned before, both manual and automatic
searches have advantages and drawbacks and we used
both. One possible threat is that we might have missed a
relevant (conference or journal) issue. However, our
search was iterative and the dynamic search fed the
manual one. Plus, the automatic search was not restricted
in any way with that respect. Last, our knowledge of
software testing research tells us that missing a venue is
unlikely. A related threat is the possibility to miss a
relevant paper from the identified venues because we
manually selected them by only looking at the title,
abstract, and keywords. However, when this information
was not sufficient to make a decision we also looked at the
introduction, the conclusion and the entire paper. This was,
however, only necessary in a few cases, and we are
confident we did not miss important papers. Another threat
related to papers is the identification of primary studies.
Although we tried to define a precise set of
inclusion/exclusion criteria, there is always a chance of
introducing a bias while applying them to different papers.
Given the definition of those criteria, we however consider
the risk is low. Note that we focused our study on UML-
based RBT. We therefore excluded papers that describe
testing techniques based on finite state machines (FSM) or
extended finite state machines (EFSM). We do not
consider this a threat, even though some of the (E)FSM
techniques could be used in a UML context, since these
techniques can be studied separately, there is a vibrant
research community studying these techniques and there
exists surveys describing them [9, 11].

The last threat to validity is about the classification of
the primary studies. We tried to limit this threat by making
our comparison criteria as precise as possible. We also
reused existing classifications as much as possible.
Nevertheless, there can always be cases for which the
classification is affected by personal judgments (e.g.,

determining level of automation). In order to reduce the
risks of introducing a bias in paper classification, 10% of
the primary studies were selected randomly by the first
author and submitted for classification to the second
author. A few minor disagreements were noted and easily
fixed.

VI. CONCLUSION AND FUTURE WORK

Requirement-based testing aims at starting testing-
related activities as early as possible during the software
development life cycle [1]. Since software testing is
expensive, a great deal of research has been performed in
the area of requirement based testing, with the hope to
reduce testing costs. Unfortunately, as far as we know, to
date, no systematic mapping study can help determine the
current state of the art in requirement based testing.

The goal of our systematic mapping study was to
identify published research works in the area of
requirement-based software testing, and then provide a
framework to evaluate them. Since the domain of
requirement based testing is broad, such a mapping study
is an important initial step before conducing more specific
systematic literature reviews. In order to identify relevant
papers we performed both an automatic search and a
manual search, which resulted in about 1,300 papers. After
removing duplicates and applying inclusion/exclusion
criteria we obtained a set of 100 primary studies, which we
compared by using seven complementary criteria.

The results of the classification lead us to make a
number of interesting observations, including: (1) Almost
all the primary studies (99%) discuss a functional testing
technique. This indicates a lack of requirement-based
testing approaches that address non-functional

(a)

(b)

Figure 4. (a) Distribution of primary studies over time and (b) found by
different search methods

628Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

requirements. This is however not entirely surprising since
other UML diagrams than the ones we studied might be
needed to specify and therefore test non-functional
requirements; (2) Only a very small proportion of the
primary studies (4%) evaluated different requirement-
based testing techniques, suggesting a need for more
empirical comparisons of requirement-based testing
techniques; (3) A relatively small percentage of the
primary studies (22%) provide a formal evaluation of the
proposed testing technique under the form of an
experiment. When only looking at primary studies
published in journal venues, the proportion is higher
(48%), though we observed that 23% of the journal papers
only evaluate the proposed testing technique with an
example or provide no evaluation; (4) The test selection
criteria being used in the proposed requirement-based
testing techniques seem to be among the simplest that have
been suggested in the testing literature. For instance, we
did not find a single primary study where data flow criteria
are used, although data flow selection criteria can be used
in sequence, activity, or state machine diagrams and they
are known to complement control flow criteria.

Our future work includes an analysis of the primary
studies in a qualitative way to answer questions like: What
limits the application of the proposed techniques? What
are the avenues for further research in UML-based,
requirement-based software testing? We also plan to
extend the scope of the review to other requirement
modeling techniques than ones based on UML.

VII. ACKNOWLEDGMENT

This work was performed under the umbrella of a
NSERC-CRD grant. The authors would like to thank
NSERC, CRIAQ, CAE, CMC Electronics, and Mannarino
Systems & Software for their financial support.

VIII. REFERENCES

[1] G. Amit and B. Rajesh, “Testing functional requirements using B
model specifications,” Software Engineering Notes, 35, 2010, pp.
1-7.

[2] P. Ammann and J. Offutt, Introduction to Software Testing,
Cambridge University Press, 2008.

[3] N. Asoudeh and Y. Labiche, “Requirement based software testing
in a UML context: A systematic literature review”, Tech. Rep.
SCE-108,2011. Avialable from ,squall.sce.carleton.ca/ pubs/
tech_report /TR_SCE-11-08.pdf [retrieved: October, 2012]

[4] B. Beizer, Software Testing Techniques, International Thomson
Computer Press, 1990.

[5] P. Brereton, A. B. Kitchenham, D. Budgen, M. Turner ,and M.
Khalil, “Lessons from applying the systematic literaturereview
process within the software engineering domain”, JSS, vol. 80,
2007, pp. 571-583.

[6] B. Dobing and J. Parsons, “How UML is used,” Com. of the ACM,
vol. 49, 2006, pp. 109-113.

[7] C. Jones, Software Engineering Best Practices: Lessons from
Successful Projects in the Top Companies, McGraw-Hill, 2009.

[8] B. A. Kitchenham, “Guidelines for performing systematic
literature reviews in software engineering,” Tech. Rep. EBSE-
2007-001, 2007.

[9] R. Lai, “A survey of communication protocol testing,” JSS, vol.
62, 2002, pp. 21-46.

[10] A. V. Lamsweered, Requirements Engineering, Wiley, 2009.
[11] D. Lee and M. Yannakakis, “Principles and methods of testing

finite state machines-a survey,” Proc. of the IEEE, vol. 84, 1996,
pp.1090-1123.

[12] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of
UML model consistency management,” IST, vol. 51, 2009, pp.
1631-1645.

[13] A. Neto and G.H. Travassos, “Evaluation of model-based testing
techniques selection approaches: An external replication,” Proc.
ESEM, 2009, pp. 267-278.

[14] A. Neto and G.H. Travassos, “Model-based Testing Approaches
Selection for Software Projects,” IST, vol. 51, 2009, pp. 1487-
1504.

[15] T. Pender, UML Bible, Wiley, 2003.
[16] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic

mapping studies in software engineering,” Proc. EASE, 2008, pp.
68-77.

[17] S. Pickin, C. Jard, T. Jeron, J.M. Jezequel, and Y. Le Traon, “Test
synthesis from UML models of distributed software,” IEEE TSE,
vol. 33, 2007, pp. 252-269.

[18] A. Pretschner, “Model-based testing in practice,” Proc. Formal
Methods, 2005, pp. 537-541.

[19] P. Samuel, R. Mall, and P. Kanth, “Automatic test case generation
from UML communication diagrams,” IST, vol. 49, 2007, pp. 158-
171.

[20] F. Shull, J. Singer, and D.I.K. Sjoberg, Guide to Advanced
Empirical Software Engineering, Springer, 2008.

[21] S. Vegas and V. Basili, “A Characterization Schema for Software
Testing Techniques,” ESE, vol. 10, 2005, pp. 437-466.

[22] C. Wholin, P. Runsen, M. Host, M. C. Ohlsson, B. Rengell, and A.
Wessslen, Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publishers, 2000.

[23] RTCA: Software Considerations in Airbone Systems and
Equipment Certification. Radio Technical Commission for
Aeronautics (RTCA), Standard Document no. DO-178C. (2011)

629Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

