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Abstract—The paper discusses intrusion detection systems
built using ensemble approaches, i.e., by combining several
machine learning algorithms. The main idea is to exploit the
strengths of each algorithm of the ensemble to obtain a robust
classifier. Network attacks can be divided into four classes:
probe, remote to local, denial of service, and user to root.
Each module of the ensemble designed in this work is itself an
ensemble using bagging of decision trees and is specialized in
the detection of one class of attacks. Experiments highlighted
the efficiency of the approach and showed that increased
accuracy can be obtained when each class of attacks is treated
as a separate problem and handled by specialized algorithms.
In all experiments, the ensemble was able to decrease the
number of false positives and false negatives.
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I. INTRODUCTION

Intrusion detection systems (IDSs) are monitoring devices
that have been added to the wall of security in order to
prevent malicious activity on a system. Here we will focus
on network intrusion detection systems mainly because they
can detect the widest range of attacks compared to other
types of IDSs. Network IDSs analyse traffic to detect on-
going and incoming attacks on a network. Additionally, they
must provide concise but sound reports of attacks in order to
facilitate the prevention of future intrusions and to inform the
network administrators that the system has been compromised.
Current commercial IDSs mainly use a database of rules
(signatures), to try to detect attacks on a network or on
a host computer. This detection method is presently the
most accurate, but also the easiest to evade for experienced
malicious users, because variants of known attacks (with
slightly different signatures) are considered harmless by the
IDS and can pass through without warning. New attacks
and attacks exploiting zero-day vulnerabilities can also slip
through the security net if their signatures are unknown to
the IDS. (A zero-day vulnerability is a software weakness
unknown by the system developers which potentially could
allow an attacker to compromise the system. ‘Zero-day’ refers
to the first day, day zero, that the vulnerability is observed.)

Hence there is a need for mechanisms allowing the IDS
to learn by itself how to detect previously unseen attacks or
variants of known attacks. However, the problem is further
complicated by the extreme requirements of robustness of
the IDS. It must be able to detect all previously seen and
unseen attacks without failure, it must never let an attack
pass through unnoticed, and it must never deliver unwanted

warnings when the traffic is in fact legitimate. For a summary
of the main challenges that machine learning has to overcome
to be useful for intrusion detection, see [1].

Despite this, several attempts have been made to build
automatically adaptable intrusion detection systems using
various machine learning algorithms. So far though, the ma-
chine learning classifiers trigger too many false alarms to be
useful in practice. Part of the problem is the lack of labelled
datasets to train the classifiers on. The only labelled dataset
available is the KDD99 dataset (www.sigkdd.org/kddcup)
which is an adaptation of the DARPA98 dataset created in
1998 by the Defense Advanced Research Projects Agency
(DARPA). To address these problems, new machine learning
paradigms have been introduced in the field of intrusion
detection, and in general the machine learning community has
in recent years paid more attention to ensemble approaches,
i.e., combinations of several machine learning algorithms.

Network attacks can be divided into four classes: probe,
remote to local, denial of service, and user to root. Most
previous machine learning-based solutions include a single
algorithm in charge of detecting all classes of attacks. Instead,
in this work, one module of an ensemble is specialised on
the detection of attacks belonging to one particular class.
The main idea is to exploit the strengths of each algorithm
of the ensemble to obtain a robust classifier. Ensembles are
particularly efficient in cases like this, when a problem can
be segmented into parts, so that each module of the ensemble
is assigned to one particular subproblem. The modules in
turn include one or more algorithms cooperating together.

Furthermore, each class of attacks is characterized by very
specific properties, observable through the values of certain
features on instances in the dataset belonging to a specific
class of attacks. However, even though feature selection is
often applied in IDSs using machine learning techniques,
often only one set of features is selected for all classes
of attacks. In this work, one set of features is selected for
each class of attacks according to their relevance to the
corresponding class. The corresponding algorithm(s) is then
fed with the appropriate set of features. The system can, in
theory, reach a very high accuracy with a small cost, and
the ensemble processing can potentially be parallelized.

The rest of the paper is laid out as follows: First Section II
gives an overview of the state-of-the-art by introducing the
resources and methods used in the experiments and describing
related work, in particular focusing on previous efforts in
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applying ensemble-based methods to intrusion detection. The
core of the paper is Section III which details two rounds of
experiments carried out, on feature selection for ensembles
resp. on feeding an ensemble of machine learning algorithms
with the most successful sets of features identified. Section IV
then discusses the results of the experiments at length and
points to ways in which the present work could be extended.
Finally, Section V sums up the previous discussion.

II. ENSEMBLE-BASED INTRUSION DETECTION

The ensemble method is a way to build different types
of approaches to solving the same problem: the outputs
of several algorithms used as predictors for a particular
problem are combined to improve the accuracy of the overall
system. The difficulty of ensemble approaches lays in the
choice of the algorithms constituting the ensemble and the
decision function which combines the results of the different
algorithms. Often, the more algorithms the better, but it is
important to take into account the computational expense
added by each new algorithm. The decision function is
often a majority vote which is both simple and efficient,
but alternatives should be analysed to obtain an optimal
combination. Another advantage of ensemble approaches is
their modular structure, unlike hybrid constructions which
are engineered with algorithms having non-interchangeable
positions. Consequently, the ensemble designer can easily
replace one or more algorithms with a more accurate one.

Bagging and boosting are the two main techniques used to
combine the algorithms in an ensemble. In an ensemble using
the boosting technique, the algorithms are used sequentially.
The advantage of this technique is that the most difficult
examples can be classified correctly without adding too much
computational overload. In an ensemble using the bagging
technique all algorithms of the ensemble are used in parallel.
In this case, each algorithm builds a different model of the
data and the outputs of all predictors are combined to obtain
the final output of the ensemble. In order to build different
models, either each algorithm of the ensemble, or the data
fed to each algorithm, or both, can be different. Since all
algorithms perform in parallel, each of them can be executed
on a different processor to speed up the computation.

A. The KDD99 Dataset

As observed in the introduction, part of the problem of
automatically creating good intrusion detection systems is the
lack of labelled datasets to train on. The only one available is
the KDD cup 99 dataset, which was used for the first time in
the 3rd International Knowledge Discovery and Data Mining
Tools Competition in 1999. It is based on the DARPA98
dataset (built during the DARPA98 IDS evaluation program)
which includes seven weeks of data from traffic passing
through a network engineered for the purpose, i.e., the traffic
was generated in a simulated and controlled environment.

Table I shows the distribution of instances of the KDD
cup 1999 training and test sets over the different classes. All
the examples are separated into the class Normal and four
different classes of attacks: Probe, R2L (remote to local),
DoS (denial of service), and U2R (user to root). Each entry

Table I
TYPES OF ATTACKS IN THE KDD CUP 99 DATA SETS

Set Normal Probe R2L DoS U2R

Training 972,781 41,102 1,126 3,883,370 52
Test 60,593 4,166 16,347 229,853 70

in the sets is represented by 41 features such as duration,
src_bytes, dst_bytes, etc., and a label. The training
set contains 4,898,431 entries and is highly unbalanced.
Whereas the DoS class contains 3,883,370 instances, the
classes U2R and R2L are represented by only 52 and 1,126
instances, respectively. With such a small number of examples
to train on, it can be expected that it will be difficult for the
classifiers to predict the correct classes of unseen examples.

The test set is composed of 311,029 entries with a
distribution of the examples over the different classes similar
to that in the training set. However, the number of examples
belonging to the class R2L is more than ten times higher, so
that in order to perform well on the test set, the predictor must
acquire a very high power of generalisation. Most importantly,
the number of unseen attacks added in the test set is huge: for
the classes U2R, R2L and Probe, it is respectively 44.29%,
63.34% and 42.94%. Furthermore, the attacks “spy” and
“warezclient” belonging to the class R2L are not represented
in the test set. In particular, “warezclient” attacks count for
more than 90% of the R2L training set. Finally, two entries
in the test set erroneously have a service value of ICMP,
as also previously reported [2]. Those were removed from
the test set before the experiments reported in Section III.

The major criticisms of the KDD99 dataset include the
unbalanced distribution of the data, the redundant records
which can introduce a bias in the learning phase because of
their frequency, that the dataset includes old attacks which
have been mostly mitigated, and that the data were captured
from a controlled environment somewhat different from what
is observed in the wild. The first two issues can be addressed
by sampling appropriate sets of examples in each class.
However, the distribution of R2L attacks in the training set
and the test set is a problem which is difficult to overcome.
Nevertheless, the KDD99 dataset is far from useless. Firstly,
if an IDS using machine learning does not perform well
on old attack provided that the data are well sampled, why
would it on newer ones? Furthermore, most of the research
in the field of machine learning applied to intrusion detection
uses the KDD99 dataset, making it a vector of comparison
between different approaches. The controlled nature of the
environment in which the data were captured is probably the
most problematic. For example, the high number of attacks
in comparison to normal traffic does not reflect the reality
of a network in which almost all traffic is normal.

B. Related Work

Intrusion detection systems have been around since the 80s.
In the late 90s researchers in artificial intelligence started to
incorporate their algorithms to improve IDSs. An intrusion
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detection system should be able to autonomously recognize
malicious actions in order to defend itself against variants
of previously seen attacks and against attacks exploiting
zero-day vulnerabilities. Misuse-based IDSs can only detect
attacks whose signatures are available in their signature
database. Signatures of attacks are very specific, and a slight
variation of the attack can make it unnoticeable for the IDS.
That is why learning mechanisms must be implemented
to detect and prevent these attacks without having to wait
for an update of the signature database or a patch for the
vulnerable system. Still, machine learning algorithms are
designed to recognize examples similar to those available
in the training set used to build the model of the data.
Consequently, an IDS using machine learning would have a
hard time detecting attacks which patterns are totally different
from the data previously seen. In other words, even though
machine learning is a suitable candidate to detect variants
of known attacks, detecting completely new types of attacks
might be out of reach for these kinds of algorithms.

For a summary of most research involving machine
learning applied to IDSs until 2007, see [3] which covers a
range of techniques, including fuzzy sets, soft computing, and
bio-inspired methods such as artificial neural networks, evo-
lutionary computing, artificial immune systems, and swarm
intelligence; comparing the performance of the algorithms on
the KDD99 test set and showing that all algorithms perform
poorly on the U2R and R2L classes. The best results reported
are by genetic programming with transformation functions
for R2L and Probe and by linear genetic programming
(LGP) for DoS and U2R (with 80.22%, 97.29%, 99.7% and
76.3% accuracy, respectively). However, since ensemble-
based methods is a fairly new technique applied to intrusion
detection, their description in the review is somewhat limited.
The works on the topic date from 2003 and many papers
were written in 2004 and 2005. Recently, there has been a
renewed interest of ensembles in this field [4]–[6].

Abrahams et al. have performed three types of ensemble-
based experiments, all on a subset of the DARPA98 dataset
composed of 11,982 randomly selected examples: First, in [7],
an ensemble composed of different types of artificial neural
networks (ANN), support vector machines (SVM) with radial
basis function kernel, and multivariate adaptive regression
splines (MARS) combined using bagging techniques was
compared to the results obtained by each algorithm executed
separately. SVM used alone outperformed the other single
algorithms, but was totally outperformed by the ensemble.

Second, in [8], the combination of classification and
regression trees (CART) and bayesian networks (BN) in
an ensemble using bagging techniques was explored. Feature
selection was applied to speed up the processing: the
performance on the set of 41 features was compared to
a set of 12 selected by BN, 17 selected by CART and 19
features selected by another study. The final ensemble was
composed of three CART to detect Normal, Probe and
U2R examples, respectively; one ensemble of one CART
and one BN to detect R2L examples; and one ensemble of
one CART and one BN to detect DoS examples — with
each classifier trained on its resp. reduced set of features; an

approach quite similar to the one used in the present paper.
This was then extended by adding a hybrid model composed
of SVM and decision trees (DT) to the ensemble [9]. However,
the hybrid model did not seem to help much.

Third, in [10], fuzzy rule-based classifiers, linear genetic
programming (LGP), DT, SVM, and an ensemble were
evaluated using feature selection to reduce the number of
variables of the dataset to 12. The fuzzy rule-based classifier
outperformed the other methods when trained on all 41
features, while LGP seemed more appropriate when using a
smaller feature set. The ensemble was composed of one DT in
charge of the Normal instances, one LGP each for Probe,
R2L and DoS, and one fuzzy set of rules for U2R. The
results obtained with the ensemble were very encouraging
with accuracy > 99% for all classes (on the subset data).

Folino et al. [11] instead used the entire KDD99 dataset
and examined the performance of a system composed of
several genetic programming ensembles distributed on the
network based on the island model. The system showed
average performance for the Normal, Probe and DoS
classes, but very low for the U2R and R2L classes.

The key conclusion from all these works is that ensemble
approaches generally outperform approaches in which only
one algorithm is used. An ensemble is a very efficient way
to compensate for the low accuracy of a set of weak learners.
Moreover, feature selection should provide specific subsets to
train algorithms specialised in the detection of one particular
class of attacks. Mukkamala et al. [12]–[14] identified the five
most important features for each class of attacks. The features
were selected using SVM, LGP and MARS. Surprisingly,
neither protocol_type nor service was selected by
the three algorithms for the DoS class. In contrast, Kayacik
et al. [15] concluded that those features were the most
significant for that classs, even though their experiments
were conducted on hierarchical self-organizing maps (SOM).

III. EXPERIMENTS

The problem of intrusion detection can be divided into
five distinct subproblems, one for each class of instances
(Normal and the four types of attacks: Probe, U2R, R2L,
and DoS). Here each problem will be handled by one or more
algorithms of an ensemble, allowing each subproblem to be
treated separately in the experiments and to join the solutions
to the subproblems into a general solution for the problem
of intrusion detection. A dataset for each attack subproblem
was built by sampling a number of examples in one class of
attacks and the same number in the class Normal in order
to have a balanced dataset with 50% anomalous and 50%
normal examples (no algorithm was explicitly designed to
detect normal traffic). A balanced dataset is necessary to
avoid the problem of skewed classes where the accuracy of
the predictor can be made artificially high by increasing the
number of instances from one of the classes.

For the classes of attacks with few examples, R2L and
U2R, the entire set was selected. For the Probe class, 10,000
instances were selected randomly. This number was chosen
to have a significant sample with as many different examples
as possible without affecting the training time too much. The
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DoS training set contains 3,883,370 instances, with ‘neptune’
and ‘smurf’ attacks counting for the majority (with resp.
1,072,017 and 2,807,886 instances). The other types of attacks
have much smaller number of examples, e.g., the type of DoS
called ‘land’ is represented only 21 times. For this reason,
samples of 5,000 examples each were selected randomly
from the ‘neptune’ and ‘smurf’ sets. All examples of the
other types of attacks were included for a total of 13,467
DoS instances. For all four classes, the same number of
Normal instances was selected. The experiments performed
are in direct continuity of the work done by Mukkamala
et al. [12]–[14], which identified the key features relevant
to each of the four classes of attacks. The first step of the
experiments was to assess the sets of features selected in [12].
Then in a second round of experiments those sets were fed
to an ensemble of machine learning algorithms. All models
were evaluated by 10-fold cross-validation.

A. Experimental Setup

Figure 1 shows the model for the ensemble used in this
work. First, the network packet being analysed is sent to
four different detector modules, one each for Probe, R2L,
U2R, and DoS. Each module executes a preprocessing step
to extract a number of features from the packet; the set of
features varies depending on the module (as further described
in Section III-B). The extracted features are then dispatched
to different decision trees which have been previously trained
with the same features on the training set, as shown at the top
of the figure for the Probe detector. Each decision tree is a
binary classifier which outputs 0 if the packet is considered
normal traffic and 1 if the packet is classified as anomalous.
A vector of dimension n containing the output of n classifiers
is then fed to the module decision function. In the figure
n = 4, but it could be any number of algorithms.

Finally, a vector of dimension 4 containing the output
of each module is fed to the ensemble decision function
which combines the results and outputs a value describing
if the packet is considered normal or anomalous, and if
anomalous from which class of attacks. The easiest situations
are when all modules, or all modules except one, output
Normal. In the former case, the system classifies the packet
as normal. In the latter, the system classifies the packet
as anomalous and is able to unambiguously identify the
class of attack concerned. If more than one module classify
the packet as anomalous, it will be more difficult for the
network administrator to understand which class of attack
the anomalous packet belongs to.

The resulting model is an ensemble of ensembles with
feature selection applied independently for each module.
However, in this work, we will not be concerned with
the decision functions for each module. Instead, we will
evaluate the intersection of the sets of false positives and
false negatives produced by the four algorithms in each
module. This will give us the optimal performance that each
module could achieve. The most important advantages of this
model is the possibility to execute the algorithms in parallel
and the modularity allowing the exchange of any algorithm
of the ensemble without any modification of the rest.
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Figure 1. Model of the ensemble

B. Feature Selection Assessment

In the first experiment, several classifiers were trained with
different number of features. The goal of the experiment was
not to find the best algorithm possible and fine-tune it, but
rather to conclude on how well an algorithm performs with a
smaller set of features. In this case, it is only natural to use
exactly the same setting for the algorithms and to compare the
performance based only on the sets of features. Five decision
trees were trained with different sets of features. The results
obtained represent the performance of the algorithms on the
cross-validation set which is extracted from the training set.
The second experiment assessed performance on the test set.

The first classifier was trained with all 41 features in the
dataset. The next three were trained with 5 features selected in
[12] for each class of attacks by the three algorithms support
vector machines (SVM), linear genetic programming (LGP)
and multivariate adaptive regression splines (MARS). The
last classifier was trained on a “combined” set of features: the
union of the feature sets selected by the three algorithms. The
number of features in the “combined” set is 11 for Probe,
14 for U2R, 11 for R2L and 12 for DoS. These additional sets
help bringing down the number of false positives and false
negatives, as we will see in the results of the experiments.

As displayed in Figure 1, the algorithm used as a classifier
was decision tree (DT). Attempts were also made to use an
SVM with a Gaussian radial basis function kernel. However,
it could have given an advantage to features picked by SVM
when used for feature selection, and it seemed that the choice
of SVM greatly affected the set of features selected by MARS.
Furthermore, SVM was much slower than DT, roughly two
orders of magnitude both for training and classification. In
particular classification time is an important criterion to take
into account when building a real-world application.

659Copyright (c) The Government of Norway, 2012. Used by permission to IARIA.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Table II
ACCURACY OF THE FEATURE SELECTION ASSESSMENT

Classifier Probe U2R R2L DoS

DT: 41 features 99.865 93.000 99.022 99.948
DT: 5 SVM features 99.815 96.000 98.578 93.346
DT: 5 LGP features 99.320 90.000 97.378 98.689
DT: 5 MARS features 99.750 97.000 98.044 99.863
DT: 11–14 combined features 99.895 96.000 98.933 99.948

The results obtained in terms of accuracy are shown in
Table II and can be compared to those obtained with 41
features by [9] using the same decision tree. For the class
Probe, the accuracy is exactly the same as in [9]: 99.86%.
The classifiers trained with sets of 5 features are not far
behind the one trained with all 41. The reduced feature sets
seem to be a good choice when the algorithms are trained
using decision trees. However, the classifier fed with the 5
features selected by LGP performs slightly worse than the
others and could be replaced by a more accurate algorithm.

The results for U2R are worse than for Probe, but this
was expected: each false positive and false negative has a
larger impact on the general accuracy due to the small number
of examples. The results are much better than the 68.00%
accuracy obtained by [9] on U2R. However, the classifier
trained on features selected by LGP again perfomed poorly.
Interestingly, the algorithms trained on the features selected
by SVM and MARS outperformed the one trained on all
features. This is probably since 41 features are too many to
generalize from given the small number of examples.

The results for R2L are similar to those obtained for
Probe, even though the number of instances in the dataset
is much smaller. The results are also much better than [9]
who obtained 84.19% accuracy on this class. This experiment
clarifies that classifying Probe attacks and R2L attacks are
two very distinct problems, even if they are both intrusions,
which is why they should be treated separately. Again, the
selected features seem to be a good choice even if a small
drop of accuracy can be observed compared to Probe. The
classifier trained on the features selected by MARS has a
high rate of false positives and the one trained on features
selected by LGP has the lowest accuracy, but also a lower
false positive rate which implies a higher false negative rate.
DoS also shows better results than [9] who obtained

96.83% accuracy. The classifier trained on features selected
by SVM obtained the worse score, whereas features selected
by MARS gave the best score after the set of all features
and the combined feature set. This is important since there
is a set of 5 features that can perform almost as well as the
full feature set even on larger number of training examples.

The overall numbers of false positives (FP) and false
negatives (FN) drop significantly when using more than one
algorithm, as Table III shows. For the FP and FN analysis,
we call ensemblemax the number of examples wrongly
classified by all three algorithms trained on sets of 5 features
and the one trained on the “combined” feature set. This is the

Table III
FEATURE SELECTION ASSESSMENT: FALSE POSITIVES AND NEGATIVES

Probe U2R R2L DoS

Classifier FP FN FP FN FP FN FP FN

DT: 41 features 12 17 4 3 17 10 6 8
ensemblemax 0.7 3 0.3 0.3 6.6 0.5 0 1.6

maximum an ensemble composed of these four algorithms
could achieve if the combination of their individual results
was optimal; here calculated by taking the intersection of
the set of examples misclassified for each algorithm. The
experiment was run ten times for each class of attacks to
ensure accuracy of the results and to find the types of attack in
each class misclassified most of the time by ensemblemax.

All types of Probe attacks appear at least once as an FN,
however, ‘satan’ and ‘portsweep’ seem to be the most difficult
attacks to detect. When comparing the problematic instances
of ‘satan’, ‘portsweep’ and ‘ipsweep’ with true instances
of the same attack types, it seems that src_bytes is the
feature that gives the classifiers most trouble. In fact, for
probe attacks, src_bytes should be very small if not equal
to zero; when an example of these attacks has a high value for
src_bytes, it goes undetected. This is a big problem since
an attacker could easily fill the packets of the attack with
random bytes to evade the IDS. It could seem like a good
idea to get rid of this feature; however, src_bytes is very
important to detect Probe attacks: the only classifier that
performs poorly is the one trained on the features selected
by LGP, a feature set that does not include src_bytes.

For the U2R class, in general either one FP or one FN
appears in each test run. The FP can be explained by the
small number of examples in the dataset, only 52 Normal
examples are present. The FN is always a ‘rootkit’ attack
which is wrongly classified as normal traffic, but it is not
always the same instance, indicating that some information
is missing for the decision tree to classify ‘rootkit’ attacks.
These can be any kind of malware such as worm, Trojan or
virus with the ability to hide its presence and actions to the
users and processes of a computer; this is called a stealth
attack. The diversity found in malware probably has a huge
impact on the problem. Moreover, there are only 10 ‘rootkit’
attacks in the dataset, increasing the difficulty. Examining
the values of these examples for the 14 features of the
combined algorithm revealed that almost all 10 instances have
very different values for those features. The ensemblemax

performs perfectly in most cases, but it is difficult to conclude
anything with such a small dataset: One FP or FN out of 10
instances of the cross-validation set is quite a bad score.

The combination of all algorithms helps to bring down the
number of false positives and false negatives also for R2L, but
these numbers are again too high for a real-world application.
There are eight different types of R2L attacks represented
in the training set. After running the experiments ten times,
only three types of these attacks trigger false negatives for
the ensemblemax: ‘spy’, ‘imap’ and ‘phf’. There is not
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Table IV
ACCURACY OF THE MODEL ASSESSMENT

Classifier Probe U2R R2L DoS

DT: 41 features 93.087 90.000 50.000 79.345
DT: 5 SVM features 77.628 40.000 50.000 87.698
DT: 5 LGP features 87.482 83.571 61.033 76.105
DT: 5 MARS features 84.037 85.000 50.000 82.200
DT: 11–14 combined features 79.969 94.286 50.000 85.361

much documentation about ‘spy’ attacks which are not even
represented in the test set. However, the signatures of ‘imap’
and ‘phf’ are described in [16]. Detection of these attacks
requires very specific features. In the case of an ‘phf’ attack,
the IDS “must monitor http requests watching for invocations
of the phf command with arguments that specify commands
to be run” [17]. None of the 41 features in the KDD99 dataset
gives any information about a specific command being run on
the system. It would be impractical to do so for each specific
command vulnerable to an attack. However, this could be the
reason why the machine learning algorithms are incapable
of detecting these kind of attacks with certainty. There are
two ways to solve this problem, either new features could
be added to the dataset or an IDS using signatures of attacks
should perform the detection for these particular types of
attacks. In the former case, the new features should not be too
specific to ensure that new attacks could also be identified.
In the second case, the IDS loses its ability to detect similar
attacks but its accuracy increases. To detect an ‘imap’ attack,
an IDS should be “programmed to monitor network traffic for
oversized Imap authentication strings” [17]. This seems more
within reach of our IDS, since service and src_bytes
are both represented in the feature set.
ensemblemax was highly successful on the DoS class,

returning zero FP. Table III shows that the number of FN is
reduced as well. Three types of attacks trigger FN: ‘smurf’,
‘neptune’ and ‘back’. The first two rarely appear in the list;
however, the third seems to be the most difficult type to
handle. This is not a surprise, since to detect a ‘back’ the
IDS must look for a big number of frontslashes (“/”) in the
request URL [16]. There are no features in the dataset taking
this particularity into account. Consequently, the model has to
rely on other features to make up for the lack of information,
leading to an imperfect result. Nevertheless, as expected,
ensemblemax brings robustness to the accuracy of the IDS.

C. Model Assessment

In the second round of experiments, several classifiers
were trained with different number of features on examples
from the training set. Again the algorithm used as classifier
was decision tree. The goal of the experiment was to evaluate
the model used in the previous experiment on the test set
after training on the same number of examples as selected
for the training set for each class in the first experiment. As
discussed in Section II-A, the test set is composed of many
examples of unseen attacks (attacks that are not represented
in the training set). The experiment aimed to assess if the

Table V
MODEL ASSESSMENT: FALSE POSITIVES AND FALSE NEGATIVES

Probe U2R R2L DoS

Classifier FP FN FP FN FP FN FP FN

DT: 41 features 86 490 3 11 0 16,347 69 7,268
ensemblemax 11.4 524 1.6 1 1 7,779 16.6 688

ensemble was capable of generalizing to new types of attacks
belonging to the same classes as the ones previously seen.

In most cases, the accuracy of all algorithms degraded
drastically in comparison to the first experiment as shown in
Table IV, where the values represent one run of the program.
In particular, the set of features selected by SVM obtains
the worst results, and does not seem to generalize well to
new types of attacks. The set selected by LGP managed
to keep a respectable accuracy on the Probe class, while
all classifiers except SVM showed results very similar to
those in the feature selection experiments on U2R, with the
“combined” set of features being the best one, outperforming
even the algorithm trained with all 41 features in the same
way that was observed in the feature selection experiment.

Particularly bad results could be expected for R2L because
of the poor distribution of attacks in the training set, and
Table IV confirms this: the accuracy of all algorithms is equal
or close to the 50% guessing baseline. Most of the attacks
are ‘warezclient’ (1020 out of 1126 in total for the R2L
training set) leaving only 106 instances of all other attack
types (seven different types) to train on — and ‘warezclient’
is not even represented in the test set. There is no chance
that the models built would perform well on new attacks (or
even on old) with this limited training set. Also the results
for DoS were much worse than in the first experiment, with
the set of features selected by LGP obtaining by far the worst
results. Nevertheless, all other algorithms performed better
than the one trained with all features.

As Table V shows, the ensemblemax is able to handle
part of the new attacks, but does not recognize them as easily
as the old ones, and the number of false negatives is very
high for most classes. For Probe, the most surprising fact
is that the attack ‘ipsweep’ seems to go undetected almost
all the time. This result is unusual because ‘ipsweep’ was
available in the training set and did not cause any trouble in
the previous experiment. One reason for this could be if the
examples of ‘ipsweep’ from the test set were very different
from the ones in the training set. However, after examining
the training set carefully, typical values for the features of an
‘ipsweep’ attack were observed, and it appears that the values
of ‘ipsweep’ in the test set are in the same range as those in
the training set. To conclude, the results are not as bad as
they look. First, almost all old attacks are perfectly detected,
especially ‘portsweep’ and ‘satan’ which triggered FN in the
first experiment are now absent from the attacks triggering
FN. The new attacks are detected most of the time, but the
number of FN is still too high to be useful in a real-world
application. Finally, solving the problem of ‘ipsweep’ would
substantially bring down the number of FN.
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For U2R, the ensemblemax brings down the number of
FP to 1 and the number of FN to 0 with an average value
of 1.6 and 1.0, respectively, over five runs of the program.
As expected, sometimes a ‘rootkit’ attack goes undetected,
just as in the first experiment. Besides, ‘ps’ also rarely
appears as an FN. The most surprising result comes from
undetected ‘buffer overflow’ even though it never happened
in the previous experiment. However, ‘xterm’ and ‘sqlattack’
are detected all the time which is good because it means that
the ensemblemax generalizes well for the U2R class.

The number of FN for R2L explodes. Old and new types
of attacks are similarly misclassified. The only conclusion
that can be drawn is that the R2L training set contains too
few examples of each type of attack to be of any help.

For DoS, the major part of FN are due to new attacks. ‘pod’
is the only old attack that regularly triggers a few FN, while
other old attacks such as ‘smurf’ and ‘neptune’ sometimes
trigger FN, but the number of FN for those are very low. New
attacks are more problematic, with ‘mailbomb’, ‘apache2’,
‘processtable’ and ‘udpstorm’ recurrently triggering FN, even
if most of these attacks are detected in general. Even though
its generalization power is limited, ensemblemax performed
quite well overall on unseen DoS attacks and helped bring
down both FP and FN. This is quite an improvement, but
again not enough for a real-world application.

IV. DISCUSSION AND FUTURE WORK

The Feature Selection Assessment experiments showed that
the ensemble approach is indeed a very powerful paradigm
that can be used to bring down the number of FP and
FN. The lower accuracy observed by individual algorithms
is countered by the union of their results. Even with sets
containing only five features, the results are very encouraging.
Moreover, treating each class of attack as a different problem
solved by a specialised algorithm seems to work well when
compared to strategies using one algorithm to detect all
classes of attacks. “Divide and conquer” and “Unity is
strength” seem to be opposite views, but they are actually
both applied in this work with impressive results. In general,
algorithms using fewer features have slightly lower accuracy
and prediction time but much lower training time. The
results obtained by Mukkamala et al. [7] seem to be correct.
However, the features selected by LGP give the worst result
in most cases except for DoS where it is the feature set
selected by SVM which performs poorly. Consequently, the
sets of features selected by LGP should be reconsidered for
all classes except DoS, while the set of features selected for
DoS by SVM should be replaced. The number of different
types of attacks that go undetected is very small and only
few examples of these attacks are problematic. Most of the
time, the problem lays in the lack of information contained
in the dataset. Some attacks require very specific features
and should probably be handled by specialized programs or
signature-based IDSs. The class Probe is a bigger problem
since most of the attacks belonging to this class exploit a
legitimate feature used by network administrators; as a result,
all types of Probe attacks trigger FN at some point, even
though ‘portsweep’ and ‘satan’ are the most problematic.

A smaller feature set means that less information must be
extracted from a network packet in the data preprocessing
phase. Since the accuracy is not lowered too much in the
best cases, this is a huge improvement that could be used in
real IDSs. Moreover, the union of all algorithms using fewer
features tremendously improves the accuracy: on average
over ten runs of the program, only 0.7 FP and 3 FN were
observed for Probe over 20,000 examples, 6.6 FP and 0.5
FN for R2L over 2,252 examples, 0.3 FP and 0.3 FN for
U2R over 104 examples, and 0 FP and 1.6 FN for DoS over
20,000 examples. Even though these results are much better
than what could be achieved with a single algorithm, they are
still quite far from being useful in a real-world application
where the false positives and negatives should be < 1 for
some 15 millions examples in a 10Gb/s Ethernet network.
Arguably, 90% of the 15 millions examples will be normal
traffic containing no attack at all, but ensemblemax still
has to be improved to stand a chance against clever hackers.

The results described above are the best that an ensemble
composed of these algorithms and sets of features could
achieve. In its current state, there is no point in building an
experiment to assess a real combination of the results of the
individual algorithms in the ensemblemax. Further work
will have to be carried out to find the best suitable algorithms
and sets of features. Nevertheless, it is interesting to see
how well this ensemblemax can perform when predicting
previously unseen attack types. That was the topic of the
second round of experiments, on Model Assessment. Even if
ensemblemax in general helps tremendously to bring down
the numbers of false positives and false negatives, it is still
far from reaching the accuracy appropriate for a real-world
application. In particular, datasets which are not carefully
designed are proven to be useless in building accurate models
of the attacks. This is the case with the R2L training set
which contains mainly examples of the ‘warezclient’ attack
which is not even represented in the test set and very few
examples of all other types of attacks. The performance of
ensemblemax was acceptable for the classes of attacks U2R
and DoS. The performance on the Probe class was also
standard, even though ‘ipsweep’ attacks went undetected for
unknown reasons. Overall, we can say that the results of this
second round of experiments were not very satisfying, but
once again proved the usefulness of the ensemble approach.

In the future, particular attention has to be paid to the
features relevant to each attack. New features carrying
meaningful information about the attacks must be designed to
help the machine learning algorithms to successfully classify
all types of attack. The DoS and Probe classes are mostly
characterized by time-related features, whereas R2L and U2R
mostly are characterized by content-related features extracted
from the payload of the network packets.

V. CONCLUSION

The aim of this work was to show that ensemble
approaches fed with appropriate features sets can help
tremendously in reducing both the number of false positives
and false negatives. In particular, our work showed that the
sets of relevant features are different for each class of attacks
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which is why it is important to treat those classes separately.
We developed our own IDS to evaluate the relevance of the
sets of features selected by Mukkamala et al. [12]. This
system is an ensemble of four ensembles of decision trees.
Each of the four ensembles is in charge of detecting one
class of attacks and composed of four decision trees trained
on different sets of features. The first three decision trees
were fed with sets of five features selected in [12]. The last
decision tree was fed with the union of these three sets of five
features from which the redundant features were removed.

The experiments showed that these sets were appropriate in
most cases. In the first experiment, the set of features selected
by linear genetic programming gave the worst results, except
for the class DoS for which the set of features selected by
SVM performed poorly. The second experiment gave less
interesting results because of the inappropriate distribution
of examples between the training and test sets of the KDD99
data. In particular, the ensemble could not generalize properly
on the R2L class because the training set mainly contains
a type of attack that is not represented in the test set. In
both experiments, we looked at the number of instances that
were misclassified by all four algorithms in order to obtain a
result from the best combination of these algorithms. Further
work would be required to develop a real decision function
combining the results of the different algorithms. However,
since the accuracy obtained here was not good enough for
a real-world application, designing decision functions was
unnecessary. Nevertheless, we are convinced that this work
is heading in the right direction in order to overcome the
limitations of current intrusion detection systems.

Finally, a thorough analysis of the examples that were
misclassified by the ensemble was performed, in particular
highlighting the types of attacks that were systematically
misclassified by the ensemble. By looking at the signatures
of these attacks, we were able to find the reasons for the
classification errors. In most cases, the attacks displayed
very specific features not captured by the set of variables in
the dataset. These attacks should probably be handled by a
specialized system or new variables should be developed to
train the classifiers.
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