
ME-DiTV: A Middleware Extension for Digital TV

An Architectural Proposal of A Middleware Extension based on Dynamic Context Changes for

Distributed System

Victor Hazin da Rocha¹ ², Felipe Silva Ferraz¹ ²,

Heitor Nascimento de Souza¹, Carlos André Guimarães Ferraz²

¹CESAR – Recife Center for Advanced Studies and Systems

{vhr,fsf,hns}@cesar.org.br

Informatics Center

²Federal University of Pernambuco (UFPE) Recife – PE, Brazil

{vhr,fsf3,cagf}@cin.ufpe.br

Abstract—This paper aims at providing a trustworthy

architecture for a middleware extension, based on geolocalized

context information, focused on the development of distributed

interactive applications for digital TV. The proposed solution

was built using the middleware Ginga. Although it has been

implemented for the Brazilian Digital TV System, the

architecture described in this paper can be applied to other

existing Digital TV middleware with the same benefits. Among

those, this work presents a project as a study case to

demonstrate the solutions viability and performance analyses

on its implementation furthermore this works aims to create

an easier way to build distributed, context-sensitive

applications.

Keywords-Digital TV;Distributed System; Middleware .

I. INTRODUCTION

Most recent data from Brazilian Institute of Statistics
shows that 97,2% of Brazilian homes have a Television
Device instead of that only 39,3%[1] residences that have a
computer. In this scenario, it is possible to realize that the
popularity of the television system plays an important role in
integration and distributed solutions..

The TV was not originally designed to provide an
infrastructure that enables applications and the challenge is
increased when we think about distributed applications,
whose development is more complex and requires mastery
and expertise by the developers [2].

The web pages or applications are usually available 24
hours a day. This is different from the scenario of television
programs, which are transmitted only at predefined times by
the broadcaster. Therefore, an interactive application sent by
the broadcaster is only available to the viewers during the
time in which the program is displayed. Thus, depending on
the audience of this program and the attractiveness of the
application, the application can have millions of
simultaneous accesses, overloading broadcaster servers.

This work´s main purpose is to present a middleware
extension that can be compatible with different systems and
will make development of distributed application easier.

This paper will first present concepts related to
Middleware architecture, followed by the proposition of a
Middleware Extension. Next, we present and discuss a case
study that uses Brazilian Digital Television infrastructure to
create a distributed voting system.

The outline of the rest of the paper is organized as
follows. Section 1 gives an introduction to the paper. Section
2 describes some middleware concepts. Section 3 describes a
few characteristics of Digital TV. Section 4 illustrates the
architecture of the proposed solution. Section 5 presents the
study case and Finally, Section 6 finishes the paper by
explaining a couple of conclusions.

II. MIDDLEWARE

Distributed systems create new problems that do not exist
in centralized systems, like connections problem or network
saturation [2]. The question is how to facilitate the
development or implementation of distributed applications in
such a way that is possible to solve additional
problems created by the distribution itself.

In principle, there are different options - from hardware

support level to the extension of programming languages to

enable support of distributed applications. Software

solutions typically provide flexibility because of their

suitability for integrating existing technologies (such as

operating systems and programming languages). These

conditions lead to the concept of Middleware.

Middleware offers general services to support

distributed applications execution. The term Middleware

suggests that it is software situated between the operating

system and the application. Viewing abstractly, Middleware

can be envisaged as a “tablecloth” that spreads itself over a

heterogeneous network, abstracting the complexity of the

underlying technology from the application using it [3].

There are several ways to categorize Middleware. In this

paper, we will use the four main types of Middleware found

in the literature. These are: transactional, procedural,

message-oriented and object-oriented middleware [4].

672Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

A. Transactional Middleware

Transactional Middleware supports transactions

involving components that run on distributed hosts. This

kind of Middleware was designed in order to support

distributed synchronous transactions. It should be used

when transactions need to be coordinated and synchronized

over multiple databases [4].

B. Procedural Middleware

Remote Procedure Calls (RPCs) were designed by Sun

Microsystems in the early 1980s as part of the Open

Network Computing (ONC) platform. Sun provided remote

procedure calls as part of all their operating systems and

submitted RPCs as a standard to the X/Open consortium,

which adopted it as part of the Distributed Computing

Environment (DCE) [5]. RPCs are now available on most

Unix implementations and also on Microsoft’s Windows

operating systems.

According to Pinus [4], RPCs could be used in small,

simple applications with primarily point-to-point

communication. RPCs are not a good choice to use as the

building blocks for enterprise-wide applications where high

performance and high reliability are needed.

C. Message-oriented Middeware

Message-oriented middleware (MOM) bear the

communication between distributed system components by

facilitating message exchange. According to Pinus [4], there

are two different types of MOM: message queuing and

message passing.

Message queuing is defined as indirect communication

model, where communication happens through a queue. A

message from one program is sent to a specific queue,

identified by name. After the message is stored in this

infrastructure, it will be sent to a receiver.

In message passing - a direct communication model - the

information is sent to the interested parties. One flavor of

message passing is publish-subscribe (pub/sub) middleware

model. In pub/sub clients have the ability to subscribe to the

interested subjects. After subscribing, the client will receive

any message corresponding to a subscribed topic. MOM

should be used in the applications where the network or all-

components availability is not trustable [4].

D. Object-oriented Middleware

Object-oriented Middleware (OOM), evolved from

RPCs, extends them by adding object-oriented concepts.

These concepts are: inheritance, object references and

exceptions. OOM allows referencing of remote objects and

can call operations on them. OOM should be considered for

applications where immediate scalability requirements are

somewhat limited. These applications should be part of a

long-term strategy towards object orientation [4].

III. DIGITAL TV

Digital TV is popular because of the the quality of the

image provided by the broadcaster. However, this concept is

minimalist. There are three deep concepts of Digital TV:

Interactivity, Portability and Connectivity; these concepts,

supported by software definitions, are the core of Digital TV

[6].

The interactivity and connectivity allows digital TV

viewers to submit content and to get a reaction from it. This

means it is possible for the viewer to interact with a

particular broadcast content [7].

A. Middleware Ginga

Ginga is the name of the middleware specification for

the Nipo-Brazilian Digital TV System (SBTVD, from the

Portuguese Sistema Brasileiro de TV Digital). It consists of

a set of standard technologies and innovations which make

the most advanced middleware specification and the best

solution for the brazilians requirements [6].

The middleware is divided into two main integrated

subsystems, which allow the development of applications

following two different programming paradigms. Those

subsystems are called Ginga-NCL (for declarative NCL

applications) and Ginga-J (for imperative Java applications).

The use of any of these two paradigms depends on the

requirements of each application [6].

In addition to making it possible to send applications to

compatible TVs, Ginga provides information about content

transmitted to the receiver through a set of tables, called SI

(Service Information). Among the tables that compose this

group we highlight the EIT (Event Information Table) and

NIT (Network Information Table). The EIT is responsible

for delivering information related to the program schedule,

while the NIT contains information about the network that

the content is being made[8].

Ginga-J was chosen to be used in this article because of

the support to the network layer of the Ginga middleware.

1) Ginga-J

Ginga-J is designed to provide an infrastructure for the

implementation of applications based on Java language,

with features aimed specifically for the digital TV

environment [9].

Ginga-J, as the name suggests, supports Java procedural

language. According to [10] " it is the logical subsystem of

the Ginga middleware responsible for processing

imperative applications written using the Java language".

IV. ARCHITECTURE

This section aims at describing the architecture of the

solution proposed by this work.

The first important project decision was the choice for

building a message-oriented middleware. This choice was

made because MOM systems can provide distributed

communication on the basis of asynchronous interaction

model allowing the system to continue processing once a

message has been sent [11].

673Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 1 shows the macro architecture for the

implemented solution. The middleware was divided

into three separate layers, which will be detailed below.

Figure 1. Macro Architecture

The described architecture is compatible with existing

middleware such as MHP [12] and Ginga [8]. The goal is to

facilitate the creation of distributed interactive applications

for Digital TV which can have millions of simultaneous

accesses, causing an application to work as a distributed

system, dividing the access to the servers based on the

context of the device responsible for TVs connection, called

as set-top box.

Application

Extension
Middleware

(Ginga/MHP/ARIB)

Java Virtual Machine

OS

Figure 2. Potential Middleware extension.

To make possible for the extension to be used by

existing middleware, the module presented in this paper was

developed in Java. This choice was made because Java is

the language used on the main Digital TV middlewares,

such as MHP, ARIB (Association of Radio Industries and

Businesses) and Ginga-J. Despite the fact that the extension

is not be incorporated into any TV middleware, it can still

have access to Middleware Features since it is presented in

the same level as other applications.. Figure 2 shows how

the extension is positioned connecting the Middleware and

the application, considering as basis a mixed architecture of

the MHP/ARIB/Ginga-J. The module presented in this

paper should include together with the application as is

highlighted in the Figure 2, this is required for not be

necessary to change the existing middleware

implementations.

For a possible adoption of this extension we choose to

use Ginga middleware. Figure 3 shows the usage scenario of

the proposed extension as part of a bigger structure.

1

1

1

1

The application is transmitted by

broadcast (1)

Server A

Server B

3

Naming Server

2

2

2
2

3

TV sends / receives data from the

server (3)

TV "search" the service in the

name server (2)

3

3

TV Station

Figure 3. Usage scenario

The first step is to build an application that makes use of

the feature of distribution based on location provided by the

extension; this application must be registered in the naming

service and sent by the broadcaster to viewers via broadcast

(1). When the application is received by the TV middleware,

a query is made to the naming service (2) to discover what

is the most appropriate server based on the location to

perform information exchanges. When the application

receives the reply of the naming service, it can finally

exchange information via messages with the broadcaster

server (3).

A. Infrastructure

Figure 4 shows the class diagram of this layer.

Figure 4. Class Diagram from Infrastructure Layer

This layer is responsible for sending messages to

the network layer within the operating system, making

transparent communication between processes and

applications that uses the middleware and hide the use

of sockets from the layers above.

Classes and methods of communication layer cannot be

called directly by the developer. It is only used by others

layers to send messages over the network.

674Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 5. Class Diagram from Communication Layer

B. Communication

The communication layer is the responsible for the

creation of each message that will be send through the

network and for the creation and management of queues.

This layer also makes abstract the sending of messages

to the application. Figure 5 has the diagram that represents

this layer.

Only the Sender and Receiver classes can be called by

the application developer, providing the mechanisms of

transparency of communication.

C. Common Services

This layer is responsible for providing naming service

and the location transparency. Furthermore, others services

could be provided such as, security service.

The services of this layer are available for use by both

the middleware and the application. The class diagram that

best describes the architecture can be seen in Figure 6.

Figure 6. Class Diagram from Common Services Layer

The service name of the proposed extension provides

four methods for application developers: bind, reBind

unBind, lookUp. The bind/rebind/unbind methods are

responsible to register/deregister a server/service in the

naming service, together with that, lookup method is

responsible for naming service and find server/service

address using the service name and the information about

who is transmitting the application, obtained from the

network. Since the information contained in the network is

part of the context of the set-top box (or the device), we

assume the naming service provided by the solution is

context-sensitive

V. STUDY CASE

To validate the architecture proposed in this paper, we

implemented a version for an extension compatible with the

Ginga middleware, using the Java 1.3. This is the Java

version compatible with Ginga [13]. Ginga was chosen

because it is the middleware of the Brazilian Digital TV.

The current implementation includes all the features that

were described in the architecture section, it contains a total

of 24 classes. This implementation contains more classes

that were explained in Figure 4, Figure 5 and Figure 6,

because some helper classes were created.

A. Voting System

To better evaluate the architecture two identical

applications were developed. The difference between them

is restricted to how they send objects across the network.

The App01 is the application that uses the middleware

extension built in this work, while App02 does not use the

extension.

The application chosen to be developed was a voting

system for reality shows. The system receives a vote given

by the user / viewer through some input device, in the

present case we use remote control and since the input is

received, the Middleware takes care of sending to the

broadcast server.

As the focus of this work is to facilitate the development

of applications making transparent the communication layer,

the GUI was not implemented.

The application works by pressing one of the input keys

in the remote control. The information of which button was

pressed is detected and then sent to the server via message.

675Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

String vote = "participant01";
Sender.getInstance().open();
Sender.getInstance().send(vote);
Sender.getInstance().close();

Figure 7. App01 Code

In Figure 7, we can see the code of App01, which is

responsible for sending the vote of set-top-box/television to

the server, this application uses the module constructed in

this work.

Figure 8 shows the code of App02 that is responsible for

doing the submission of the votes. Note that in App02 the

server address should be passed with the application, so

their location cannot be changed dynamically. In App01,

only the parameters defined in this paper must be sent

together with the application, and the server location could

change dynamically.

Socket clientSocket;
clientSocket = new Socket(Constants.APPLICATION_HOST,
Constants.APPLICATION_PORT);

ObjectOutputStream outToServer;
outToServer = new ObjectOutputStream(
 clientSocket.getOutputStream());

String vote = "participant01";
outToServer.writeObject(vote);
outToServer.flush();
clientSocket.close();

Figure 8. App02 Code

Looking at the code responsible for the communication

of the two applications, one can observe that the code of

App01 is much simpler and transparent than the App02.

Figure 9 shows the server code responsible for receiving the

votes from the App01, while Figure 10 contains the server

code of App02.

RemoteInformation ri = new
RemoteInformation(Constants.APPLICATION_PORT,
Constants.APPLICATION_HOST);

DirectoryServiceClient.getInstance().reBind(Constants.S
ERVICE_NAME,Constants.LOCALITY, ri);

MainReceiver r = new MainReceiver();
r.init();
public MainReceiver() {
 receiver = new Receiver();
}
public void init() throws InterruptedException {
receiver.open();
receiver.addMessageListener(new MessageListener() {
 public void onMessageReceived(MessageEvent event)
 {
 countVotes(receiver.receive());
 }
 });
}

Figure 9. App01 Server Code

Differently from clients, the server of App01 has more

code lines than the App02 server. This happens because the

middleware extension proposed in this paper enables

transparent error handling, and offers a names service,

allowing the server to changes its IP address dynamically.

int port = Constants.APPLICATION_PORT;
welcomeSocket = new ServerSocket(port);
Socket connectionSocket = welcomeSocket.accept();
ObjectInputStream input = new ObjectInputStream(
connectionSocket.getInputStream());
countVotes(input.readObject());
connectionSocket.close();
welcomeSocket.close();

Figure 10. App02 Server Code

In the next subsection, we will present an experiment to

evaluate the performance of the applications built here to

validate the proposed extension.

B. Validation and Results

To analyze the middleware impact, tests were executed

to measure the performance and reliability of the two

applications. The tests were made in a laboratory of Digital

TV with a television embedded with Ginga and a Playout

EITV, which is a complete TV broadcast station that can

perform transmissions containing TV programs in high

definition and interactive content [14]. The configuration of

the testing environment is illustrated in Figure 11.

TV

EITV Playout

Application Server

Naming Server

Figure 11. Test Environment

The test was done as follows: for each application, we

added a function to send 100 votes consecutively when one

of the colored keys on the remote control was pressed.

The modified applications were transmitted one at a

time, to the TV using the EITV Playout. For each

application, the time between the arrival of the first and last

on the server was measured. Each vote was sent separately,

a new connection was opened to send the vote, after send it,

the connection was closed. The experiment was done to

simulate an environment where a user wants to vote more

than once. The experiment was repeated five times only due

676Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

to the stability of the local network of the test environment,

and the results are shown in Table I.

TABLE I – TIME IN SECONDS BETWEEN THE ARRIVAL OF THE

FIRST AND LAST VOTE ON THE SERVERS

Id

Time(s) to complete send

action on App01

Time(s) to complete send

action on App02

1º 32,57 31,17

2º 31,99 31,48

3º 32,49 31,58

4º 32,26 31,73

5º 32,19 31,68

Avg

Function
32,30 31,53

Analyzing the results presented in Table I, we can

realize that App01 had a delay of less them 2,4% comparing

to App02. App01 shows its potential even losing in

performance, by using the localization and communication

transparency provided by this work proposal.

VI. CONCLUSION

This work proposed an extension that provides a

context-sensitive feature to applications, in a way to make

easier and more abstract communication for adopted

implementations. After a brief explanation about the

architecture, a proof of concept was developed and validated

using performance tests.

Even though the study case presented was developed for

Brazilian Digital Television Middleware, the proposed

solution can be adopted in different Middleware, or as a solo

API.

Through the analysis of the results, it can be seen that

the extension can decrease the performance in less than 3%,

but shows its power by creating an easier way to build

distributed, context-sensitive applications. Furthermore, it

guarantees a more dynamically and network-error free

environment since it abstract those scenarios.

ACKNOWLEDGMENT

This work is supported by the CAPES (process 23038-

023577/2008-23, AUX-PE-RH-TVD 385/2008).

REFERENCES

[1] IBGE, Síntese de indicadores sociais : uma análise das

condiçoes de vida da populaçao brasileira. IBGE, 2010.

[2] A. S. Tanenbaum and M. V. Steen, Distributed Systems -

Principles and Paradigms. Prentice Hall, 2002,.

[3] A. Puder, K. Römer, and F. Pilhofer, Distributed Systems

Architecture: A Middleware Approach. Morgan

Kaufmann, 2005.

[4] H. Pinus, “Middleware: Past and present a comparison” ,

2004. [Online]. Available:

http://www.research.umbc.edu/~dgorin1/451/middleware/

middleware.pdf. [Accessed: 20-Sep-2012].

[5] The Open Group, “DCE 1.1: Remote Procedure Call.”

[Online]. Available:

http://www.opengroup.org/public/pubs/catalog/c706.htm.

[Accessed: 20-Sep-2012].

[6] “Ginga Digital TV Middleware Specification,” 2012.

[Online]. Available: http://www.ginga.org. [Accessed: 10-

Sep-2012].

[7] L. Cosentino, “Software: a essência da TV digital,” in TV

Digital Qualidade e Interatividade, Brasília: IEL/NC,

2007, pp. 41–49.

[8] “ABNT NBR 15603-1:2007. Televisão digital terrestre -

Multiplexação e serviços de informação (SI) - Parte 1:

Serviços de informação do sistema de radiodifusão.” .

[9] “Site Oficial da TV Digital Brasileira,” 2012. [Online].

Available: http://dtv.org.br. [Accessed: 10-Sep-2012].

[10] L. F. Soares, “Ambiente para desenvolvimento de

aplicações declarativas para a TV digital brasileira,” in TV

Digital Qualidade e Interatividade, Brasília: IEL/NC,

2007, pp. 51–62.

[11] E. Curry, Message-Oriented Middleware, in Middleware

for Communications (ed. Q. H. Mahmoud), John Wiley &

Sons, Ltd, Chichester, 2004.

[12] “MHP,” 2012. [Online]. Available: http://www.mhp.org/.

[Accessed: 05-Sep-2012].

[13] “ABNT NBR 15606-6: Televisão digital terrestre –

Codificação de dados e especificações de transmissão

para radiodifusão digital - Parte 6: Java DTV 1.3.” 2010.

[14] “EITV Playout - Estação completa de TV digital

interativa para os padrões SBTVD, ISDB e DVB,” 2012.

[Online]. Available: http://www.eitv.com.br/playout.php.

[Accessed: 15-Sep-2012].

677Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

