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Abstract— This work presents a new load balancing policy for 
clustered web server systems. With this policy, every node in 
the cluster is responsible for dealing with a particular subset of 
request types. All requests are partitioned into disjoint groups, 
according to the domain data contained in their working sets. 
The composition of the working sets is established by using 
automatic data access pattern analysis and prediction 
techniques. Latent Dirichlet Allocation is employed as the 
partitioning algorithm to maximize the similarity (correlation) 
between the working sets of the requests placed in the same 
group. The working-set correlation is used explicitly with the 
aim of improving the data locality of all functionality that is to 
be executed on a given node, leading to more efficient use of 
computational resources and, ultimately, to increased 
performance. The work was validated on the TPC-W 
benchmark. 

Keywords-clustered web servers; load balance; locality 
awareness; Latent Dirichlet Allocation; scalability; performance. 

I.  INTRODUCTION 

Scalability is a crucial property for many web systems. A 
system is defined as scalable if it is possible to change it 
(e.g., by adding more hardware) when the volume of 
requests increases, so that it maintains the same performance 
(in terms of throughput, response time, etc.). It takes some 
careful engineering to achieve good scalability. The solutions 
usually consist in designing the system in a particular way so 
that whenever some of the supporting (software or hardware) 
resources are upgraded, the system will be able to deal 
transparently with growing workloads without compromising 
its performance. 

In the following, we use a classification of the existing 
approaches that is similar to the one presented by Cardellini 
et al. [5]. The simplest alternative for improving the 
performance of a web system is to upgrade the machine that 
is running the server to a machine with better specifications 
(e.g., processing units, disks, etc), which is referred to as 
hardware scale-up [7]. Unfortunately, this is a rather short-
term and not very cost-effective approach because the 
increase of the workload, often driven by the increase of 
clients, far outpaces the hardware performance growth that is 
viable to be achieved for a single machine. 

Many researchers concentrated their efforts on improving 
the performance of the server at the software level (software 
scale-up). Among these are improving the server's operating 
system [13, 14], developing more efficient web servers [16], 
and designing alternative request scheduling policies [6, 3]. 

Unfortunately, similarly to its hardware counterpart, 
improving the software performance of a single server is not 
a long-term solution to the web scalability issue. 

Another class of approaches considers distributed 
systems composed of multiple servers. The main objective of 
this type of solutions is to spread the workload of the 
incoming requests among the existing server nodes, 
attempting to maximize the usefulness of the available 
resources. The policy for distributing the requests is usually 
performed by a single component called the load balancer. 
Any web system solution that achieves scalability and better 
overall performance by means of multiple server nodes is 
referred to as a scale-out approach [7]. 

These can be further refined into global and local scale-
out solutions. The global scale-out approaches are 
characterized by having server nodes placed in 
geographically distinct locations, whilst a local scale-out has 
all nodes in a single network.  

Our work falls into the category of the local scale-out 
approaches referred to as cluster-based web systems. These 
approaches are characterized by having a single entry point 
(the load-balancer), which is the only visible component 
from the client point-of-view. This is done for transparency 
purposes, so that the clients do not need to be aware of the 
potential multiplicity of entities that are effectively 
processing their requests, thereby avoiding all issues that 
such knowledge would entail.  

The great majority of research in this field is concerned 
with the distribution of the workload in a uniform fashion 
among all server nodes. However, it has also been 
unequivocally demonstrated in [15], [1], and [8] that it is 
possible to achieve significant performance gains if the 
routing algorithm attempts to improve the data locality of 
server nodes when requests are being processed. In fact, it is 
well-known that to have good performance, a system should 
exploit and maximize its data locality. 

In this work, we do not attempt to distribute the workload 
uniformly among server nodes. There are plenty of already 
existing solutions that can be combined into the solution that 
we propose here to give it uniform workload distribution 
properties. Instead, in this work we concentrate on the issue 
of improving the efficiency and performance of clustered 
dynamic content web systems, by developing a request 
routing algorithm that explicitly takes into account the 
existing correlation between the working sets of incoming 
requests, distributing them in a way that tries to maximize 
the data locality of operations performed at server nodes. 
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With the solution proposed here, every server node 
processes only a particular subset of request types: The 
requests are partitioned into disjoint groups, based on the 
contents of their working sets. 

We identify the composition of the working set of each 
request type with the help of automatic data access pattern 
analysis and prediction routines. Then, we use the Latent 
Dirichlet Allocation partitioning algorithm to maximize the 
correlation between the working sets of all requests placed in 
a particular group. This is done to improve the data locality 
of all operations that are to be executed on a given server 
node, leading to a more efficient use of system resources and 
improved performance. 

The contributions of this work are twofold. First, the 
explicit use of the correlation between request working sets 
is new and there is no previously existing work that makes 
request distribution decisions in a similar manner. Second, 
the system that we propose is entirely autonomous and self-
sufficient in its operation,: from the analysis of the 
composition of the requests' working sets, up to the 
distribution of the incoming requests among operating server 
nodes, there is no point where human intervention is 
necessary in the decision making process. 

The article is organized as follows. Section II discusses 
related work. Section III describes our new proposal in 
detail. Section IV presents the benchmark that we used to 
evaluate the new proposal and discusses the results obtained. 
Finally, Section V presents some concluding remarks. 

II. RELATED WORK 

Scalability is an essential property for web systems that 
are expected to deal with a large volume of traffic and 
extensive variations in the number of clients. Thus, it is not 
surprising the sheer volume of research that has been 
performed in this domain. Given the scope of our work, in 
this section we limit our discussion of related work to 
research regarding request distribution for clustered web 
systems. Cardellini et al. [5] performed a comprehensive 
study of locally clustered systems, whereas Amza et al. [2] 
evaluated transparent scaling approaches tailored for 
dynamic content systems. 

Pai et al. [15] introduced the concept of locality-aware 
request distribution (LARD). The main idea behind this 
concept is that for a clustered web server system to have 
good scalability and operate efficiently, the load-balancing 
policy should take into account the content associated with 
incoming requests and redirect them so that the data locality 
of the server node responsible for processing them is 
improved. They use a hash function to partition the 
functionality provided by a given system (under the form of 
the types of requests that are available). The load-balancer 
uses this information to redirect requests so that every 
available server node is responsible for processing requests 
that belong only to a certain partition. This approach 
decreases the working-sets of all nodes to a portion of the 
system working-set, allowing for improved data locality and 
scalability. Pai et al. [15] performed simulations and 
validation on a working prototype, demonstrating that, 
through a locality-aware request distribution approach, it is 

possible to achieve significantly better scalability and 
performance than policies that do only uniform load 
distribution among nodes.  

The main issue that can be pointed out in the work of Pai 
et al. [15] is that the partitioning of request types among 
server nodes is performed by a hash function. The fact that 
the partitioning mechanism is oblivious to the domain data 
accessed when processing requests does not give any 
guarantees as to the similarity of the types of requests 
redirected to a given node, in terms of the data necessary for 
their execution. Whereas such an approach may still lead to 
smaller-than-system working-sets at most nodes, it is far 
from optimal, because requests whose working-sets do not 
intersect can be placed in the same partition, degrading the 
overall locality of data. To maximize data locality, the 
working-sets of all requests placed in the same partition 
should overlap as much as possible, so that when a new 
request arrives at a node, it is more likely that most (if not 
all) of the data necessary for its successful completion is 
already available. This cannot be achieved without explicitly 
accounting for the relation between the functionality and the 
data needed for its execution. 

Zhang et al. [19] present a detailed simulation study of 
AdaptLoad, which is a self-adjusting load-balancing policy 
that takes into account observed workload variations to tune 
its control parameters. With AdaptLoad, server nodes are 
responsible for dealing with requests that have similar sizes 
(e.g. processing times), seeking to minimize the overall job 
slowdown by separating the execution of differently sized 
tasks. The authors evaluate their approach against previously 
existing load-balancing solutions and demonstrate positive 
results, in particular when target systems are subject to 
highly dynamic load conditions. 

The work of Amza et al. [1] presents a novel lazy 
replication technique, intended for scaling database back-
ends of dynamic content site applications operating on top of 
computer clusters. This approach is referred to as conflict-
aware scheduling and provides throughput scaling and one-
copy serializability. This technique exploits the fact that, in 
the context of database clusters, there is a scheduler 
responsible for processing all incoming requests. By making 
use of information regarding the domain data accessed 
within transactions, Amza et al. [1] developed a conflict-
aware scheduler that provides one-copy serializability, as 
well as reducing the rate at which conflicts occur. This is 
achieved by guiding incoming requests to nodes based on the 
data access patterns that are expected to occur during the 
execution of the associated transactions. Yet, there is a 
drawback of this approach that severely impairs its 
practicality: Programmers are responsible for providing 
information (under the form of a manually added tip) at the 
beginning of each transaction about which domain data is 
going to be accessed during its execution. Instead, we claim 
that the system should be capable of performing an 
automatic identification of the data access patterns that take 
place during transactions. 

The work of Elnikety et al. [8] introduced a memory-
aware load balancing method for dispatching transactions to 
replicas in systems employing replicated databases. The 
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algorithm uses information about the data manipulated in 
transactional contexts with the goal of assigning transactions 
to replicas so as to guarantee that all necessary data for their 
execution is in memory, thereby reducing disk I/O. For 
guiding the load balancing technique, the authors developed 
an auxiliary approach for estimating the volume and type of 
data manipulated during transactions. An additional 
contribution of their work is an optimization designated 
update filtering for decreasing the overheads due to the 
propagation of updates between replicas.  

Zhong et al. [20] performed a study of the improvements 
that can be achieved by placing data when taking into 
account correlation information. They proposed a 
polynomial-complexity algorithm for calculating object 
placement that achieves a close to optimal solution with 
regards to minimizing communication costs. Further 
optimizations of the algorithm are indicated, by 
concentrating upon a small set of higher-importance objects. 
The approach is evaluated and demonstrated to produce 
significant reductions of communication overheads.  

Given the existing related work described so far, we may 
draw some conclusions. Request distribution policies 
emphasizing data locality appear to offer much better 
scalability and performance gains, when compared against 
approaches concentrating only on load distribution. Uniform 
load distribution is still important and should be used to 
complement locality aware policies, but should not be the 
main goal. Despite all the good work done in the area of 
locality-aware load distribution, existing approaches have (at 
least) one of the following shortcomings: 

- In their search for improved data locality, they do 
not take into account explicitly the data access 
patterns performed during execution of requests, 
either because they lack a proper analysis of data 
usage or because they expect that locality emerges 
“naturally” when requests are distributed among 
server nodes without taking into account the data 
manipulated in their contexts. 

- The analysis of which data access patterns occur is 
performed manually. 

- The clustering of requests/functionality among 
server nodes is performed manually. 

The current state-of-the-art in the area of load distribution 
has ample room for improvements, which we explore with 
the solution proposed in this paper.  

III. SYSTEM DESCRIPTION 

Our system is composed of three main modules – a data 
access pattern analysis module, an optimal clustering 
module, and a request distribution module. 

The first module is responsible for identifying the 
composition of the working-sets associated with all types of 
requests that are executed by the system under consideration. 
This is achieved by analyzing and predicting the behavior of 
the target application in terms of the data access patterns that 
occur throughout the application’s execution contexts (such 
as methods and services). The analysis and prediction can be 
performed by means of one of three alternative stochastic 
model implementations, namely: Bayesian Updating [12], 

Markov Chains [10], and Criticality Analysis [9] (each of 
these references contains a thorough description and 
discussion of the implementation, functionality, and 
properties of the models). All three implementations provide 
highly accurate results that characterize the contents of the 
working set of any unit of functionality present in an 
application. The process of collecting behavioral data as 
input for this analysis is performed in an online fashion and 
incurs an average of 5% to 8% overhead in comparison with 
the original version of the target application performance. 
The relatively low overhead makes it feasible to gather this 
information even while the application is operating normally. 
It should be noted that all modifications necessary for the 
acquisition of the behavioral data are performed in a 
completely automated manner by the system presented here. 
The composition of the working-sets, as acquired by the first 
module, is then supplied as input to the optimal clustering 
module. 

The second module, which has been described in more 
detail in [11], is responsible for identifying the optimal 
clustering of the target application's functionality (which, in 
this particular case, is characterized by the request types that 
the application provides) and domain data (working-set 
composition), based on the data access pattern behavior 
observed at runtime.  

The algorithm used to perform the partitioning of 
application request types is the Latent Dirichlet Allocation 
(LDA) [4], which corresponds to the current state-of-the-art 
in multivariate clustering algorithms. By providing the 
composition of the working-sets associated with application 
request types as input to the LDA, the algorithm is capable of 
grouping the requests into several clusters. The partitioning 
is performed so that all members of a given cluster have the 
strongest possible (positive) correlation among themselves. 
For the current work, cluster elements are application request 
types, which are characterized by their working-sets. This 
leads to LDA generating as output clusters of request types, 
whose working-sets are very similar, because of their 
positive correlation.  

However, there are several control parameters (among 
which is the number of clusters into which the elements 
should be grouped) that need to be provided as input to the 
clustering algorithm, and, thus, the only guarantee that LDA 
provides is that the cluster output composition maximizes the 
correlation between cluster elements, but only for the 
particular set of control parameters given. Unfortunately, 
there is no way to know, a priori, what are the control values 
that would lead to the best possible results. So, to identify the 
set of control parameters that leads to the highest quality 
results, we use the Silhouette technique [17]. Intuitively, 
good clusters have the property that cluster elements are 
(conceptually) close to each other and far from the elements 
of other clusters. The Silhouette technique captures this 
notion and provides an indicator value of how good a 
particular clustering is.  

To find the optimal values of the control parameters for 
the LDA, our system calculates the average Silhouette values 
from several executions of the LDA algorithm for different 
configurations of the control parameters, within their valid 
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range of values. Once the Silhouette coefficients are 
available for all the evaluated scenarios, the values of the 
control parameters that produced the highest coefficient 
correspond to the optimal input scenario leading to the best 
possible clustering. The cluster results obtained after this 
step are provided as input to the request distribution module. 

The request distribution module, which is where the new 
distribution policy is enforced, was implemented as a 
software switch, corresponding to Layer 7 (application) of 
the OSI protocol stack.  

The switch acts as the sole entry point through which all 
incoming requests pass, before being distributed to a 
particular server node. It is the only visible component of the 
system, from the client point of view, making the 
multiplicity of application server nodes transparent to the 
clients. 

Whenever a request arrives at the switch, it is examined, 
determining its type. The output provided by the optimal 
clustering module is consulted to determine the group to 
which this particular request belongs. Once this has been 
established, the request is forwarded to a server node that is 
responsible for processing requests of that particular group. 
After the request has been processed, the result is returned to 
the switch, and then forwarded back to the client.  

As long as the target application supports having multiple 
instances of itself operating in parallel, without 
compromising application consistency, there is no need to 
make any modifications to the application for it to benefit 
from the request distribution functionality provided by the 
switch. The server nodes themselves are not aware of the 
presence of the switch, acting as if they were receiving their 
requests directly from the client. 

The benefits of making sure that every server node deals 
only with request types that belong to a single group are the 
following. The effective working-set at server nodes should 
be significantly lower than the overall system working-set, 
not only because just a subset of all system functionality will 
be processed there, but also because that functionality was 
specifically selected with the purpose of maximizing the 
similarity of the composition of the working sets. This leads 
to more efficient use of computational resources (e.g. smaller 
memory footprints) and to better data locality, resulting 
ultimately in improved overall performance. 

It can be argued that having all incoming requests and 
outgoing results going through the switch may be a 
performance and scalability bottleneck. However, we made 
this design decision to keep an implementation aspect of the 
proposed solution as simple as possible, because it is not in 
the request hand-off protocol that the main contribution of 
this work resides. Nevertheless, the switch implementation 
supports replication. So, multiple switches may be arranged 
in a hierarchical structure for the purpose of providing added 
performance or availability, at the cost of some added 
latency. This particular aspect of the work shall not be 
discussed any further. 

IV. RESULTS 

To validate the effectiveness of our approach, we used 
the TPC-W benchmark [18]. The TPC-W benchmark 

specifies an e-commerce workload that simulates the 
activities of a retail store website, where emulated users can 
browse and order products from the website.  

The main evaluation metric used in our experiments is 
the number of web interactions per second (WIPS) that can 
be sustained by the system under test. The benchmark 
execution is characterized by a series of input parameters. 
The first of these indicates the type of workload, which 
varies the percentage of read and write operations that is to 
be simulated by the emulated browser (EB) clients. Three 
types of workload are considered here: Type1, with 95% 
read and 5% write operations; Type2, with 80% read and 
20% write operations; and Type3, with 50% read and 50% 
write operations. 

The analysis of the system was performed with the 
benchmark executing in Type2 mode. The same profiling 
results (from Type2) were employed for all 3 workload con-
figurations (Type1, Type2, and Type3) in the performance 
testing phase. 

The remaining input parameters for the benchmark were 
as follows: the number of EBs was fixed at 10; we used a 
ramp-up time of 300 seconds; the measurement was 
performed for 1200 seconds after the ramp-up time; the 
ramp-down time was 120 seconds; the number of book items 
in the database varied between 1k, 10k, and 100k; and the 
think time was set to 0, ensuring that the EBs do not wait 
before making a new request. All results were obtained as 
the average of 4 independent executions of the benchmark, 
with the same configurations. The EBs, the request 
distribution switch, and the benchmark servers were always 
running on the same physical machine. 

All of the performance measurements were made with 
the benchmark running on a machine equipped with 2x Intel 
Xeon E5520 (a total of 8 physical cores with hyper-threading 
running at 2.26 GHz) and 24 GB of RAM. Its operating 
system was Ubuntu 10.04.3, and the JVM used was Java 
(TM) SE Runtime Environment (build 1.6.0 22-b04), Java 
HotSpot (TM) 64-Bit ServerVM (build 17.1-b03, mixed 
mode). The benchmark server nodes, as well as the request 
distribution switch, were run on top of instances of Apache 
Tomcat 6.0.24, with the options set to "-server -Xms64m -
Xmx${heapSize}m -Xshare:off -XX: +UseConcMarkSweep 
GC -XX:+AggressiveOpts". 

The performance results achieved when running the 
TPC-W benchmark with three different request distribution 
policies, and with three and four server nodes, shall be 
presented and discussed next.  

The first policy corresponds to the new policy developed 
with this work. The second policy corresponds to an 
idealized locality-aware request distribution (LARD), where 
each server node is responsible for processing a subset of 
request types, and there are no intersections among the sets 
of request types assigned to different server nodes. This 
policy is idealized because it assumes prior knowledge of the 
composition of the workload, in terms of the relative 
proportions of incoming request types, as well as the average 
time that requests of a given type take to be processed. The 
policy attempts to achieve the most uniform load distribution 
possible, whilst keeping every server node dedicated to 
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processing a fixed subset of request types. The third policy 
employs a classic (unweighted) round-robin approach for 
distributing incoming requests among existing server nodes. 
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Figure 1. WIPs, 4 server nodes with 512MB heaps 

The objective here is to demonstrate that it is possible to 
achieve improved throughput and efficiency in resource 
utilization by employing a request distribution policy that is 
explicitly aware of data locality, by taking into account the 
composition of the working-sets associated with request 
types. Given that, at this point of the work, there is no 
attempt to do a uniform load distribution, and that the 
conditions under which the system evaluation is performed 
(all server nodes share the computational resources of the 
same physical machine) do not allow for an objective and 
accurate evaluation of the load distribution among server 
nodes, no attempt shall be made at doing so. The evaluation 
metrics that we use here are only the overall system 
throughput and the efficiency in memory usage measured by 
the sizes of the effectively used heaps by the server nodes. A 
particular emphasis is given to the execution of the target 
application in sub-optimal memory availability conditions. 
These are expressed by running the server nodes with five 
different configurations for the JVM maximum heap size 
(Xmx): 512MB, 640MB, 768MB, 896MB, and 4096MB. 

The throughput achieved by the three request distribution 
policies when the system is operating with 4 server nodes 
(where each is allowed to use up to 512MB of heap) can be 
seen in Figure 1. Each group of bars corresponds to a 
particular benchmark configuration, where t1, t2, and t3 
indicate the type of workload, and b1k, b10k, and b100k 
indicate the size of the database used. By analyzing the 
results, it is possible to observe that the round-robin 
distribution is consistently outperformed by the other two 
policies, which display a rather similar throughput, across 
most configurations. 

 

TABLE I. THROUGHPUT DIFFERENCE (%), 4 SERVER NODES 

N/L N/R N/L N/R N/L N/R N/L N/R N/L N/R
t1_b1k 0.6 4.2 -4.2 1.8 -7.1 5.1 -2.3 6.3 -1.4 2.9
t1_b10k -0.1 6.8 -1.7 -4.7 -6.1 -4.5 -3.9 -1.8 -1.9 -5.1
t1_b100k -2.3 3.8 0.0 3.7 -1.6 4.5 -2.6 3.2 -3.1 2.4
t2_b1k -4.4 61.5 1.6 27.5 -1.9 18.5 9.3 19.8 1.6 19.1
t2_b10k -1.3 10.1 0.5 3.8 -0.3 -8.5 0.0 -4.4 1.1 -5.5
t2_b100k -7.4 -0.5 -3.4 3.8 0.2 6.4 -3.2 3.1 -1.8 0.2
t3_b1k -6.7 28.8 -9.5 29.1 -9.9 31.1 -13.8 47.5 -10.8 26.2
t3_b10k -3.1 76.7 8.4 47.2 2.6 48.3 -11.3 30.2 -9.7 26.1
t3_b100k 5.3 18.9 9.6 -42.6 16.2 -13.6 -6.1 -8.4 -8.4 -6.0
average -2.2 23.4 0.1 7.7 -0.9 9.7 -3.8 10.6 -3.8 6.7

896MB 4096MB512MB 640MB 768MB

 
 

A thorough comparison of the performance gains 
achieved when using the New policy against LARD and 
Round-Robin, can be seen in Table I for 4 server nodes, and 

in Table II for 3 server nodes. The columns with "N/L" in the 
header contain throughput difference of New against LARD, 
calculated as    100, %New LARD LARDT T T  , whereas "N/R" is 

the comparative data of New versus Round-Robin. 
 

TABLE II. THROUGHPUT DIFFERENCE (%), 3 SERVER NODES 

N/L N/R N/L N/R N/L N/R N/L N/R N/L N/R
t1_b1k -2.07 5.13 3.95 28.89 -6.75 1.81 -2.65 2.46 -5.66 -4.10
t1_b10k -1.06 -7.56 1.23 -7.91 6.18 -0.67 -10.11 -9.59 0.95 -5.99
t1_b100k -2.53 3.37 -4.38 0.20 -3.08 0.97 -2.89 2.33 -1.30 3.95
t2_b1k -7.40 42.26 -5.59 36.83 -1.50 11.53 -9.35 14.44 -6.14 11.39
t2_b10k -6.39 -11.89 3.09 -3.89 -3.72 -8.78 4.17 -1.88 -7.76 -11.78
t2_b100k -7.16 0.90 -3.03 1.78 -3.24 -0.47 -1.77 2.98 -3.56 2.03
t3_b1k 12.56 56.01 -5.07 40.55 14.21 74.91 3.32 63.02 0.46 46.36
t3_b10k 1.28 82.07 1.77 97.21 2.58 46.64 9.13 58.50 -11.55 35.50
t3_b100k 35.42 36.60 17.71 -8.35 -3.64 -31.28 7.65 -10.83 -6.64 -8.42
average 2.52 22.99 1.08 20.59 0.11 10.52 -0.28 13.49 -4.58 7.66

4096MB512MB 640MB 768MB 896MB

 
 

The New policy outperforms Round-Robin in 33 out of 
45 (73%) configurations for 4 server nodes with an average 
of 11.62% better throughput, and in 29 out of 45 (64%) for 3 
server nodes, with an average of 15.05%. The throughput 
achieved by using Round-Robin is the most inconsistent, 
across all configurations. This can be confirmed by 
observing Table III, where the uncertainty, expressed in 
terms of the covariance of the measurements, is displayed. 
The lower the value of the covariance of a given 
measurement, the higher the confidence in it - low 
covariance implies that the quantity being measured is 
unlikely to display values far from the mean.  

 

TABLE III. MEASUREMENT UNCERTAINTY, 4 SERVER NODES 

N L R N L R N L R N L R N L R
t1_b1k 0.03 0.04 0.053 0.00 0.08 0.17 0.07 0.03 0.05 0.01 0.04 0.02 0.01 0.02 0.04
t1_b10k 0.04 0.04 0.012 0.04 0.03 0.01 0.02 0.10 0.06 0.03 0.02 0.02 0.04 0.04 0.02
t1_b100k 0.01 0.02 0.009 0.00 0.03 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.01
t2_b1k 0.03 0.02 0.539 0.04 0.08 0.24 0.04 0.04 0.01 0.02 0.03 0.09 0.03 0.04 0.06
t2_b10k 0.03 0.04 0.051 0.01 0.04 0.07 0.03 0.07 0.02 0.05 0.06 0.02 0.03 0.05 0.03
t2_b100k 0.02 0.05 0.006 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.00 0.02 0.01
t3_b1k 0.20 0.07 0.058 0.11 0.02 0.06 0.13 0.09 0.11 0.09 0.14 0.16 0.21 0.08 0.10
t3_b10k 0.13 0.04 0.24 0.11 0.09 0.47 0.02 0.16 0.14 0.12 0.15 0.11 0.11 0.09 0.13
t3_b100k 0.21 0.03 0.237 0.02 0.09 0.32 0.06 0.17 0.15 0.06 0.08 0.20 0.08 0.12 0.13
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The LARD policy outperforms the New approach in 
most configurations, by a small margin. On the average, the 
New policy provides 2.12% less throughput than LARD, for 
4 server nodes, and 0.23% less throughput, for 3 nodes. 
Given that this particular LARD implementation is an 
idealized approach that makes use of perfect knowledge, a 
priori, about the target's system behavior, it is quite positive 
that the performance offered by the newly developed policy 
is so similar to an approach that would not be possible to 
achieve in practice. 
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Figure 2. Heap size, t3, 10k books, 4 nodes, 640MB 

Figure 2 contains the effective heap size usage achieved 
by the three policies, for a particular configuration of the 
benchmark, when 4 nodes are running with a maximum of 
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640MB of heap. The average heap size of New is 5.3% 
higher than LARD and 33.3% lower than Round-Robin. To 
identify the trends in memory usage we show also the result 
of a linear regression over the data collected. The gradients 
indicate that the heap growth rate of the New policy equals 
0.33 of the Round-Robin and 0.54 of the LARD, resulting in 
the overall lowest growth in terms of heap. 
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Figure 3. Garbage Collection (%CPU), t3, 10k books, 4 nodes, 640MB 

Figure 3 shows the percentage of CPU spent performing 
garbage collection, for that same configuration of the 
benchmark. The average values are 2.9% for New, 2.7% for 
LARD and 5.1% for Round-Robin. 

V. CONCLUSIONS 

This work presented a new load balancing policy for 
clustered web server systems that seeks to maximize data 
locality by explicitly accounting for the correlation between 
the composition of the working sets of requests. That policy 
was applied to the TPC-W benchmark and evaluated against 
two alternative request distribution strategies. The newly 
developed approach provided significant performance gains 
under the form of increased throughput and improved 
efficiency in terms of memory usage, when compared 
against the alternative solutions. 
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