
Evaluating Performance of Distributed Systems With MapReduce and Network
Traffic Analysis

Thiago Vieira, Paulo Soares, Marco Machado
Rodrigo Assad, Vinicius Garcia

Federal University of Pernambuco (UFPE) – Recife, Pernambuco, Brazil
{tpbv,pfas,masm,rea,vcg}@cin.ufpe.br

Abstract—Testing, monitoring and evaluation of distributed
systems at runtime is a difficult effort, due the dynamicity
of the environment, the large amount of data exchanged
between the nodes and the difficulty of reproduce an error
for debugging. Application traffic analysis is a method to
evaluate distributed systems, but the ability to analyze large
amount of data is a challenge. This paper proposes and
evaluates the use of MapReduce programming model to deep
packet inspection the application traffic of distributed systems,
evaluating the effectiveness and the processing capacity of the
MapReduce programming model for deep packet inspection of
a JXTA distributed storage application, in order to measure
performance indicators.

Keywords-Measurement of Distributed Systems; MapReduce;
Network Traffic Analysis; Deep Packet Inspection.

I. INTRODUCTION

With the growing of cloud computing usage and the use
of distributed systems to provide infrastructure and platform
as a service, the monitoring and performance analysis of dis-
tributed systems became more necessary [1]. In distributed
systems development, the maintenance and administration,
the detection of error causes and the analysis and the repro-
duction of an error are challenges and motivates efforts to the
development of less intrusive mechanisms for debugging and
monitoring distributed applications at runtime [2]. Network
traffic analysis is one option to evaluate distributed systems
performance [3], although there are limitations on capacity
to process large amount of network packet in short time
[3][4] and on scalability to be able to process network
traffic over variations of throughput and resource demand.
Simulators [5], emulators or testbeds [4][6] are also used
for evaluate distributed systems, but these presents lacks for
reproduce the real behaviour of a distributed system and
its relation within a complex environment, such as a cloud
computing environment [4][6].

An approach to process large amount of network traffic
was proposed by [7]. The proposal consists in the use
of MapReduce [8] programming model to parse network
packets to a binary format, that can be used as input for Map
and Reduce functions to process network packet flow. This
proposal shows that MapReduce improves the computation
time and provides fault tolerance to packet flow analysis,

but the use of MapReduce for deep packet inspection (DPI)
and for evaluate distributed applications was not analyzed.

Because of the need to evaluate the real behaviour of
distributed systems at runtime, in a less intrusive way,
and the need of a scalable and fault tolerant approach to
process large amount of data, using commodity hardware,
we propose the use of MapReduce programming model to
implement a passive DPI for distributed applications. In this
paper we evaluate the effectiveness of MapReduce to a DPI
algorithm and its processing capacity to measure a JXTA-
based application in order to extract performance indicators
at runtime.

The remainder of this paper is organized as follows.
Section 2 describes the related works. Section 3 presents
the proposed solution. Section 4 describes the experiments
performed, Section 5 presents the results and the Section 6
concludes the paper and describes future works.

II. RELATED WORKS

To provide infrastructure and platform as a service in
a cloud computing model, it is necessary to have avail-
able a scalable and fault-tolerant infrastructure. Thus, the
use of distributed systems to obtain this requirements has
been widely used [9][10][11]. The Google Inc. developed
a distributed storage system [10][11] to use on its appli-
cations, which processes large amount of data and needs
high availability, scalability and feseability. Amazon has
its services based on Dynamo [9], which is a peer-to-peer
storage system to provide high availability and eventual
consistency to data storage. Other distributed technology
widely used by cloud computing providers is Hadoop [12],
which is an implementation of MapReduce to process data
intensive tasks over a cluster.

The evaluation of distributed applications is a challenge,
due the cost of monitoring distributed systems and the
lacks on performance measurement at runtime of large scale
distributed applications. To reproduce the behaviour of a
complex system in a test environment it is necessary to know
each relevant parameter of the system, and recreate them in
the test environment [6]. These needs are more evident in
cases where faults occur only when the system is over a

705Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

high load [4], which difficult the environment reproduction
and debugging.

Gupta et al [6] presents a methodology and framework
for large scale tests, able to obtain resources configurations
and scale near of a large scale system, through the use of
emulated scalable network, multiplexed virtual machines and
resource dilatation. Gupta et al also shows accuracy and
capacity of increase the scale and the realism on network
tests, although it do not obtain the same precision of an
evaluation of a real system at runtime.

Large scale tests can be executed in environments near
to real, using testbeds such as PlanetLab [13], which is a
widely used distributed environment composed by real or
virtual machines, geographically distributed over the world,
through real network resources. Although a testbed uses
real resources, to achieve precision on real time and data
intensive simulations, it is need to know and reproduce
each relevant parameter of the system, and recreate them
in the simulation environment, including impacts caused by
external systems.

Loiseau et al [4] argues the necessity of network traffic
evaluation with more granularity to complement simulations
and measurements, and to better understanding the network
traffic evolution and behaviour of each kind of network
traffic. To apply this kind of evaluation, it is necessary
devices and approaches to capture and process large amount
of data, such as Metroflux [4] and DPI solutions [14], but it
is still necessary scalable solutions to handle large amount
of network traffic over different demands and throughput.

MapReduce [8] is a programming model and a frame-
work for processing large data sets trough data-intensive
distributed computing, providing fault tolerance and high
scalability to big data processing. MapReduce became an
important programming model for large scale parallel sys-
tems, with applications on indexing, data mining, machine
learning, and scientific simulation [15]. Although many tasks
are expressible in MapReduce [8], it is necessary to know if
DPI problems can be expressed in MapReduce programming
model.

Lee et al [16] proposes a flow analysis method using
MapReduce programming model, where the network traffic
is captured, converted to text, and used as input to Map
functions. This work shows the improvement achieved in
computation time in comparison with flow-tools, which is a
flow analyses tool widely used to capture, filter and report
flow traffic. The conversion time from network traffic to text
may represent a relevant additional time, but it is not clear
if Lee et al (2010) considered this conversion time on its
evaluation and comparison with flow-tools.

Lee et al [7] presents a Hadoop-based packet trace pro-
cessing tool to process large amount of binary network
traffic. A new input type to Hadoop was developed, the
PcapInputFormat, which encapsulates the complexity of
processing a captured pcap trace and to extract the packets

using the libpcap [17] packet capture library. Lee et al
(2011) compares its proposal with CoralReef, which is a
network traffic analysis tool that also relies of libpcap, and
shows speedup on completion time to processing packet
traces with more than 100GB. The evaluation was limited to
process packet flow and extract indicators from IP, TCP and
UDP, not considering deep packet inspection, which needs
reassembly two or more packets to extract information. Ad-
ditionally, the PcapInputFormat rely on a timestamp based
heuristic for finding the first record from each block, using
sliding-window, which can be a limitation on accuracy, if
compared with the accuracy obtained by Tcpdump [18].

JXTA provides support to the development of peer-to-
peer applications, through the specification of protocols,
services and communications layers. Halepovic and Deters
[19] proposed a performance model, describing important in-
dicators to evaluate throughput, scalability, services and the
JXTA behaviour in different versions. Also, Halepovic and
Deters highlights the performance and scalability limitations
of JXTA, which can be improved by configurations, source
code modifications or by new JXTA’s versions. Halepovic
and Deters [20] analizes the JXTA performance in order to
show the increasing cost or latency with higher workload
and with concurrent requests, and they suggests more eval-
uations about scalability of large group of peers in direct
communication. Halepovic et al [21] cites network traffic
analysis as an approach to performance evaluation of JXTA-
based applications, but do not adopt it, due the lack on JXTA
traffic characterization. Although there is a performance
models and evaluations of JXTA, there are not evaluations
for the current versions and neither mechanisms to evaluate
JXTA applications at runtime, being necessary a solution to
measure the performance of JXTA-based applications and
provides information to evaluate its behaviour over different
circumstances.

III. THE SOLUTION

To evaluate JXTA distributed applications through net-
work traffic analysis it is necessary to capture and analyse
the content of JXTA messages split into network packets,
and be able to process large amount of network traffic in
acceptable time. To achieve this, we propose the use of
MapReduce, implemented by Apache Hadoop, to process
JXTA network traffic, extract performance indicators over
different scenarios, and provide an efficient and scalable
solution for DPI using commodity hardware. The architec-
ture of our solution is composed by four main component:
the Sniffer, that captures, splits and stores network packets
into Hadoop Distributed File System (HDFS); the Manager,
that orchestrates the collected data, the job executions and
stores the results generated; the jnetpcap-jxta [22], that
converts network packets into JXTA messages; and the
JXTAAnalyzer, that implements Map and Reduce functions
to extract performance indicators.

706Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 1 shows the overview of the proposed architecture
to capture the network traffic, through the Sniffer, split them
into files, and store this files into HDFS. The Sniffer must
be connected to the network where the target nodes are
connected, and be able to stablish communication with the
others nodes that composes the HDFS cluster. Figure 2
shows the architecture proposed to process network traffic
through MapReduce functions, which are implemented by
JXTAAnalyzer and deployed at each node of the Hadoop
cluster, and managed by the Manager.

Figure 1. Shows the overview of the architecture proposed to capture and
store the network traffic

Initially, the network traffic must be captured, split and
stored into HDFS. The packets are captured using Tcpdump,
a widely used libpcap network traffic capture tool, and are
split into files with 64 MB of size, which is the default
block size of the HDFS, although this block size may be
configured to different values. Files that are greater than the
HDFS block size are split into blocks with size equal or
smaller than the block size, and are spread among machines
in the cluster. As the libpcap, used by Tcpdump, stores the
network packets in binary files known as pcap files, it is
necessary to avoid split this files or to provide to Hadoop
an algorithm to split pcap files. Due the file split demands
additional computing time and increases the complexity of
the system, we adopted the split of pcap files into default
HDFS block size, using the split functionality provided by
Tcpdump. Thus, the network traffic is captured by Tcpdump,
split and stored into local file system of the Sniffer, and
periodically transferred to HDFS, which is responsible to
replicate the files into the machines of the cluster.

In the MapReduce programming model, the input data is
split into blocks and into records, which are used as input
for Map tasks. We adopt the use of whole files, with size
defined by the HDFS block size, as input for each Map tasks,
in order to extract information of more than one packet,
differently of Lee et al [7] approach, where each Map task
receives only one packet as input. With our approach it is
possible reassembly TCP packets, JXTA messages and other

protocols that has its content divided into many packets to
be transferred over TCP.

Figure 2. Shows the architecture proposed to process the network traffic

Once the pcap files has been stored into HDFS, an agent
called Manager is responsible for selecting the files to be
processed, to schedule the Map and Reduce tasks, and store
the generated results into a database. Each Map function
receives as input a path of a pcap file stored into HDFS,
the path received for each Map task is defined by the data
locality control of the Hadoop, which delegates each task
to nodes that have a local replica of the data, or to nodes
placed in the same rack of a replica. Then, the file is
opened and each network packet is processed to extract
the performance indicators and to generate as output a
SortedMapWritable object, with a sorted collection of values
for each performance indicator evaluated, which will be
summarized by Reduce functions.

One TCP packet can transport one or more JXTA mes-
sage, due to window size of the buffer used by JXTA Socket
to send and receive messages. Because of this, it is necessary
to evaluate the full content of each TCP segment to identify
all messages, instead of evaluate only the message header or
signature, as is commonly done in DPI techniques and by
widely used traffic analysis tools, such as Wireshark [23],
which is unable to recognize all JXTA messages, because
its approach do not identify when two or more messages
are transported into a TCP packet. Moreover, if a message
is greater than the size of the PDU in the TCP, the message
is split into some TCP segments. To handle these problems,
we developed a reassembly algorithm to recognize, sort and
reassembly TCP segments into JXTA messages, which is
described at Algorithm 1.

For all TCP packet of a pcap file, is verified if it is a
JXTA message or if it is part of a JXTA message that was

707Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Algorithm 1 JxtaPerfMapper
for all tcpPacket do

if isJxta OR isWaitingForPendings then
parsePacket(tcpPacket)

end if
end for

function PARSEPACKET(tcpPacket)
parseMessage
if isMessageParsed then

upddateSavedF lows
if hasRemain then

parsePacket(remainPacket)
end if

else
savePendingMessage
lookForMoreMessages

end if
end function

not fully parsed and is waiting for its complement, then a
parse attempt is made, using Jnetpcap-jxta. As a TCP packet
may to contain one or more JXTA message, if a message
is fully parsed, then it is done another parse attempt with
the content not used by the previous parse. If the content
is a JXTA message and the parse is not successful, then its
TCP content is stored, with its TCP flow identification as
a key, and all next TCP packets that match with the flow
identification will be sorted and used to try to mount a new
JXTA message, until the parser is entirely successful. With
these characteristics, to inspect JXTA messages it is required
more effort than others cases of deep packet inspection,
where the analysis is based on inspection of message header
or protocol signature.

To evaluate JXTA messages captured as binary network
packet, we developed a parser called jnetpcap-jxta, which
converts libpcap network packet into Java JXTA messages.
Jnetpcap-jxta is written in Java and provides methods to
convert byte arrays into JXTA messages, using an extension
of JXTA default library for Java, known as JXSE. With
this, we are able to parse all kind of messages defined by
JXTA specification. Jnetpcap-jxta relies on JNetPcap library
to support the instantiation and inspection of libpcap packets,
JNetPcap was adopted due the performance to iterate over
packets, the large quantity of functionalities provided to
handle packet traces and due the recent update activities for
this library.

As showed by Figure 2, the JXTAAnalyzer is composed by
Map and Reduce methods, JxtaPerfMapper and JxtaPerfRe-
ducer, to extract performance indicators from JXTA Socket
communication layer, which is a communication mechanism
that implements a reliable message exchange and obtains
the better throughput between the communication layers

provided by the JXTA.
Each message of a JXTA Socket is part of a Pipe that

represents a connection established between the sender and
receiver. In a JXTA Socket communication, two Pipes are
established, one from sender to receiver and other from re-
ceiver to sender, which transports content messages and ac-
knowledges messages, respectively. To evaluate and extract
performance indicators from JXTA Socket, the messages
must be sorted, grouped and linked with its respectives Pipes
of content and acknowledge. The content transmitted into a
JXTA Socket is split into byte array blocks and stored into a
reliability message, that is sent to the destination and expects
to receive an acknowledge message of its arrival. Each block
that was sent or that was delivered, is queued by JXTA until
the system is ready to process them. The time between the
message delivery and the acknowledge be sent back is called
round-trip time (RTT), this may vary according to the system
load and may be used to evaluate if the system overloaded.

The JxtaPerfMapper and JxtaPerfReducer evaluates the
RTT of each content block transmitted over a JXTA Socket,
and extracts information about the number of connection
requests and message arrivals. Each Map function evaluates
the packet trace to mount JXTA messages, Pipes and Sock-
ets. The parsed JXTA messages are sorted by its sequence
number and grouped by its Pipe identification, to compose
the Pipes of a JXTA Socket. As soon as the messages are
sorted and grouped, then the RTT is obtained, its value is
associated with the respective key and written as an output
of the Map function. Each Reduce function receives as input
a key and a collection of values, which are respectively the
indicator and its values, then generates individual files for
each indicator.

The implemented Map and Reduce methods can be ex-
tended to address others performance indicators, such as
throughput or number of retransmissions, for this each indi-
cator must be represented by a unique key and the collected
values must be associated with its respective key. Moreover,
others Map and Reduce methods can be developed to analyse
others protocols and application traffics.

IV. EXPERIMENTS

As the two main goals of this work are to evaluate the
effectiveness and the processing capacity of MapReduce
to DPI in order to measure distributed applications, we
performed two set of experiments for different size of data
input and number of nodes in a Hadoop cluster, in order to
evaluate the MapReduce scalability and completion time to
DPI. We used as input a network traffic data captured from
a JXTA Socket communication between a server and some
clients from a distributed backup system. Two data set was
captured, with size of 16 GB and 34 GB, split into 35 and
79 files, respectively. The first experiment set processes 16
GB of data and varies the number of Hadoop slave nodes
between 3 and 10, the second experiment set processes 34

708Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Nodes 3 4 6 8 10
Time 322.50 245.92 172.83 151.45 126.87

Std. Deviation 4.91 4.63 2.76 6.60 9.97
MB/s 50.80 66.62 94.80 108.18 129.14

(MB/s)/node 16.93 16.66 15.80 13.52 12.91

Table I
COMPLETION TIME TO PROCESS 16 GB SPLIT INTO 35 FILES

GB of data and varies the number of Hadoop slave nodes
between 4 and 19.

For each experiment set, we measure the completion
time and the capacity to process pcap files, in a Hadoop
cluster with different number of nodes. The experiments
were executed 30 times for each number of nodes, then
was measured the mean completion time and the standard
deviation of the value measured. All experiments were
performed at Amazon EC2, with a environment composed
by slave nodes with Ubuntu Server 11.10, kernel 3.0.0-16,
with 2 virtual cores composed by 2.5 EC2 Compute Units,
1.7 GB of RAM memory and 350 GB of hard disks, and
one master node with Ubuntu Server 11.10, with 1 virtual
core composed by 1 EC2 Compute Unit, 1.7 GB of RAM
memory and 160 GB of hard disks.

The Hadoop cluster was composed by one master node
and many slave nodes running Hadoop library version
0.20.203 with default configuration, using 64MB as block
size and with the data replicated 3 times over the HDFS.

The network traffic used as input data was captured from
a JXTA Socket Server receiving Socket requisitions and
transferring data from 5 concurrent clients, which sends data
to be stored at the server, with JXTA message content size
between 64KB and 256KB. The network traffic was captured
and processed, as described previously, in order to extract
round-trip time, number of requisitions and the number of
data sent to the server per time.

V. RESULTS

The results show the completion time to deep packet
inspection of JXTA network traffic using MapReduce, with
different input size and number of nodes in a Hadoop
cluster. The Tables 1 and 2 present respectively the results
of the experiment to process 16 GB and 34 GB of network
traffic, showing the number of Hadoop nodes used for
each experiment, the mean completion time in seconds, its
standard deviation, the processing capacity achieved and the
relative processing capacity per node in the cluster.

The completion time decreases with the increment of
number of nodes in the cluster, but not in a linear function.
This conclusion is clearer when observed that the relative
processing capacity per node decreases with the addition
of nodes in the cluster. With the growing of the number of
nodes in the cluster, increases the cost to manage the cluster,
the data replication, the allocation of tasks to available nodes
and the management of failures, also is increased the cost

Nodes 4 8 12 16 19
Time 464.46 260.48 188.93 166.99 134.22

Std. Deviation 4.18 5.52 6.23 3.81 5.77
MB/s 74.96 133.66 184.28 208.49 259.40

(MB/s)/node 18.74 16.71 15.36 13.03 13.65

Table II
COMPLETION TIME TO PROCESS 34 GB SPLIT INTO 79 FILES

with merging and sorting of the data processed by each Map
task. In small clusters, the probability of a node to have a
replica of the data received as input, is greater than in large
clusters. In large clusters there are more options of nodes
to delegate a task, but the number of data replication limits
these options to the number of nodes with a replica of the
data, this limitation increases the cost to schedule tasks and
distribute tasks in the cluster.

In our experiment, was achieved a mean processing ca-
pacity of 259.40 MB per second, in a cluster with 19 slave
nodes, processing 34 GB. For a cluster with 4 nodes was
achieved a mean processing capacity of 66.62 MB/s and
74.96 MB/s to process respectively 16 GB and 34 GB of
network traffic data, which indicates that the processing
capacity may vary as a function of the amount of data
processed and the number of files used as input data.

Figure 3. Scalability to process 16 GB

Figures 3 and 4 illustrate how the addition of nodes to
the Hadoop cluster reduces the mean completion time and
how is the scalability of processing capacity achieved to
processing 16 GB and 34 GB of network traffic data. In
both graphics, the behaviour of the scalability is similar, with
more significant scalability gains, through addition of nodes,
in small clusters, and less significant gains with the growing
of the number of nodes in the cluster, which indicates the
importance of evaluating the relation between costs and
benefits to addition of nodes.

709Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 4. Scalability to process 34 GB

In the JXTA network traffic analized, was possible to use
the MapReduce programming model to extract indicators of
the number of connection request, number of data receiving
and the round-trip time. With these data is possible to
evaluate the behaviour of the system, extract information
about its performance and provide a better understanding of
the network traffic behaviour of a JXTA-based application.
Figure 5 shows the network traffic behaviour of a JXTA
Socket server receiving connection request and data from 5
concurrent clients. In this figure it is possible to observe the
behaviour of the Java just-in-time compiler [24] optimizing
the bytecode through its convertion into an equivalent se-
quence of the native code of the underlying machine, in the
time when the rount-trip time increases and is normalized
after the optimization of the bytecode.

Figure 5. JXTA Socket trace analysis

VI. CONCLUSION AND FUTURE WORKS

To evaluate the network behaviour of distributed systems
at runtime, in a less intrusive way, with high processing
capacity, scalability and fault tolerance, it is necessary ap-
proaches and tools to support the development, management
and monitoring of distributed applications. To address this,
we proposed the use of MapReduce programming model
to deep packet inspection of distributed application network
traffic, and we performed experiments in order to show the
effectiveness and efficiency of our proposal.

We showed that MapReduce programming model can
express algorithms for DPI, as the Algorithm 1, implemented
to extract indicators from a JXTA network traffic, with
indicators shown in Figure 5. We applied the MapReduce
to DPI, using a network trace split into files with 64 MB,
to avoid the cost of split the network trace into packets and
also to be able to reassembly two or more packets to mount
JXTA messages from packets.

We analized the processing capacity and scalability
achieved for different number of nodes in a Hadoop cluster,
with different size of network traffic data, showing the pro-
cessing capacity and scalability achieved, and the influence
of the number of nodes and the data input size in the
capacity processing of network traffic. We showed that using
Hadoop as a MapReduce implementation, it is possible to
use commodity hardware, or cloud computing services, to
deep packet inspection of large amount of network traffic.

With our proposal, also it is possible to measure and
evaluate, at runtime and in a less intrusive way, the network
traffic behaviour of distributed applications with intensive
network traffic generation, making possible the use of this
captured information to reproduce the behaviour of the
system in a simulation environment.

In future work, we will evaluate and characterize the
behaviour followed by the scalability of MapReduce to DPI,
evaluating the optimal size of input data for large and small
clusters. Optimizations in the Hadoop environment, HDFS
and JNetPcap library can be investigated to improve the
approach to load pcap files, making the JNetPcap able to
read files from HDFS and avoiding another copy of the data.
Other future work is to investigate improvements or propose
a Hadoop scheduler to cases where the input data can not
be split and a full file is required as input to Map tasks. We
will also perform evaluations of MapReduce to deep packet
inspection of others protocols and distributed applications.

VII. ACKNOWLEDGEMENTS

This research was supported by the National Institute
of Science and Technology for Software Engineering (INES
- www.ines.org.br), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08.

710Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and
M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” Tech. Rep., 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, pp. 50–58, Apr. 2010.

[3] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner,
S. Fernandes, and D. Sadok, “A survey on internet traffic iden-
tification,” Communications Surveys Tutorials, IEEE, vol. 11,
no. 3, pp. 37 –52, quarter 2009.

[4] P. Loiseau, P. Goncalves, R. Guillier, M. Imbert, Y. Kodama,
and P.-B. Primet, “Metroflux: A high performance system for
analysing flow at very fine-grain,” in Testbeds and Research
Infrastructures for the Development of Networks Communities
and Workshops, 2009. TridentCom 2009. 5th International
Conference on, april 2009, pp. 1 –9.

[5] D. Paul, “Jxta-sim2: A simulator for the core jxta protocols,”
Master’s thesis, University of Dublin, Ireland, 2010.

[6] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat,
K. Yocum, A. Snoeren, and G. M. Voelker, “Diecast: Testing
distributed systems with an accurate scale model,” ACM
Trans. Comput. Syst., vol. 29, pp. 4:1–4:48, May 2011.

[7] Y. Lee, W. Kang, and Y. Lee, “A hadoop-based packet trace
processing tool,” in Proceedings of the Third international
conference on Traffic monitoring and analysis, ser. TMA’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 51–63.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, pp.
107–113, Jan. 2008.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: amazon’s highly available key-
value store,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 205–220,
Oct. 2007.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 29–43, Oct.
2003.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst., vol. 26, pp. 4:1–4:26, June 2008.

[12] “Hadoop,” http://hadoop.apache.org/, [retrieved: september,
2012].

[13] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: an overlay
testbed for broad-coverage services,” SIGCOMM Comput.
Commun. Rev., vol. 33, pp. 3–12, July 2003.

[14] S. Fernandes, R. Antonello, T. Lacerda, A. Santos, D. Sadok,
and T. Westholm, “Slimming down deep packet inspection
systems,” in INFOCOM Workshops 2009, IEEE, april 2009,
pp. 1 –6.

[15] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica, “Improving mapreduce performance in
heterogeneous environments,” in Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 29–42. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855744

[16] Y. Lee, W. Kang, and H. Son, “An internet traffic anal-
ysis method with mapreduce,” in Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010
IEEE/IFIP, april 2010, pp. 357 –361.

[17] V. Jacobson, C. Leres, and S. McCanne, “libpcap,”
http://www.tcpdump.org/, 1994.

[18] “Tcpdump,” http://www.tcpdump.org/, [retrieved: september,
2012].

[19] E. Halepovic and R. Deters, “The jxta performance model
and evaluation,” Future Gener. Comput. Syst., vol. 21, pp.
377–390, March 2005.

[20] E. Halepovic, R. Deters, and B. Traversat, “Jxta messaging:
Analysis of feature-performance tradeoffs and implications
for system design,” in On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE, R. Meersman
and Z. Tari, Eds. Springer Berlin / Heidelberg, 2005, vol.
3761, pp. 1097–1114.

[21] E. Halepovic, “Performance evaluation and benchmarking of
the jxta peer-to-peer platform,” 2004.

[22] T. Vieira, “jnetpcap-jxta,” http://github.com/tpbvieira/jnetpcap-
jxta, [retrieved: september, 2012].

[23] “Wireshark,” http://www.wireshark.org/, [retrieved: septem-
ber, 2012].

[24] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani,
“Overview of the ibm java just-in-time compiler,” IBM Sys-
tems Journal, vol. 39, no. 1, pp. 175 –193, 2000.

711Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

