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Abstract—The knowledge residing inside a firm is frequently
considered to be one of its most important internal assets to
obtain a sustainable competitive advantage. Also in software
engineering, a substantial amount of technical know-how is
required in order to successfully deploy the organizational
adoption of the technology. In this paper, we focus on the
wide-spread approach of using design patterns for knowledge
management purposes. It is discussed how they facilitate the
transfer and (re)use of state-of-the-art knowledge in three
dimensions: (1) more efficient documentation, (2) the devel-
opment of new applications, and (3) the incorporation of new
knowledge in existing applications. More specifically, we show
how the use of Normalized Systems elements can be considered
as an advanced form of design patterns for the development
of highly evolvable software architectures, further enhancing
the inherent design patterns advantages. Normalized Systems
captures software engineering knowledge in a limited set of
theorems and patterns, and enables the application of this
knowledge through systematic pattern expansion. Because of
the highly structured way of working, the reuse of knowledge
can be significantly improved.

Keywords-Normalized Systems; Design Patters; Knowledge
Management.

I. INTRODUCTION

As an important movement within the strategic manage-
ment literature, the resource-based view of the firm (RBV)
states that internal resources (e.g., money, patents, buildings,
geographical location, etcetera) are the key elements for
organizations in order to obtain a sustainable competitive
advantage [1]. More specifically, the knowledge residing
inside a firm is frequently considered to be its most im-
portant internal asset [2]. Further, focusing on the case of
software adoption and development within organizations, the
prevalence of the available knowledge becomes even more
clear and the need for knowledge management practices in
this respect have been acknowledged frequently [3]. Indeed,
information technology in general can be considered as
a knowledge-intensive or complex technology innovation,
requiring a substantial amount of know-how and technical
knowledge by the adopting firm [4]. As such, the degree of
expertise or advanced knowledge of best-practices regarding
a certain software technology becomes a decisive factor

in the chances for an organization to successfully deploy
and manage it. Consequently, a firm should either already
(i.e., prior to the adoption) possess the advanced knowledge
required to operate the software technology or engage in
organizational learning during exploitation.

Organizational learning is generally regarded as the re-
sult of individual learning experiences of members of an
organization, which become incorporated into the behavior,
routines and practices of the organization the individuals
belong to [4]. According to Levitt and March [5], such an
organizational learning can occur in two general ways: (1)
“learning by doing”, which involves a learning process by
self-experienced trial-and-error and (2) learning from the
direct experiences of other people. While the first type of
learning is typically a very profound and thorough way of
knowledge gathering, it can be time-consuming, expensive
and error-prone in the earliest stages. At this point, know-
how, experiences and best-practices formulated by other
users (i.e., the second type of organizational learning) come
into play. Inside organizations, such knowledge transfers in
software development can occur in many different ways,
including for example explicit knowledge bases or experi-
ence repositories [6], “yellow pages” enabling search actions
for accessible knowledgeable people [7] and mentoring
programs [8]. At the inter-organizational or industrial level,
the gathered knowledge can benefit from experience based
on many different development projects. Design patterns are
a wide-spread approach to achieve this goal [9]. In this paper,
we explore three types of benefits when using knowledge
captured by design patterns:

• Improved documentation;
• Using the captured knowledge to build new applica-

tions;
• and Incorporating new knowledge into existing appli-

cations.

We introduce the Normalized Systems (NS) theory, which
proposes more concrete and structured patterns. We argue
that the use of knowledge captured in such patterns can
further enhance the discussed benefits of applying design
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patterns.

II. KNOWLEDGE MANAGEMENT IN SOFTWARE
ENGINEERING

The specific use of design patterns in object-orientation
during the 90’s, exemplified by the seminal work of Gamma
et al. [10], was incited by the fact that modern com-
puter literature regularly failed to make tacit (but success
determining) knowledge regarding low-level principles of
good software design explicit [11]. Patterns provide high-
level solution templates for often-occurring problems. The
patterns proposed by Gamma et al. [10] were conceived as
the bundling of a set of generally accepted high-quality and
best-practice solutions to frequently occurring problems in
object-orientation programming environments. For instance,
in order to create an one-to-many dependency between
objects so that when the state of one object changes, all
its dependents are notified and automatically updated, the
observer pattern (i.e., an overall structure of classes giving
a description or template of how to solve the concerned
problem) was proposed [10]. As a consequence, the use of
these patterns can be considered as specifically aimed at
facilitating (inter-)organizational learning by learning from
direct experiences of other people — in this case experi-
enced software engineers —, and being one specific way of
knowledge base distribution.

According to Schmidt [12], design patterns have been so
successful because they explicitly capture knowledge that
experienced developers already understand implicitly. The
captured knowledge is called implicit because it is often
not captured adequately with design methods and notations.
Instead, it has been accumulated through timely processes of
trial and error. Capturing this expertise allows other devel-
opers to avoid spending time rediscovering these solutions.
Moreover, the captured knowledge has been claimed to
provide benefits in several areas [13]. In this paper, we focus
on the usage of patterns to (a) document software code, (b)
build new applications, and (c) incorporate new knowledge
in existing software applications.

A. Documentation

Patterns provide developers with a vocabulary which can
be used to document a design in a more concise way
[10], [13], [14]. For example, pattern-based communication
can be used to preserve design decisions without elaborate
descriptions. By delineating and naming groups of classes
which belong to the same pattern, the descriptive complexity
of the design documentation (e.g., a UML class diagram)
can be reduced [14]. Consequently, the vocabulary offered
by patterns allows a shift in the abstraction level of the
discussions. This usage of design patterns is mostly applied
at the conceptual level, and neglects the source code docu-
mentation. However, the abstract nature of patterns, i.e., as
a solution template, means that it is possible to implement a

certain design pattern using different alternatives. Therefore,
it has been argued that the addition of source-code level
documentation of the pattern usage is required to perform
coding and maintenance tasks faster and with fewer errors
[15].

B. Using knowledge to build new applications

Several authors propose the usage of design patterns to
create new software applications (e.g., [16]). We discussed
above how patterns provide high-level solution templates,
and, as such, do not dictate the actual source code. Conse-
quently, knowledge concerning the implementation platform
remains important. A correct and efficient implementation
of a design pattern requires a careful selection of language
features [12]. Clearly, design patterns alone are not suf-
ficient to build software. As a result, the implementation
of a design pattern during a software development process
remains essentially a complex and activity [12]. Developing
software for a concrete application then requires the concrete
experience of a domain and the specifics of the programming
language, as well as the ability to abstract away from details
and adhere to the structure prescribed by the design pattern.
Nevertheless, certain companies and researchers attempt to
integrate the knowledge available in design patterns in other
approaches, in order to create automated code generation.
For example, so-called software factories attempt to create
software similar to automated manufacturing plants [17].
This should drastically improve software development pro-
ductivity. However, such approaches have not yet reached
wide-spread adoption.

C. Incorporating new knowledge in existing applications

Because of the increasing change in the organizational
environment in which software applications are used, adapt-
ability is considered to be an important characteristic. How-
ever, adapting software remains a complex task. Various
studies have shown that the main part of the software
development cost is spent after the initial deployment [18].
Several design patterns focus on incorporating adaptability
into their solution template. Empirical observations have
been reported which confirm the increased adaptability when
using design patterns [19]. Adaptations could be made easier
in comparison with an alternative which was programmed
using no design patterns, and achieved adaptability was
retained more successfully because of the prescribed struc-
ture. Nevertheless, some researchers also report negative
effects on adaptability, caused by the added complexity
of the design patterns. By prescribing additional classes
in comparison to simpler solution, more errors have been
introduced in some cases [19].

III. NORMALIZED SYSTEMS

The Normalized Systems (NS) theory starts from the pos-
tulate that software architectures should exhibit evolvability
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due to ever changing business requirements, while many
indications are present that most current software imple-
mentations do not conform with this evolvability requisite.
Evolvability in this theory is operationalized as being the
absence of so-called combinatorial effects: changes to the
system of which the impact is related to the size of the sys-
tem, not only to the kind of the change which is performed.
As the assumption is made that software systems are subject
to unlimited evolution (i.e., both additional and changing re-
quirements), such combinatorial effects are obviously highly
undesirable. In case changes are dependent on the size of
the system and the system itself keeps on growing, changes
proportional to the systems size become ever more difficult
to cope with (i.e., requiring more efforts) and hence hamper-
ing evolvability. Normalized Systems theory further captures
its software engineering knowledge by offering a set of four
theorems and five elements, and enables the application of
this knowledge through pattern expansion of the elements.
The theorems consist of a set of formally proven principles
which offer a set of necessary conditions which should be
strictly adhered to, in order to obtain an evolvable software
architecture (i.e., in absence of combinatorial effects). The
elements offer a set of predefined higher-level structures,
primitives or “building blocks” offering an unambiguous
blueprint for the implementation of the core functionalities
of realistic information systems, adhering to the four stated
principles.

A. Theorems

Normalized Systems theory proposes four theorems,
which have been proven to be necessary conditions to obtain
software architectures in absence of combinatorial effects:

• Separation of Concerns, requiring that every change
driver (concern) is separated from other concerns in its
own construct;

• Action Version Transparency, requiring that data enti-
ties can be updated without impacting the entities using
it as an input or producing it as an output;

• Data Version Transparency, requiring that an action
entity can be upgraded without impacting its calling
components;

• Separation of States, requiring that each step in a work-
flow is separated from the others in time by keeping
state after every step.

In terms of knowledge management, as mentioned ex-
plicitly in [20], it must clearly be noted that the design
theorems proposed are not new themselves; in fact, they
relate to well-known (but often tacit or implicit) heuristic
design knowledge of experienced software developers. For
instance, well-known concepts such as an integration bus, a
separated external workflow or the use of multiple tiers can
all be seen as manifestations of the Separation of Concerns
theorem [20]. As such, the added value of the theorems
should then rather be situated in the fact that they (1)

make certain aspects of that heuristic design knowledge
explicit, (2) offer this knowledge in an unambiguous way
(i.e., violations against the theorems can be proven), (3)
are unified based on one single postulate (i.e., the need
for evolvable software architectures having no combinatorial
effects) and (4) have all been proven in a formal way.

B. Normalized Systems Elements as Patterns

The above stated theorems illustrate that typical software
primitives do not offer explicit mechanisms to incorporate
the principles. Also, the systematic application of the prin-
ciples leads to a very fine-grained modular structure, which
could form an additional design complexity on its own when
performed “from scratch”. Therefore, NS theory proposes a
set of five elements as encapsulated higher-level patterns
complying with the four theorems:

• data elements, being the structured encapsulation of a
data construct into a data element (having get- and set-
methods, exhibiting version transparency, etcetera);

• action elements, being the structured encapsulation of
an action construct into an action element;

• workflow elements, being the structured encapsulation
of software constructs into a workflow element describ-
ing the sequence in which a set of action elements
should be performed in order to fulfill a flow;

• connector elements, being the structured encapsulation
of software constructs into a connector element allow-
ing external systems to interact with the NS system
without calling components in a stateless way;

• trigger elements, being the structured encapsulation of
software constructs into a trigger element controlling
the states of the system and checking whether any
action element should be triggered accordingly.

Each of the elements is a pattern as they represent a re-
curring set of constructs: besides the intended, encapsulated
core construct, also a set of relevant cross-cutting concerns
(such as remote access, logging, access control, etcetera)
is incorporated in each of these elements. For each of the
patterns, it is further described in [20] how they facilitate a
set of anticipated changes in a stable way. In essence, these
elements offer a set of building blocks, offering the core
functionalities for contemporary information systems.

Regarding these patterns, it can be noted that their sepa-
rate definition and identification is based on the implications
of the set of theorems. For instance, the theorems Sepa-
ration of Concerns and Separation of States indicate the
need to formulate a workflow element next to an action
element, in order to allow for the stateful invocation of
action elements in a (workflow) construct other than action
elements containing functional tasks. Next, each of the five
patterns themselves contain knowledge concerning all the
implications of the theorems referred to in Section III-A.
Finally, each of these patterns has been described in a very
detailed way. Consider for instance a data element in a JEE
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implementation [21]. In [20] it is discussed how a data
element Obj is associated with a bean class ObjBean,
interfaces ObjLocal and ObjRemote, home interfaces
ObjHomeLocal and ObjHomeRemote, transport classes
ObjDetails and ObjInfo, deployment descriptors and
EJB-QL for finder methods. Additionally, methods to ma-
nipulate a data element’s bean class (create, delete, etcetera)
and to retrieve the two serializable transport classes are
incorporated. Finally, to provide remote access, an agent
class ObjAgent with several lifecycle manipulation and
details retrieval methods is included. It can be argued that
these elements incorporate the main concerns which are
relevant for their function.

Moreover, the complete set of elements covers the core
functionality of an information system. Consequently, as
such detailed description is provided for each of the
five elements, an NS application can be considered as
an aggregation of a set of instantiations of the ele-
ments. Consider for example the implementation of an
observer design pattern [10]. In order to implement this
pattern in NS, three data elements (i.e., Subscriber,
Subscription and Notification) are required. A
Notifier connector element will observe the subject,
and create instances of the Notification data element.
These Notification data elements will be sent to ev-
ery Subscriber that has a Subscription through a
Publisher connector element. The sending is triggered by
a PublishEngine trigger element which will periodically
activate a PublishFlow workflow element. Consider that
each (NS) element consists of around ten classes [22]. The
seven identified elements therefore result in around seventy
classes used to implement the design pattern, whereas the
original implementation of the design pattern consists of two
classes and two interfaces. Consequently, it is clear that, in
order to prevent combinatorial effects, a very fine-grained
modular structure needs to be adhered to.

C. Pattern Expansion

As stated before, in practice, the very fine-grained mod-
ular structure implied by the NS principles seems very
unlikely to arrive at without the use of higher-level primitives
or patterns. Consequently, as NS proposes a set of five
elements which serve for this purpose, the actual software ar-
chitecture of NS conform software applications can actually
be generated relatively straightforward. For example, in case
of the data element pattern structure, the pattern expansion
mechanism would need a set of parameters including the
basic name of the data element (e.g., Invoice), context
information (e.g., component and package name) and data
field information (e.g., data type). Next, based on these pa-
rameters, the pattern expansion mechanism will generate the
predefined structured (i.e., the set of classes and data fields)
as illustrated above: the bean class InvoiceBean, inter-
faces InvoiceLocal and InvoiceRemote, etcetera.

However, in terms of knowledge management, it should
be noted that the patterns and the expansion mechanism
should not be considered as separate knowledge reuse mech-
anisms: rather, the pattern expansion facilitates the re-use of
knowledge embedded in the patterns, as each expansion of
the patterns results in a new application of the knowledge
encapsulated in the pattern. Through this, pattern expansion
facilitates both types of learning discussed earlier (i.e.,
“learning by doing” and learning from experience of other
people) by utilizing the knowledge contained in the patterns.

Also, the information codified in a pattern may not be
sufficient to adequately transfer the intended knowledge.
This was already the case when using the design patterns
proposed by Gamma et al. [10]. For example, it has been
claimed that the Dependency Inversion Principle helps to
gain a better understanding of the Abstract Factory pattern
[23]. Similarly, the structure of the NS patterns can only be
understood when the NS theorems are taken into account.

IV. NORMALIZED SYSTEMS PATTERNS AS KNOWLEDGE
MANAGEMENT

In the previous sections, we explained how traditional de-
sign patterns entail knowledge management related benefits
regarding documentation, the development of new applica-
tions and the adaptation of existing applications. We also
argued how NS patterns represent a fine-grained modular
structure which can be expanded to provide an evolvable
software architecture. In this section, we discuss how the use
of NS patterns seems to even further enhance the reported
design pattern benefits, when compared to design patterns.

A. Documentation

As NS-compliant applications based on the NS elements
have basically five recurrent elementary structures, only
these five elements have to be understood to grasp the
structure of each instantiated element throughout the ap-
plication. Because the patterns are detailed enough to be
instantiated, no manual implementation of the patterns (as
is the case with the design patterns proposed by Gamma
et al. [10]) is required. Consequently, an identical code
structure reoccurs in every application which is created using
the NS expanders. The commonality of the structure of the
patterns makes that once one understands the patterns, one
understands all its instantiations as well. In this way, it could
be argued that — at least partially — the pattern structure
becomes the documentation. Therefore, no source code level
documentation is required.

B. Using knowledge to build new applications

As (1) each violation of the NS theorems during any
stage of the development stage results in a combinatorial
effect, and (2) the systematic application of these theorems
results in very fine-grained structures, it becomes extremely
challenging for a human developer to consistently obtain
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such modular structures. Indeed, the fine-grained modular
structure might become a complexity-issue on its own. In
this sense, the NS patterns might offer the necessary sim-
plification by offering pre-constructed structures (“building
blocks”), which can be parameterized during implementation
efforts. This way the NS patterns do dictate the source code
for implementing the pattern, contrary to the patterns of
Gamma et al. [10].

An important characteristic of these structures is that
they separate technology-dependent aspects from the actual
implementation, resulting in the fact that one can easily
switch the underlying technology stack of the software.
One transition that has been performed, is changing the
underlying implementation architecture from EJB 2 to EJB
3. Because these standards use a different way of commu-
nicating between agents and beans, this transition normally
is a labor-intensive and difficult task. Using the architec-
ture described in this paper, this transition can however
be achieved rather easily by using the pattern expansion
mechanism. This is because the expanders that perform
the expansion are very similar for different technologies.
This is done by clearly separating functional requirements
of the system (i.e., input variables, transfer functions and
output variables) from constructional aspects of the system
(i.e., composition of the system). Whereas all constructional
aspects are described in patterns and expanders, functional
aspects are separately included in descriptor files (such
as data elements, action elements, etc.). As each pattern
can be conceived a recurring structure of programming
constructs in a particular programming environment (e.g.,
classes), one can conclude that the functional/constructional
transformation then becomes located at one abstraction level
higher than before.

C. Incorporating new knowledge in existing applications

The purpose is to easily incorporate new knowledge of im-
provements, intrinsically by the use of the elements. This can
be interpreted from two distinct perspectives. First, improve-
ments or changes (e.g., typical bug fixing or a new kind of
algorithm) regarding the actual functional parts of the system
(i.e., the so-called ‘tasks’) are easily to be incorporated in the
whole system as the properly separated change driver is the
only place where any modifications have to be made and the
remainder of the system can easily interact with the new task
(and hence, use this knowledge). In NS terms, we could call
these kind of changes and expertise inclusions, knowledge
dispersion at the “sub-modular level” as only changes and
new knowledge are incorporated at the sub-modular level of
the tasks (and not in the modular structure of the elements).
Second, however, knowledge can be incorporated at the
“modular level” as well. This kind of knowledge inclusion
would include change (e.g., an extra separated class in
the pattern) and modifications (e.g., improved persistence
mechanism) regarding the internal structure of an element

(the pattern). Indeed, once the basic structure or cross-
cutting concern implementation of an element is changed
due to a certain identified need or improvement, the new
best-practice knowledge can be expanded throughout the
whole (existing) modular structure and used for new (i.e.,
additional) instantiations of the elements. In order to further
illustrate this second kind of knowledge dispersion based
on NS patterns, consider the following example, based on
real-life experience from developers using NS.

For instance, one way to adopt a model-view-controller
(MVC) architecture in a JEE distributed programming envi-
ronment is by adopting (amongst others) the Struts frame-
work. In such MVC architecture, a separated controller
is responsible for handling an incoming request from the
client (e.g., a user via a web interface) and will invoke
(based on this request) the appropriate model (i.e., business
logic) and view (i.e., presentation format), after which the
result will eventually be returned to the client. Struts is
a framework providing the controller (ActionServlet) and
enabling the creation of templates for the presentation layer.
Obviously, security issues need to be handled properly in
such architecture as well. Applied to our example, these
security issues in Struts were handled in the implementation
of the Struts Action itself in a previous implementation
of our elements. In other words, the implementation class
itself was responsible for determining whether or not a
particular operation was allowed to be executed (based on
information such as the user’s access rights, the screen
in which the action was called, etcetera). As such, this
“security function” became present in all instantiations of
an action element type (i.e., each session). Moreover, this
resulted in a combinatorial effect as the impact of a change
such as switching towards an equivalent framework (i.e.,
handling similar functions as Struts), would entail a set
of changes dependent on the number of instantiated action
elements (and hence, on the size of the system). In order
to solve the identified combinatorial effect, the Separation
of Concern theorem has to be applied: separating the part
of the implementation class responsible for the discussed
security issues (i.e., a separate change driver) in its own
module within the action element. In our example, a separate
interceptor module was implemented, next to the already
existing implementation class. This way, not only the com-
binatorial effect was excluded, but the new knowledge in
terms of a separate interceptor class was applied to all action
elements after isolating the relevant implementation class
parts and executing the pattern expansion. Additionally, all
new applications using the new action element structure
automatically incorporate this new knowledge.

Hence, compared to traditional design patterns, the NS
patterns offer a formally proven evolvable software archi-
tecture as well as an convenient knowledge distribution
mechanism.
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V. CONCLUSION AND FUTURE WORK

In this paper, we indicated the application and usefulness
of patterns in software development. It was also shown
that Normalized Systems theory can readily be considered
as a method of building stable and large-scale information
systems. Furthermore it has been demonstrated how Normal-
ized Systems theory uses patterns to facilitate the transfer
and use of knowledge on software development. But far
most we showed in this paper that the NS elements can
be considered to be enhanced patterns for software devel-
opment with benefits on three dimensions (i.e., less need
for explicit documentation, more deterministic development
of new applications and more convenient incorporation of
new knowledge into existing applications). From interviews
with developers, these benefits have shown to enhance the
transfer of knowledge, success rate and the overall quality
of NS developments. Although the discussion in this paper
was limited to Normalized Systems theory for software, the
theory has recently been applied to both Business Process
Management and Enterprise Architecture domains. As part
of future research, the possible formulation of patterns on
the level of business processes and enterprise architecture
will be studied.
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