
Aligning the Normalized Systems Theorems
with Existing Heuristic Software Engineering Knowledge

Peter De Bruyn, Geert Dierckx, and Herwig Mannaert
Department of Management Information Systems

Normalized Systems Institute (NSI)
University of Antwerp

Antwerp, Belgium
{peter.debruyn,herwig.mannaert}@ua.ac.be, {geert.dierckx}@student.ua.ac.be

Abstract—Software applications used by contemporary or-
ganizations have to be expendable for incorporating additional
functional requirements, as well as adaptable regarding ever
changing user requirements. As this evolvability has frequently
be noted to be lacking in most information systems, Normalized
Systems (NS) theory has recently proposed a framework on
evolvable modularity. Based on the concept of systems theoretic
stability, NS formulates a number theorems, constituting a set
of formally proven necessary conditions in order to obtain
such evolvability in modular structures. These theorems were
argued to strongly align with heuristic (often tacit) best-practice
knowledge of experienced software developers. In order to
further validate this claim, the present paper will investigate
the degree in which the NS theorems align with best-practice
software engineering guidelines based on the set of 22 “bad
smells in code” as defined by Fowler and Beck. The analysis
shows that the avoidance of the code smells indeed largely
aligns with the Normalized Systems theorems. While 14 of the
guidelines seem to be reflected by the NS theorems, 4 of them
seem to be unrelated to the theorems and another set of 4 code
smells seems to be contradicting with NS reasoning.

Keywords-Normalized Systems; Code Smells; Heuristic Knowl-
edge; Knowledge Management.

I. INTRODUCTION

Software applications used by contemporary organizations
have to be expendable for incorporating additional functional
requirements, as well as adaptable regarding ever changing
user requirements. While many best-practice principles exist
in order to improve the evolvability of software programs,
the knowledge management concerning these heuristics re-
mains inadequate: most of the principles are often only
known tacitly and are not applied consistently. In this regard,
Normalized Systems (NS) theory has recently formulated
a set of four (formally proven) theorems as necessary
conditions to obtain evolvable modular structures in software
systems [1]–[3]. While these theorems as such are not to
be considered entirely new, their value should be seen in
their unambiguous formulation and proof, as well as their
unification based on a single postulate. In the present paper,
the main focus will be aimed at the best-practice knowledge
residing into these Normalized Systems theorems. Indeed,
it has already been argued that the Normalized Systems

theorems offer in fact a more specific and unambiguous way
of representing some already existing (tacit) best-practices in
the software engineering community [1]–[3]. Hence, we will
try to further support this argument by analyzing how the
Normalized Systems theorems seem to be largely supported
by the guidelines of Fowler et al. [4] based on the prevention
of bad code smells.

After briefly highlighting the essence of Normalized Sys-
tems theory, Section III will situate the bad code smells in
software engineering literature and the relevance of compar-
ing it with the NS theory. A mapping of both approaches will
be proposed in Section IV, after which some conclusions
will be presented in Section V.

II. NORMALIZED SYSTEMS

Normalized Systems (NS) is a theory focusing on the
evolvability of software architectures, based on the concept
of stability from systems theory. For this purpose, it consid-
ers software systems as modular systems consisting of a set
of instantiations of programming constructs (e.g., methods,
data structures, etc.). In order to realize proven evolvability
in these systems, first, an unlimited systems evolution is con-
sidered (meaning that in theory the number of instantiated
constructs and their mutual dependencies eventually become
unlimited in every software system). Next, the stability
requirement demands that each bounded set of changes to
the software system (e.g., adding a new data construct or
adding a new version of an action construct) should have
a bounded impact as well (i.e., the impact of a change
should only be depended on the kind of change performed
to the system and not dependent on the size of the system).
Changes which do generate an impact dependent on the
size of the system are regarded as instable (as their impact
becomes unbounded under the unlimited systems evolution
assumption) and are called combinatorial effects. In order
to enable this stability, NS theory proposed the following
four (formally proven) theorems as necessary conditions to
prevent combinatorial effects [1]–[3]:

• Separation of Concerns, requiring that every concern
(change driver) is separated from other concerns in its

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

own construct;
• Data Version Transparency, requiring that data entities

can be updated without impacting the entities using it
as an input or producing it as an output;

• Action Version Transparency, requiring that an action
entity can be updated without impacting its calling
components;

• Separation of States, requiring that each step in a work-
flow is separated from the others in time by keeping
state after every step.

In reality, building software applications in conformance
with all four theorems seems to require a set of five
encapsulated higher-level programming constructs (called
elements) as building blocks for NS conform applications:
data elements, action elements, workflow elements, connec-
tor elements and trigger elements [1], [3].

In [2, p. 94], it was already noted that the NS “design the-
orems are not new, but relate to well-known heuristic design
knowledge of software developers”. For instance, a limited
set of manifestations of the above explained theorems were
already mentioned in [1]–[3] as summarized in Table I.
Therefore, it might be interesting to investigate the extent in
which other best-practice heuristics in software engineering
(e.g., the bad code smells as formulated by Fowler et al. [4])
conform with the NS theorems.

III. BAD SMELLS IN CODE

In the source code of a software program, bad code
smells are typically considered as symptoms or indica-
tions regarding potentially troublesome or problematic code
[4]. As such, the concept should be clearly distinguished
from typical bugs: flaws or mistakes in the source code
resulting in undesired effects (mostly at runtime), such as
erroneous output values or security breaches. Consequently,
code smells do not imply an erroneous execution of the
software program at the time being. Rather, they point to
parts in the code of which experience has shown that they
have a high chance of causing real problems in the future,
when the source code is adapted (e.g., due to highly complex
code or its low evolvable structure). Based on this approach,
Fowler et al. [4] presented a set of 22 bad smells in code,
all being the expression of their experience-based heuristic
programming knowledge build up over the years. In order to
avoid the presence of these smells, the same authors propose
a set of 72 refactorings further on in their book [4]. Here,
refactoring is not to be considered as changing the delivered
functionalities of a software program. Instead, the purpose is
to redesign the structure of (a piece of) software code so that
potentially troublesome parts (the “smells”) are removed,
while the program itself is still exhibiting the same behavior
at runtime. A short overview of those 22 code smells from
Fowler et al. [4] is presented in Table II by providing the
name of each smell, a brief description of the potential

problem anticipated to arise, as well as an explanation of
the proposed remediation.

In general, the occurrence of code smells has become
associated with the number and degree of difficulties pro-
grammers might be confronted with when trying to change
existing code. The concept has become a generally known,
accepted and established way for studying the maintainabil-
ity of software. Indeed, after the publication of the book
of Fowler et al. [4], researchers have been extending the
repository of existing code smells or using them as a basis
for empirical validation and software evaluation (see e.g.,
[5]–[8]).

Additionally, some limitations to the formulation of the
code smells by Fowler et al. [4], can be derived from earlier
related work as well, for instance based on Mäntylä et al.
[5], [9]. In [9], the authors first argue that the 22 code smells
as defined by Fowler et al. [4] are only presented in a single
flat list without providing any classification. Hence, they
might surpass the maximum number of guidelines which
can be grasped and applied by a human being concurrently.
Therefore, Mäntylä et al. [9] proposed a taxonomy of 6
bad smell categorizations, claiming to make the set of bad
smells more understandable and clarifying the relationships
between them. For example, the smells Long Method, Large
Class, Primitive Obsession, Long Parameter List and Data
Clumps were all characterized as “bloaters”, representing
situations in which a piece of code has grown so much
that it becomes difficult to be handled effectively. Another
taxonomy of the code smells can for instance be found in
[10]. In some way, such taxonomies might already be seen as
an early attempt to unify several of the code smells of Fowler
et al. [4] while looking for some common causing grounds
(i.e., what are the reasons for the smells to show up?). In
this sense, the NS theorems (being formulated in a very
widely applicable way) might show some analogy with these
attempts as their aim was to identify and eliminate causes
for barriers regarding evolvability (in terms of combinatorial
effects) as well. Further, a second limitation suggested by
Mäntylä et al. [5], [9] is the fact that the code smells are still
somewhat ambiguous, implying that their most significant
benefits are to be situated in the subjective evaluation of
software evolvability (i.e., performed by individuals). This
would limit their potential for a direct translation into
software metrics allowing the full automatic detection of
infringements by software tools. Indeed, while Fowler et
al. [4, p. 63] claimed that their aim was to offer more
specific refactoring clues than merely “some vague ideas of
programming aesthetics”, they specifically stated that they
did not want to give very “precise criteria for when a
refactoring is overdue” based on the argument that human
intuition is intrinsically superior to a set of pure metrics.
Also, both the studies of Mäntylä et al. [5] and Shneiderman
[11] show that some disagreement between a set of such
subjective software evaluations can arise (i.e., different peo-

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table I
SOME EXEMPLIFYING MANIFESTATIONS OF NORMALIZED SYSTEMS THEORY THEOREMS IN PRACTICE [1]–[3].

NS theorem Exemplifying manifestations

Separation of Concerns
• Message or integration bus to separate the use of various messaging protocols
• The separate use of external workflows by workflow management systems
• Multi-tier architectures separating presentation logic, application or business logic, database logic, etcetera

Action version Transparency
• Polymorphism in object-orientation
• Wrapper functions (e.g., in C)
• Interface definition languages (IDL’s) (e.g., used by frameworks such as CORBA and COM)

Data version Transparency
• XML-based technology (e.g., for web services)
• Information hiding in object-orientation (e.g., getters and setters in the JavaBean component architecture)
• Data structure passing via URL’s, property files, tag-value pairs, etcetera

Separation of States
• Asynchronous communication systems
• Asynchronous processing in general
• Stateful workflow systems

ple might evaluate the same code differently). Therefore, the
NS theorems might offer an interesting point of comparison
in this situation as well, as their formulation was aimed
at providing specific and formally proven guidelines for
obtaining software evolvability and offering an unambiguous
means of identifying violations against them. Hence, it might
be interesting to analyze the extent in which we can map the
bad code smells of Fowler et al. [4] on the NS theorems. Or,
stated otherwise, to investigate the extent in which the bad
code smells can be seen as manifestations or instantiations of
(violations regarding) the NS theorems. This will be exactly
our goal of the next section.

IV. ALIGNING NS THEOREMS WITH THE AVOIDANCE OF
CODE SMELLS

In this section, our aim will be to examine the degree
in which we can find conformance between the bad code
smells of Fowler et al. [4] and the NS theorems. In order to
do so, Table III tries to visualize and map each of the code
smells with the NS theorems. The analysis reveals three kind
of categories: (1) a set of 14 code smells in full, partial or
indirect compliance or support of the NS theorems, (2) a
set of 4 code smells not related to the NS theorems and (3)
a set of 4 code smells contradicting with the NS theorems.
We will now briefly discuss each of them.

A. Code smells in full, partial or indirect compliance or
support of the NS theorems

Most of the code smells appear to be in full accordance
with the Normalized Systems theorems. We will elaborate
two examples here. First, the Duplicate Code smell straight-
forwardly follows from the Separation of Concerns theorem.
Indeed, consider a situation in which a certain processing
function A includes (amongst others) code chunk X , which
is duplicated in another processing function B as well. This
reveals that functions A and B contain at least two concerns
(i.e., change drivers, tasks). In case X would then be
changed (e.g., due to a new version or mandatory upgrade),
both processing functions A and B should be adapted.
Considering an unlimited systems evolution perspective, the

eventual impact might become related to the overall system
size and hence result in a combinatorial effect. Second,
the Long Parameter smell is supported by, amongst others,
the Action version Transparency theorem. Suppose that a
processing function A has an interface w requiring a set
of (primitive) input parameters S1, S2, ..., Sa to perform its
functionality. Suppose further that a set of L processing
functions is calling A. A new version of A in order to incor-
porate some additional functionality might require additional
primitive input parameter(s) and hence, the interface w might
have to change (e.g., an additional input parameter Sb is
added to the parameter list). In this case, all L processing
functions should be adapted in order to keep calling A
correctly (resulting in a combinatorial effect under to un-
limited systems evolution assumption). The Action version
Transparency theorem will prohibit the creation of such
Long Parameter smell by requiring each processing function
to exhibit version transparency. In practice, this is realized by
avoiding the use of primitives (such as String, integer, etc.)
in the interface of a processing function. Instead, objects
as a whole are passed (i.e., encapsulated data structures
as suggested by Fowler et al.). This would for example
mean that instead of passing parameters amount (integer),
beneficiary name (String), etcetera, the object Invoice will
be passed to a processing function. Based on this reference
to the Invoice object, the processing function can request all
information it needs to perform its function. A new version
of a processing function A (e.g., requiring information about
the currency of the invoice) can now be implemented while
keeping the same interface (i.e., the reference to the Invoice
object) and not requiring any additional changes in the L
calling processing functions.

Also, it is strikingly to note that the definition by Fowler et
al. [4] concerning the two code smells which were mapped
on all four NS theorems (i.e., Divergent Change and Shotgun
Surgery) reflect the typical operationalization of evolvability
in NS. For example, the definition of the Divergent Change
smell almost fully corresponds with the notion of change
drivers in NS as it demands for the identification of objects

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table II
AN OVERVIEW OF THE 22 CODE SMELLS AS DISCUSSED BY FOWLER ET AL. [4]

Code Smell Summary
Duplicate
Code

A code fragment occurring in two or more places in the code base. The code should be refactored in such way that all the
duplicate fragments are grouped and become located at one place.

Long Method A method containing a long sequence of code, often reflecting the incorporation of multiple functionalities. For ease of use
and maintainability purposes, the code should be refactored in such way that each functionality becomes separated in its own
method.

Large Class A class containing too many (infrequently used) member variables and methods, often being an indication of duplicate code
as well. The code should be refactored in such a way that duplicate code is eliminated and fixed clumbs of variables are
separated in a distinct class.

Long Parame-
ter

Methods having a long list of needed parameters for calling them, result in complexity and maintenance issues. The code
should be refactored in such a way that instead of variables, objects are passed to the called methods. The needed information
from those objects can than be requested by using for instance typical get-methods.

Divergent
Change

The phenomenon that a class becomes frequently changed in different ways for different reasons. The code should be refactored
in such a way that everything that changes for a particular cause becomes separated in its own class.

Shotgun
Surgery

The phenomenon that when a (small) kind of change is aimed for, many (little) adaptations have to be made to a lot of
different classes. This causes additional effort to perform changes and creates risks regarding internal consistency. The code
should be refactored in such a way that changes remain contained in a single class resulting in a one-to-one link between
common changes and classes.

Feature Envy The case in which the method of an object tends to use more frequently variables (data) from other classes, than its own
variables. This can occur as objects in object-orientation are typically a combination of both data (variables) and actions
(methods). The code should be refactored in such a way that the method is replaced to the class from which it is intensively
using the data.

Data Clumbs Groups of data (variables, parameters) often occurring together in different objects. This hampers adaptability and increases
complexity of method callings. The code should be refactored in such a way that the bunches of recurring data become
separated in their own class.

Primitive Ob-
session

The (excessive) use of pure primitives or record types (i.e., a structure of data into a meaningful group) to pass on data in
software. This is often a complex and inefficient way to deal with data. Rather, the code can often be refactored in such a way
that small set of primitives is grouped into a (small) object such as a money class with variables for the number, currency,
ranges, etcetera.

Switch State-
ments

Switch statements have the tendency to indicate duplicate code in the source code as often the same switch statement is
scattered about a program in different places. In case a new clause is added, removed or changed within the statement, all
statements have to be found and changed. As such, it is proposed to refactor the code by use of polymorphism.

Parallel
Inheritance
Hierarchies

The phenomenon in which a change in a subclass of one class implies a change in the subclass of another class. This can
be seen as a special case of Shotgun Surgery smell. The code should be refactored in such a way that the instance of one
hierarchy refer to the instances of the other.

Lazy Class Each class created requires effort to create, maintain and understand. Hence, in case classes are present which are not
performing enough functionality to justify these efforts,the code should be refactored in such a way that they are removed.

Speculative
Generality

The presence of methods and classes incorporating future functionalities, but which do not always tend to be used in practice.
The code should be refactored in such a way that this overhead is reduced in order to improve understandability and
maintainability.

Temporary
Field

The situation in which a class has an instance variable which is only set in certain circumstances. This works confusing and
adds to complexity. As such, the code should be refactored in such a way that the temporary fields are replaced to a new
class, in which each instantiation effectively uses the fields.

Message
Chains

When a client asks for a certain object, the situation might occur that this object makes a request to another object, making at
its turn a request to yet another object, and so on. Such method chain creates coupling and a dependency between the client
and the calling stack. The code should be refactored in ways like adding a separate method handling the chain navigation.

Middle Man The phenomenon in which delegation is taken to an extreme situation in which a class is nearly passing all of its incoming
requests to other classes performing the actual functionality. The code should be refactored in such a way that the delegate
(“middle man”) is eliminated from the hierarchy structure.

Inappropriate
Intimacy

The case in which a class is too “intimately” tied to another class, often reflected in a low degree of cohesion of the considered,
as well as a high degree of coupling between them. The code should be refactored in such a way that the coupling between the
classes is lowered by for instance moving fields (variables), methods, rearranging directional links between classes, etcetera.

Alternative
Class with
Different
Interface

The occurrence of a number of methods doing the same thing, but having several different interfaces. Frequently, this goes
hand in hand with duplicate code. The code should be refactored in such way that the methods are renamed and adapted so
they all have the same name and interface, and duplicate code becomes removed.

Incomplete
Library class

When reusing external library classes when building your own code, these library classes may turn out to be incomplete for
performing all required functionalities. Most often, adapting these library classes is very difficult or simply impossible.

Data Class The occurrence of classes only having data fields with getter and setter methods. They form “dumb” data classes, often being
manipulated in too much detail by other classes. The code should be refactored in such a way the data fields become grouped
in the same class as the methods which mostly perform actions upon them.

Refused Be-
quest

The case in which a subclass does not need (many) of the methods its inherits from its base class. Sometimes, this is an
indication of a wrong class hierarchy. In this situation, the code should be refactored in such a way that these inconsistencies
become removed.

Comments If many commentary notes are present in the source code, this often indicates bad quality of the considered code as apparently,
many aspects need additional clarification. They are often a symptom of the above mentioned code smells. The code should
be refactored in such a way that only a little or no extra comment is required in the source code.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table III
MAPPING THE 22 CODE SMELLS OF FOWLER ET AL. [4] WITH THE NORMALIZED SYSTEMS THEORY THEOREMS [1]–[3].

Code Smell SoC AvT DvT SoS
Duplicate Code •
Long Method ◦
Large Class ◦
Long Parameter • •
Divergent Change • • • •
Shotgun Surgery • • • •
Feature Envy contradicting
Data Clumbs •
Primitive Obsession •
Switch Statements ◦
Parallel Inheritance Hierarchies not related
Lazy Class not related
Speculative Generality contradicting
Temporary Field contradicting
Message Chains •
Middle Man •
Inappropriate Intimacy •
Alternative Class with Different Interface •
Incomplete Library class ◦
Data Class contradicting
Refused Bequest not related
Comments not related
•: Code smell guideline fully complying with a Normalized Systems theorem
◦: Code smell guideline partly or indirectly complying with a Normalized Systems theorem

being subject to only one kind of change at a time. An
instance of the Shotgun Surgery smell highly resembles
the definition of a combinatorial effect and the notion of
instability, entailing that a small change might have an
impact located in multiple (and eventually an unbounded
amount) of places. All four NS theorems precisely aim at
avoiding these smells to show up. These examples further
clearly illustrate that the code smells could be regarded as a
kind of symptoms of low evolvable software architectures
(i.e., one does not want to be confronted with Shotgun
Surgery), whereas the NS theorems aim to focus on the
root causes of these symptoms (i.e., how can one avoid the
occurrence of Shotgun Surgery based on a set of proven
theorems).

Finally, some code smells only seem to be partially or
indirectly supported by the NS theorems. For instance, Long
Methods, Large Classes or the use of Switch Statements
are in themselves no strict violations of any of the NS
theorems. However, as Fowler et al. [4] argue that they often
tend to give rise to duplicate code and the combination of
multiple change drivers (i.e., a violation of Separation of
Concerns), they can be thought of as indirectly supporting
the NS theorems.

B. Code smells contradicting with the NS theorems

A limited set of four code smells seems to contradict with
the Normalized Systems theorems. For instance, the code
smells Feature Envy and Data Class require and recommend
programmers to incorporate both data and the actions that
are most commonly performed on this data, in one single
construct (class). However, in [3] it was argued to analyze

the dynamic nature of programming constructs in a multi-
dimensional way (i.e., considering different versions for
a data structure, different versions for the interface of a
processing function and different versions for each of the
tasks a function consists of). As the dimensions of variabil-
ity increase even further when both data and actions are
combined into one construct (e.g., a class in typical object-
oriented methodologies), the NS theorems imply the use
of separate data elements (encapsulated with its get- and
set-methods and supporting tasks for cross-cutting concerns
such as remote access and persistence) and action elements
(containing a single functional tasks and encapsulated with
supporting tasks for cross-cutting concerns such as logging
and access control). The arguments and parameters needed
by an action element are thus to be encapsulated separately
into their own data element. This reasoning contradicts with
the guidelines based on the code smells from Fowler et
al [4]. To the extent that the Temporary Field code smell
is advocating the same combination of methods together
with a set of variables (which all have to be used by
those methods), this code smell seems contradictory to the
Normalized Systems theorems as well. Indeed, in NS, the
identification of separate data elements is prescribed even
when not every action element will necessarily use all the
fields in every instance.

The Speculative Generality smell stresses that the incorpo-
ration of future functionalities should only be implemented
when there is a reasonable chance that the functionality will
eventually be used: the implementation of less likely future
functionalities would only add unnecessary complexity. To

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

a certain extent, this might be considered as contradictory
to the NS approach as NS would prescribe to isolate each
change driver (i.e., each part of code which is anticipated
to evolve independently) as soon as possible in its own
construct as a way of anticipating all basic elementary future
changes, irrespective of its frequency of occurrence. This
might indeed introduce some additional design complexity
initially, but avoids the occurrence of combinatorial effects
later on. On the other hand, in parallel of the concerning
code smell, NS would obviously also not prescribe to
identify parts of code which are completely unlikely to
change independently, as change drivers.

C. Code smells not related to the NS theorems

While most code smells seem to be supporting the NS
theorems, some of them seem to be somewhat unrelated to
NS as well. For instance, the Lazy Class smell deals with
the deletion of code parts no longer used. This issue is not
directly discussed in NS theory (which considers the deletion
of unused parts to be an automatic process of garbage
collection instead of a change to the information system)
and therefore seems unrelated to the theorems. Equivalently,
inheritance structures (cf. the Parallel Inheritance Hierarchies
and Refused Bequest smells) are not really discussed in NS
theory as it focuses on the very basic constructs of infor-
mation systems in terms of data and actions. However, as
inheritance typically suggests to use the typical combination
in object-orientation of data and actions in one construct
(i.e., a class) these smells do not seem to arise in NS systems
(arguing for the use of separate data and action constructs).
Finally, NS theory does not directly consider the use of
Comments in the source code.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented Normalized Systems theory as
an approach for building evolvable software systems based
on a set of formally proven theorems, which seem to relate
to existing (but often tacit) best-practice heuristic software
engineering knowledge. With the aim of supporting the
claim that the NS theorems correlate with this practitioners
knowledge, we explored the relevance of the set of 22
bad code smells as formulated by Fowler et al. [4] in this
regard. Each of the code smells was mapped onto the 4 NS
theorems. The analysis showed that most of the bad code
smells are reflected by NS reasoning, with the most prevalent
impact apparently coming from the Separation of Concerns
and Data version Transparency theorems. However, a set
of 4 code smells seemed to be unrelated, while another
set of 4 code smells even seemed to be contradicting with
NS theorems. Besides relating both approaches to each
other, this paper (1) supports the work of Fowler et al.
[4] by offering a sound theoretical basis for most of their
formulated heuristic design guidelines and (2) might offer
practitioners more insights into how violations regarding NS

theorems might manifest themselves in practice. To some
extent, the code smells could then be regarded as a kind of
symptoms of low evolvable software architectures, whereas
the NS theorems aim to focusing on the root causes of these
symptoms. Future research might then be aimed at relating
other knowledge repositories regarding software engineering
heuristics towards the NS theorems.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] H. Mannaert and J. Verelst, Normalized systems: re-creating
information technology based on laws for software evolvabil-
ity. Koppa, 2009.

[2] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. 76, no. 12, pp. 1210 – 1222, 2011.

[3] ——, “Towards evolvable software architectures based on
systems theoretic stability,” Software: Practice and Experi-
ence, vol. 42, pp. 89–116, 2012.

[4] M. Fowler, K. Beck, J. Brant, O. W., and D. Roberts, Refac-
toring: Improving the Design of Existing Code. Addison
Wesley Professional, 1999.

[5] M. Mäntylä and C. Lassenius, “Subjective evaluation of
software evolvability using code smells: An empirical study,”
Empirical Software Engineering, vol. 11, pp. 395–431, 2006.

[6] W. Li and R. Shatnawi, “An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution,” Journal of Systems and Software, vol. 80,
no. 7, pp. 1120 – 1128, 2007.

[7] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The
evolution and impact of code smells: A case study of two
open source systems,” in Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 390–400.

[8] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur,
“Decor: A method for the specification and detection of code
and design smells,” Software Engineering, IEEE Transactions
on, vol. 36, no. 1, pp. 20–36, jan.-feb. 2010.

[9] M. Mäntylä, J. Vanhanen, and C. Lassenius, “A taxonomy
and an initial empirical study of bad smells in code,” in
Proceedings of the International Conference on Software
Maintenance, 2003.

[10] W. C. Wake, Refactoring Workbook. Addison-Wesley Pro-
fessional, 2003.

[11] B. Shneiderman, Software psychology: human factors in
computer and information systems. Winthrop Publishers,
1980.

89Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

