
A Description Language for QoS Properties and a Framework for Service
Composition Using QoS Properties

Chiaen Lin, Krishna Kavi, Sagarika Adepu
Department of Computer Science and Engineering

Unitersity of North Texas
Denton, TX 76203 USA

chiaen@unt.edu, Krishna.Kavi@unt.edu, sagarika121@gmail.com

Abstract—Web Services Description Language (WSDL) is an
XML-based language for describing Web services and how to
access them. There are established standards and frameworks
for specifying and composing Web services based on the func-
tional properties. A WSDL extension to specify non-functional
or Quality of Service (QoS) properties is proposed in this paper.
This enables the QoS-aware Web service composition. This pa-
per introduces a framework that adapts publicly available tools
for Web services, augmented by ontology management tools,
along with tools for performance modeling to exemplify how the
non-functional properties such as response time, throughput,
and utilization of services can be addressed in the service
acquisition and composition process. The framework provides
support to achieve specified QoS goals by discovering services
based on both functional and non-functional properties, and
composing selected services such that the composed system
satisfies the overall QoS requirements. The framework can
be easily extended to automate the composition of services
and update both functional and non-function properties of the
combined services.

Keywords-WSDL; Ontologies; Quality of Services; Non-
functional Properties; Service Composition.

I. INTRODUCTION

Service oriented architecture (SOA) offers a flexible
methodology for the creation and management of soft-
ware services. Software services are well-defined business
functionalities situated in loosely-coupled and distributed
computing settings such as Cloud and Web. Each service
provides a specific and well defined functionality. Well
defined interfaces permit for the discovery and invocation
of services. Web service is a realization of the SOA con-
cept. Available standards allow for the creation, registration,
discovery and invocation of Web services. Web Services
Description Language (WSDL) can be used to specify the
functionality of a service along with its communication
protocols. Service providers can register services with Uni-
versal Description Directory and Integration (UDDI) or other
such registry services. Service repository can be queried by
customers to discover needed services. The discovery of
a service is based on searching through categories and by
matching the specification given in WSDL.

The goal of our project is to discover services based
not only on their functionality but also based on non-

functional (or quality of service) properties. In addition,
our goal includes service composition and specification of
non-functional properties of composed services. These goals
require the ability to specify non-functional (or QoS) proper-
ties with services, and the ability to compute non-functional
measures of composed services. Ascertaining certain non-
functional properties of composed service require models
and tools that are appropriate for the specific property (e.g.,
stochastic models for performance measures). In this paper,
we explore the development of the necessary framework for
composing performance properties using queuing models.

WSDL can only be used for specifying functionality of
services. Non-functional properties, including several quality
of service (QoS) characteristics, are crucial to the success
and wider adoption of Web services. Customers would like
to use QoS characteristics of Web services for selecting
from among several alternate implementations. Each of the
potential service provider declares similar functionalities
for the same purpose – thus the customer expects more
information about services. Typical among QoS properties
are security, reliability, and performance [1]. WSDL should
be extended in order to provide QoS related information
with services. Once non-functional properties of services are
specified, it will be possible to develop or extend tools for the
discovery of Web services based both on functionality and
non-functional properties. Additional tools can be designed
for service aggregation, integration and composition based
on QoS characteristics.

As we proceed with the quality-aware extension to the
specification of services, it will be necessary to define
standard metrics for non-functional properties. The Cloud
Council that is developing a practical guide to Service level
Agreements [2], recommends using ISO definitions [3] for
standard metrics. Service composition leading to the compu-
tation of QoS properties of the composed services present
new challenges. Consider for example “response time” as
a non-functional property, and consider the composition of
two services with 3ms and 5ms response times. One cannot
assume that the response time of the composed service
is 8ms, since computation of service times are based on
stochastic measures and it may become necessary to use

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

appropriate models (e.g., queuing theory) for computing the
response time of the composed service. The orchestration
of services in a composed service plays an important role
in modeling QoS properties of the composite service. In
the case of performance, additional complexity results from
the current workload at a processing node: a lightly loaded
node leads to faster response times. This may necessitate
specification of performance properties at different levels of
workloads (e.g., at low, average and heavy loads). These
complexities can be managed using ontologies for the spec-
ification of non-functional properties.

Since our motivation is not only the discovery of services
meeting QoS requirements, but also to compose services
leading to new services and ascertaining the QoS properties
of composed services, we felt that available QoS extensions
do not fully meet our needs. Hence we propose our own ex-
tensions to WSDL to specify QoS properties. To exemplify
the utilization of these extensions, we propose a framework
for service composition with the assistance of both onto-
logical and performance modeling tools. QoS properties are
modeled with the ontological engine that can be expanded
in accordance with the service declaration. Properties that
are subject to a chosen performance tool can also be noted
in the ontology model for further semantic comparisons.
In this paper, we will focus on the performance aspect of
the service; in particular service response times, utilization,
and throughput. As a proof of concept, we demonstrate the
process of WSDL extension, along with its corresponding
QoS ontology modeling, performance modeling, and service
composition using an example.

The key contributions of our work are (a) WSDL exten-
sions for specifying nonfunctional properties (b) ontology
for classification of non-functional properties (c) framework
for the discovery of services that meet both functional and
non-functional requirements (d) a framework for computing
performance (stochastic) measures of composed services.

The layout of the paper is as follows. Section 2 overviews
research that is closely related to our work. Section 3
describes how we extended WSDL to include QoS prop-
erties. Section 4 introduces the creation of QoS ontology
and performance modeling to be used in the Web services.
Section 5 uses a case study to demonstrate QoS based
Web service composition framework. Section 6 includes our
conclusions about the study.

II. RELATED WORKS

The description of non-functional properties related to
SOA operational management has been described in [4]. In
addition to adding some QoS criteria, semantic interpretation
to the extensions have been realized in various frameworks
[5] [6] [7]. An approach to describing service lifecycle
information and QoS guarantees offered by a service based
on OWL-S can be found in [8]. Here, service profiles are ap-
pended with QoSCharacteristics to generate a corresponding

service description repository. The OWL-S based repository
can automatically cover the traditional UDDI registry by
mapping its elements. In [9], WSDL is extended to X-
WSDL where non-functional criteria are added in service
definition. Following its predecessor X-UDDI [10], the Web
service registration and publication can be queried on the
basis of this criteria. In [11], a unified semantic Web services
publication and discovery framework is proposed with a
QoSMetrics extension to WSDL using PS-WSDL, USQL
for service query, and UDDI mapping suites. In this paper,
we focus on a proof of concept for WSDL extension and its
correspondent non-functional semantic model engineering,
but not on the service registration. With our framework,
it should be straightforward to apply well-defined UDDI
extension tools such as mentioned in [12], or other registry
tools.

To enable semantic description of service extensions, sev-
eral ontological languages have been proposed. An overview
of some of these languages can be found in [13]. They
focus on the semantic modeling and mapping ontology
applied to service descriptions. Our framework focusses on
the engineering of ontology model and its references to
the performance modeling tools. With the help of ontology
mapping, different service description and advertisement
standards should be easy to adapt in our framework.

Service composition methods and their languages can
be broadly categorized into different types: Orchestration,
Choreography, Coordination, and Assembly [14]. While
emphasizing from different aspects to approach the issue,
composition methods use ontology to annotate QoS at-
tributes that provide common ground for service synthe-
sis, execution, and adaptation [15]. In QoS-aware service
composition, services are selected based on inter and intra
task constraints. They can also be grouped into deterministic
and non-deterministic depending on when these attributes
were made known [14]. Various researches are hoping to
gain optimal results by using detailed descriptions of QoS
values of services during composition [16] [17]. In [18], a
quality-driven middleware serves as a composition manager
that model multidimensional QoS attributes with utility
functions, and optimizes them by local selection and global
planning for different quality criteria.

In [19], requested and provided QoS properties are ex-
pressed as required specification documents and service
specification documents respectively in the open dynamic
execution environment. The framework serves as a broker
for service compositions that utilizes QoS model in its own
ontological language. Service selection algorithms and met-
rics based on the ontology are utilized by the service broker.
Its objective is to support ad-hoc service collaborations,
while ours is to facilitate the description of QoS properties
of existing and new composite services. The work is similar
to ours with the emphasis on using ontology model as the
tool to reason QoS attributes semantically. When monitoring

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the execution condition, the ontology model can facilitate
the selection of correct set of QoS values according to the
execution environment. The QoS-aware ontology modeling
framework we propose can serve the same purpose.

The advantage of our framework is in its facilitation of
stochastic performance evaluation during service composi-
tion. The above mentioned related works do not consider the
use of ontology and performance models working closely
to address the evaluation of QoS properties of service
composition. In addition, we consider the use of different
performance tools with the model-related elements in the
ontology, facilitating the usage of QoS attributes based
on context and selecting appropriate models and tools for
ascertaining properties during composition.

III. QOS-AWARE WSDL

WSDL is the standard language suggested by World Wide
Web Consortium (W3C) for service specification. It can be
read as a conceptual model consisting of components with
attached properties, which collectively describe the service
[20]. A WSDL specification contains abstract and concrete
descriptions of the service. At abstract level, it describes the
interface to the service: operations with message exchange
patterns (MEP) and parameter types. At the concrete level,
a binding specifies the transport type that the interface uses.
An endpoint then associates a real network address with the
binding, which forms the service. The service is invoked by
supplying the declared signature to the interface through its
endpoints.

Although the syntactic specifications provide information
about the structure of input and output messages, and
the functional descriptions of the service, WSDL does
not address non-functional properties. To fully utilize Web
services, non-functional information, along with function-
ality, is needed in the service description. To augment
any proposed extensions, backward compatibility and its
extension level must be considered. Since WSDL description
model addresses abstract and concrete components with
services, the non-functional extensions to WSDL should be
considered accordingly. It should be compatible with the
original Web services mechanism in that the addition may
be considered optional. Web service engines and operations
should be able to freely ignore the QoS information as
they choose to operate in the conventional environment.
For applications that adapt our framework, the QoS-aware
extensions are extracted easily. We decided that the ex-
tensions should be established at service level rather than
at interface level, since the WSDL interfaces are bounded
by the message exchange patterns and considered abstract
models. At service level, an endpoint is where the abstract
service binds to a concrete port type, where the overall
service performance can be noted.

WSDL2.0 Core standard provides element-based exten-
sibility that can be used to specify technology-specific

Figure 1. QoS-Aware WSDL schema for Performance parameters

binding. We create an element in WSDL to represent
QoS property specification. Then we use the element as
the extension element to the endpoint. The service with
the endpoint is therefore being annotated by the extended
properties. For a QoS property extension element, we use
complex type in the XML schema to accommodate the data
structure of the QoS. As depicted in Figure 1, the QoS-aware
extension schema exemplifies a non-functional property of
performance. Within the performance criteria, response time
is noted with its value, unit, and category. The extension
can also be further referenced by importing latest XML
schema version which can be updated on-the-fly as revising
the QoS ontology model, thus conforming to the latest XML
standards.

IV. PERFORMANCE SERVICE COMPOSITION

Service composition decisions have to be made from
considerations of both functional and non-functional re-
quirements. To manage the semantics of both aspects and
facilitate the automatic selection of service components that
meet the service level requirement, an ontology engine is
proposed to efficiently and flexibly classify both functional
and non-functional attributes. Services and their components
can be further classified according to the application domain,
using the category scheme, to facilitate the retrieval and
management of corresponding services. The availability of
desired service depends on the discovery resulting from
querying the ontology model. In case of no services meet
the requirements, existing services can be acquired and
composed. The newly composed services can then be added
to the ontology engine for future selections.

In some cases, computing the non-functional properties
of composed services requires stochastic models. Consider
performance properties of services such as response time.
These performance attributes are used to filter and rank
services so that service selections can be made. As new ser-
vices are composed from its constituent service components,
performance indexes can be generated by modeling the new

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

composition through the stochastic model. The performance
evaluation results along with the new composed service are
added back to the ontological model for future reference.

The backend of the composition framework provides
interfaces in utilizing ontology model and models for the
evaluation of QoS properties for Web service composition.
The two modules are independent and any potentially com-
patible models and tools can be plugged in. In this paper,
we illustrate the process of creating the ontological model,
and use a queuing model for composition of performance
related properties of services.

A. Ontological Property Model

Ontologies offer more accurate and flexible cataloging of
entities than taxonomies. While the latter uses hierarchical
and branched static structures to group entities and man-
age information using structural organizations, ontological
model annotates semantics with meta-data, relating prop-
erties and attributes with more complex organizations than
branching or tree like structures. Ontology model therefore
provides more flexible organization and semantic interpreta-
tion of data with entities.

The quality of service property of a Web service can be
inferred by its performance attributes. Criterion of service
selection can be formulated by the configuration of these
attributes to indicate levels of service importance. Due to
the dynamic nature provided by service oriented mechanism,
even the meaning of performance metrics should be adapted
to fit the context of the service domain. For example, a
Web service component qualified for soft real-time appli-
cation may be considered if they have reasonable response
times; however they may not be suitable for hard real-time
environments, unless the response times can be bounded.
Different contexts impose different semantic interpretations
on the same non-functional properties. However the ontol-
ogy model is highly flexible and thus multiple semantic
interpretations can be associated with properties associated
with services.

To create an ontological model for Web services, lead-
ing to service composition, we demonstrate the process
of establishing performance as non-functional property of
Web services, such as response time, server utilization, and
throughput. Further context related performance indicators
can also be easily added with similar considerations. In
order to create, update, and query the performance properties
during the Web service composition process, we need to
establish records of each and every services. We adapt the
Protege Editor [21] as the editing tool to help create an
ontology model. Protege Editor has a GUI interface [22].
Users can specifically define Entity and Class as first-class
elements in the schema along with their Object Properties.
Instance of object can be initialized as an Individual and its
Data Property can be appended. Visual tools are provided by
the editor’s plug-ins to facilitate various aspects views. There

are also several reasoners available that can be invoked to
check and infer the ontological derivations automatically.

We differentiate the first-class elements from base per-
formance and model relevant ones. The model refers to the
performance modeling used in the compostion. The base
ones serve as the mandatory performance attributes that all
the Web services are required to specify as performance
indicators. The model-related properties serve as the supple-
ment to the application-specific modeling approaches, thus
can store additional attributes for use by specific methods
and tools. In our example, the base performance classi-
fication is represented by Quality-of-Services (QoS). The
QoS subclasses ResponseTime, Throughput, and Utilization
are base performance indicators, to quantify performance
property. Model-related attributes include Workload and
Statistics. Workload here is used as an attribute to evaluate
the significance of base QoS properties. The attributes allow
for recording the criteria under which the performance
properties were derived and thus allow for adjustments when
new running environments differ from these values.

For each of the base and model-related first-class ele-
ments, classification can also be refined into detailed sub-
classes. For instance, a response time can be ranked into
subcategory such as Fast, Quick, Normal, Slow and Slug-
gish. Each of the rank can also be noted with its values that
represents the class, based on specific context. As the new
service composition emerges, the new service can easily be
accommodated in the ontological model, establish quantity
and corresponding semantics, and is ready for further queries
and reasoning. The example model described here includes
base and model-related classes and depicted in Figure 2(a).
The refined QoS rank subclasses example is depicted in
Figure 2(b).

To be able to interface with Protege Editor so that we can
update and query the ontology model for service composi-
tion processing, we further convert the ontological process
into programming. Protege-OWL provides the capability to
convert API to equivalent GUI functions and the mechanism
for plugging reasoners [23]. We follow the process steps
of creating the ontology model, and make the process
programmable. The base QoS schema can serve as the
building block for the extension of the ontology model.
The automation enhances the flexibility to experiment on
the first-class cataloging and their refined properties. It also
provides a convenient facility to plugin a specific model-
related ontology for performance modeling.

The automation process can be further extended with a
reasoner to the ontology model that enhances the reasoning
ability while interacting with the model. A reasoner imple-
menting the reasoner plugin programming interface will be
accessible in the same way that the built-in reasoners are.
We choose the Jena Framework from Apache as the reasoner
mechanism for our running example. It is well-known and
an open source tool. Its query and storage architecture can

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

(a) Performance Ontology Model (b) QoS Ontology Model with Refined Ranks

Figure 2. Ontology Models

enable more flexible online usage of the ontology engine.
We adapt Jena programming API [24] to read the ontology

model built from Protege-OWL, and validate the model by
the reasoner rules. For inference support, Jena provides a
general purpose rule engine that the ontology model can be
validated and the application specific rule can be applied to
facilitate aspects of Web service composition management.
The service composition can be fine-tuned by using the rules
from domain experts or engineers that impose application
related restrictions. For instance, assume the response time
of a quick Web service is defined to be less then five
milliseconds, the selection of the candidate Web service can
be filtered by the rule :

[print-a-quick-WebService: (?x pre-ws:hasQoS ?a) (?a
pre-ws:hasResponseTime ?b) (?b pre-ws:rt value ?c)
lessThan(?c, 5.0) → print(?x, ’has quick QoS:’,?c)]

The print-a-quick-WebService rule prints out any service
entity that has a QoS property with a ResponseTime value
smaller than 5.0 msec. Similarly, other plug-in rules can
be used to customize the model to meet the needs of an
application, such as performance rank selection in a service
category.It should be noted that it is possible to define a
reasoner that uses context related information to define fast,
slow response times subjectively, instead of using values.

The ontology model automation enables the Web ser-
vice composition to be processed online. New classes and
properties can be created on-the-fly to address the specific
needs of applications. Web service processes can also benefit
from adaptation to different service domains by interpreting
the performance parameters. The online feedback from the
analysis is the up-to-date data that enhances accuracy of the
reasoning.

B. Performance Modeling for Service Composition
Different methodologies for evaluating performance of

software services such as process algebra, queueing net-
works, and Petri nets come with different analysis tools for
example, PEPA [25], LQN [26], and SPNP [27]. Stochastic

performance models have been widely used in the perfor-
mance evaluation community. In the Web services commu-
nity, it also plays an important role in assuring that the
service performance meets service level agreements.

The purpose of our framework is to provide a platform
that enables the use of appropriate tools for performance
evaluation in Web service composition. According to the
approaches the process takes, developers can explore differ-
ent tools fit the nature of the composition. Appropriateness
can also be explored by comparing various tools for their
usability. To demonstrate the usability of the framework, we
explain the use of a queueing model with services containing
mandatory performance attributes.

While composing services, the flow among the component
services can be described using a workflow or business logic.
Each of the services can be represented as service nodes,
and the request flow can be modeled as waiting queues.
In front of each service node, requests are waiting in line
for the service to process them in order. The composition
model is formed with the integration of the coordinated
services network. The performance outcome of the queueing
network is the performance result of the newly composed
service. The mapping is seen as a close fit to both the
performance evaluation mechanism and the Web service
composition concept. In the example of our case study,
layered queueing model [26] is adapted as the tool to
demonstrate our framework. We will use an example to
illustrate the framework (see Section 5).

Layered queueing model is a conventional queueing
model embedded with the architecture of a software system
and needed resources [26]. The first class elements are
processor, task, entity, and activity. A task represents a
resource that has processors and other entities to execute.
Each of the entities in turn can invoke other entities on
other tasks to fulfill the job. These invocations are modeled
in layered fashion, and can be depicted as a directed graph.
For further detailed modeling, each entity can be represented

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

WS_r=WS_a.WS_b WS_r=WS_a||WS_b

λ=0.5

User_T

User_E
[0]

(1)

Task_a

WS_a
[0.1]

(1)

Task_b

WS_b
[0.1]

λ=0.5

User_T

User_E
[0]

(0.5) (0.5)

Task_a

WS_a
[0.1]

Task_b

WS_b
[0.1]

Figure 3. Web Services Layered Queueing Network Modeling

with more specific activities in its own data flow. For each
task and activity, there will be resource requirements spec-
ified as service time that denotes a performance attribute.
And, the mean number of calls represents the average of
invocations from one entity to another. With the information
for each task and their entities noted, a queuing network
can be constructed to represent the integration of all the
tasks, leading to workload model using either open or
closed queuing models. The former can be modeled with
mean arrival and service rates, while the latter can specified
using mean value analysis (MVA). As soon as the model is
developed, the layered queueing solver can generate reports
on the performance indexes such as service time, throughput
and utilization for both services and processors. It also
generates average waiting times in open queuing model and
mean delay in closed models.

The simplest form of a Web service composition involves
two services, say WS a and WS b. The possible compo-
sitions of the two services can be sequential or parallel
composition, say WS rs and WS rp. Borrowing the syntax
from generic process algebra, the sequential composition
can be represented as WS rs=WS a.WS b, and the parallel
composition can be represented as WS rp=WS a||WS b.
Assume WS a and WS b each represents an entity in
different tasks say Task a and Task b. Each task is assigned
to run on its own processor on different hosts say Proc a and
Proc b. The sequential and parallel composition examples
with an open arrival rate 0.5 are depicted in Figure 3.
Note that the arrival rate is categorized as workload in the
ontology model, and the example just serves as an instance.
In the case of similar services encountered same workload
but running on different platforms, the selection process have
to compare the performance indices such as response time
or throughput.

The service composition in both sequential and parallel
topology can be scaled by accommodating multiple services
at once. Resources can be exclusively owned or shared
among services. Service composition can be based on either

serial or parallel composition of the services involved. The
final layout of the queueing network is the conceptual
modeling of the Web service composition. The model can be
solved by the analyzer and generate the performance indexes
for the composed service.

C. Compositional Semantic Web Services

To export the ontological result that is acquired by the
Web service composition mechanism, we use Axis [28] as
the service publishing interface for demonstration purposes.
The interface also enables the abstraction that Web service
ontological engine (WSOE) and performance modeling en-
gine provide.

The WSOE provides for composition of services in the
context of Web services management. The utility of the com-
position services include basic service information main-
tenance and composition. Service management functions
include insertion, update, and deletion. WSOE Insertion
creates a record in the performance ontology model with
its name and associated performance properties. The per-
formance properties in our running example is the response
time of the service. Other non-functional or QoS properties
can also be included within our framework. WSOE Update
and WSOE deletion are used to update and remove the
correspondent services.

New service composition information created by the
WSOE can be obtained by the WSOE Compose Seq or
WSOE Compose Par. The former will take the list of Web
services in the order specified, and model them as a sequen-
tial network in the layered queueing model. The output will
be the performance indexes for the composed service. For
our simple example, the composition would return the pre-
dicted execution time. Likewise, WSOE Compose Par will
take a list of Web service in the argument, and model them as
parallel network in the queueing model. The sequential and
parallel compositions can be combined to obtain any general
compositions of services. The list of the service interfaces
are listed in Table I.

V. CASE STUDY

To demonstrate the web services composition framework,
we will use a facial recognition service as an example. We
chose this example because of our familiarity with it while
working on a related project on service composition. The
service collects image data from an attached camera and
identifies the presence of human faces. The service consists
of Facial Detection (FD), Image Converter (IC), and Facial
Recognizer (FR), in that order. First each of the component
services are described using our QoS-aware WSDL to denote
both functional and non-functaional properties. For each of
these services we keep their QoS records in the ontology
repository. We will assume that the services are all regis-
tered so that search engine can match potential candidates

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table I
WEB SERVICE INTERFACES OF WSOE

Service Name Parameters Result
WSOE Insert Service Name, Response Time Boolean (True/False)
WSOE Update Service Name Boolean (True/False)
WSOE delete Service Name Boolean (True/False)
WSOE Compose Seq SN1...SNn Service Name, Response Time
WSOE Compose Par SN1...SNn Service Name, Response Time

Table II
LAYERED QUEUEING MODEL FOR FACIAL RECOGNITION SERVICE

COMPOSTION EXAMPLE

#General Section Service time:
G
”Web service modeling.” Task Name Entry Name Phase 1
0.00001 User T User E 50.4902
100 FD T FD E 0.5
1 IC T IC E 0.4
0.9 FE T FR E 0.3
-1
Processor Information Service time variance (per phase)
P 0 and squared coefficient of variation (over all phases):
p User P f i
p FD P f Task Name Entry Name Phase 1 coeff of var **2
p IC P f User T User E 7598.29 2.98059
p FR P f FD T FD E 0.75 3
-1 IC T IC E 0.34 2.125

FE T FR E 0.09 1
Task Information
T 0
t User T r User E -1 User P m
100

Throughputs and utilizations per phase:

t FD T n FD E -1 FD P
t IC T n IC E -1 IC P Task Name Entry Name Throughput Phase 1 Total
t FE T n FR E -1 FR P User T User E 1.98058 100 100
-1 FD T FD E 1.98058 0.990291 0.990291

IC T IC E 1.98058 0.792233 0.792233
#Entry Information FE T FR E 1.98058 0.594175 0.594175
E 0
s User E 0 -1
y User E FD E 1 -1
s FD E 0.1 -1
y FD E IC E 1 -1
s IC E 0.1 -1
y IC E FR E 1 -1
s FR E 0.3 -1
-1

meeting both functional and non-functional requirements of
the customer.

To create the composed service, a list of qualified can-
didates of each component services are evaluated. Let us
assume that our selection picked FD E, IC E, and FR E
as service components. We will now evaluate the non-
functional values for response time of the composed ser-
vice. We model the layered queueing network as follows.
The service components are mapped as the entities in the
layered queueing network with their correspondent tasks
PD T,IC T, and FR T, each of which uses processors
FD P,IC P, and FR P. The modeling script and the perfor-
mance indexes of the example are shown in Table II.

Furthermore, let us assume that Image Converter (IC)
service can be composed in parallel to improve performance.
The composition engine can be configured to explore the
service composition using parallel workflow among the ser-
vices. The new composition would use two Image Converter
(IC) services in parallel named IC E1 and IC E2. The
modeling script of the example and the performance indexes
result are shown in Table III.

Although we only used a simple example and a single
property here, our framework is very general and flexible
so that it can be easily extended for more complex service
discovery based on many QoS properties, and can composed
in very complex manner.

Table III
LAYERED QUEUEING MODEL FOR FACIAL RECOGNITION SERVICE

COMPOSTION EXAMPLE

#General Section Service times:
G Task Name Entry Name Phase 1
”Web service modeling.” User T User E 82.342
0.00001 FD T FD E 0.82
100 IC T IC E1 0.36
1 IC E2 0.36
0.9 FE T FR E 0.3
-1

Service time variance (per phase)
Processor Information and squared coefficient of variation (over all phases):
P 0
p User P f i Task Name Entry Name Phase 1 coeff of var **2
p FD P f User T User E 20207.5 2.98037
p IC P f FD T FD E 1.24138 1.84619
p FR P f IC T IC E1 0.3096 2.38889
-1 IC E2 0.3096 2.38889

FE T FR E 0.09 1
Task Information
T 0 Throughputs and utilizations per phase:
t User T r User E -1 User P m
100

Task Name Entry Name Throughput Phase 1 Total

t FD T n FD E -1 FD P User T User E 1.21445 100 100
t IC T n IC E1 IC E2 -1 IC P FD T FD E 1.21445 0.995846 0.995846
t FE T n FR E -1 FR P IC T IC E1 1.21445 0.437201 0.437201
-1 IC E2 1.21445 0.437201 0.437201

Total: 2.42889 0.874401 0.874401
#Entry Information FE T FR E 2.42889 0.728668 0.728668
E 0
s User E 0 -1
y User E FD E 1 -1
s FD E 0.1 -1
y FD E IC E1 1 -1
y FD E IC E2 1 -1
s IC E1 0.06 -1
y IC E1 FR E 1 -1
s IC E2 0.06 -1
y IC E2 FR E 1 -1
s FR E 0.3 -1
-1

VI. CONCLUSION

In this paper, we described a framework for composing
Web-services using both functional and QoS properties. We
first extended WSDL descriptions of Web-services so that
non-functional or quality of service parameters can be asso-
ciated with the service. We also developed APIs for locating
Web-services based on both functional and non-functional
properties. We have developed ontologies that can be used
to select and compose Web-services. For the purpose of
composing non-functional properties of component services,
new reasoning engines must be developed. Different non-
functional properties may require different reasoning en-
gines. In this paper, we outlined how performance properties
can be composed using queuing engines. For the purpose of
this paper we demonstrated how services can be composed
either in series or in parallel, and used a queuing engine to
derive the performance properties of the composed service.

We plan to extend the framework for composing Web-
services using other types of QoS properties. While it is
possible to use other available tools, in our study we will
rely on open source tools.

VII. ACKNOWLEDGEMENTS

This research is supported in part by the Net-Centric In-
dustry/University Cooperative Research Center (Net-Centric
IUCRC) and a grant from NSF, #1128344.

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

REFERENCES

[1] S. Balasubramaniam, G. Lewis, E. Morris, S. Simanta, and
D. Smith, “Challenges for assuring quality of service in a
service-oriented environment,” in Principles of Engineering
Service Oriented Systems, 2009. PESOS 2009. ICSE Work-
shop on. IEEE, 2009, pp. 103–106.

[2] “Practical guide to cloud service level agreements,” 2012,
http://www.cloud-council.org/press-release/04-03-12.htm [re-
trieved: Oct,2012].

[3] “ISO/IEC 20926,” 2009, http://www.iso.org/iso/home/store/
catalogue tc/catalogue detail.htm?csnumber=51717
[retrieved: Oct,2012].

[4] D. Edmond, J. O’Sullivan, and A. ter Hofstede, “What’s in a
service? towards accurate description of non-functional ser-
vice properties,” Distributed and Parallel Databases Journal,
vol. 12, pp. 117–133, 2002.

[5] S. Chaari, Y. Badr, and F. Biennier, “Enhancing web service
selection by qos-based ontology and ws-policy,” in Proceed-
ings of the 2008 ACM symposium on Applied computing.
ACM, 2008, pp. 2426–2431.

[6] H. Muñoz Frutos, I. Kotsiopoulos, L. Vaquero Gonzalez, and
L. Rodero Merino, “Enhancing service selection by semantic
qos,” The Semantic Web: Research and Applications, pp. 565–
577, 2009.

[7] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “Sawsdl:
Semantic annotations for wsdl and xml schema,” Internet
Computing, IEEE, vol. 11, no. 6, pp. 60–67, 2007.

[8] C. Schröpfer, M. Schönherr, P. Offermann, and M. Ahrens,
“A flexible approach to service management-related service
description in soas,” Emerging Web Services Technology, pp.
47–64, 2007.

[9] N. Parimala and A. Saini, “Web service with criteria: Ex-
tending wsdl,” in Digital Information Management (ICDIM),
2011 Sixth International Conference on. IEEE, 2011, pp.
205–210.

[10] Parimala, N. and Saini, A., “Decision support web service,”
Distributed Computing and Internet Technology, pp. 221–231,
2011.

[11] T. Pilioura and A. Tsalgatidou, “Unified publication and
discovery of semantic web services,” ACM Transactions on
the Web (TWEB), vol. 3, no. 3, p. 11, 2009.

[12] C. Atkinson, P. Bostan, G. Deneva, and M. Schumacher, “To-
wards high integrity uddi systems,” in Business Information
Systems Workshops. Springer, 2009, pp. 350–361.

[13] C. Pedrinaci, M. Maleshkova, M. Zaremba, and M. Panahi-
azar, “Semantic web services approaches,” Handbook of Ser-
vice Description, pp. 159–183, 2012.

[14] G. Baryannis, O. Danylevych, D. Karastoyanova, K. Kritikos,
P. Leitner, F. Rosenberg, and B. Wetzstein, “Service composi-
tion,” Service research challenges and solutions for the future
internet, pp. 55–84, 2010.

[15] G. Dobson and A. Sanchez-Macian, “Towards unified
QoS/SLA ontologies,” in Services Computing Workshops,
2006. SCW’06. IEEE. IEEE, 2006, pp. 169–174.

[16] G. Canfora, M. Di Penta, R. Esposito, and M. Villani,
“Qos-aware replanning of composite web services,” in Web
Services, 2005. ICWS 2005. Proceedings. 2005 IEEE Inter-
national Conference on. IEEE, 2005, pp. 121–129.

[17] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A qos-aware
selection model for semantic web services,” Service-Oriented
Computing–ICSOC 2006, pp. 390–401, 2006.

[18] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware

for web services composition,” Software Engineering, IEEE
Transactions on, vol. 30, no. 5, pp. 311–327, 2004.

[19] A. Mukhija, A. Dingwall-Smith, and D. S. Rosenblum, “Qos-
aware service composition in dino,” in Web Services, 2007.
ECOWS’07. Fifth European Conference on. IEEE, 2007, pp.
3–12.

[20] R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana,
“Web services description language (wsdl) version 2.0 part
1: Core language,” W3C Recommendation, vol. 26, 2007.

[21] H. Knublauch, R. Fergerson, N. Noy, and M. Musen, “The
protg owl plugin: An open development environment for
semantic web applications,” The Semantic WebISWC 2004,
pp. 229–243, 2004.

[22] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and
C. Wroe, “A practical guide to building owl ontologies using
the protg-owl plugin and co-ode tools edition 1.0,” The
University Of Manchester, 2004.

[23] H. Knublauch, “Protg-owl api programmers guide,” 2008-
04-22].http://protege.stanford.edu/plugins/owl/api/guide.html,
2006.

[24] A. Jena, “semantic web framework for java,” URL:
http://jena.sourceforge.net, 2007.

[25] S. Gilmore and J. Hillston, “The pepa workbench: a tool
to support a process algebra-based approach to performance
modelling,” Computer Performance Evaluation Modelling
Techniques and Tools, pp. 353–368, 1994.

[26] G. Franks, P. Maly, M. Woodside, D. C. Petriu, and A. Hub-
bard, “Layered queueing network solver and simulator user
manual,” Dept.of Systems and Computer Engineering, Car-
leton University (December 2005), 2005.

[27] G. Ciardo, J. Muppala, and K. Trivedi, “Spnp: stochastic petri
net package,” in Petri Nets and Performance Models, 1989.
PNPM89., Proceedings of the Third International Workshop
on. IEEE, 1989, pp. 142–151.

[28] A. Axis, “Apache web services project,” Available HTTP:
http://ws.apache.org/axis, 2010.

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

