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Abstract—Modern software development relies increasingly
on the orchestrated use of development tools in the form of
seamless, automated tool chains. Tool chains are becoming
complex software systems themselves, however, the efficient
development of tool chains is a largely unsupported, manual
engineering task. We propose both a domain specific mod-
eling language for systematically specifying tool chains and
generators for efficiently realizing the tool chain as software.
Tool chain software consists of diverse components, such as
service-oriented applications, models and model transforma-
tions, which we produce by different generative techniques.
We study both the separate generative techniques and the
dependencies between the generated artifacts to ensure that
they can be integrated. We evaluate the approach both quan-
titatively and qualitatively, and show in a case study that the
approach is practically applicable when building a tool chain
for industrially relevant tools.

Keywords-Domain Specific Modeling; Tool Integration; Proto-
typing; Higher-Order Model Transformation; Code Generation.

I. INTRODUCTION

Since modern development relies more and more on
sophisticated development tools, the integration of these
tools becomes an important issue. The development tools
may be modeling tools, simulation tools, verification tools
etc., which are typically not designed with ease of integration
in mind [7]. The integration of development tools thus
requires a sizable engineering effort, including the extraction
of data from the integrated tools, adherence to integration
standards and mapping of the data between the formats of
different tools. Manually implementing the tool chain is
time-consuming and error-prone.

Realizing a model-based tool chain as software involves
writing source code for two distinct parts. The first part
deals with setting up the infrastructure for model-based
tool integration, such as transformation engines or tracing
tools. The second part realizes the actual exchange of tool
data, such as the extraction of data from the tool and its
transformation into a different format or representation.

Several approaches for tool integration are mentioned in
the literature, for example model-based tool integration [1],
weaving-based tool integration [6] or ontology-based tool
integration [12]. Model-based tool integration assumes that
data of different tools is available in the form of models,

which adhere to metamodels, and model transformations,
which describe the data conversion [1]. The focus of model-
based tool integration is thus on describing tool data and its
relations (expressed as models, metamodels and transforma-
tions).

The entire tool chain, however, is only an implicit concept.
As a result of this lack of an overall picture of the tool
chain, existing approaches do not uncover the potential
for supporting the development of complete tool chains.
Existing approaches typically assume that the source code
for providing tool data and functionality is implemented
manually. If the implementation needs to follow integration
standards, such as OSLC (Open Services for Lifecycle
Collaboration) [24], it can be tedious to implement this code.
Existing approaches also assume that the data conversion
rules, which are necessary for data exchange between tools,
are implemented manually, e.g., in the form of weaving
models or model transformations. Support to synthesize the
conversion rules is missing.

The goal of this paper is to systematize and partly auto-
mate the development of tool chains. The central question we
address is thus: To what extent can the development of tool
chains be automated through generative techniques? Our
approach is model-based, but differs from previous model
based approaches, as not only the tool data is modeled, but
also the architecture of the complete tool chain. For this
purpose we use a domain specific modeling language for
tool chains, which structures the tool chain into ToolAdapter
components and connectors. A generative approach uses
the structured information to synthesize implementations for
the components, the connectors and the infrastructure of
the tool chain. In previous work, we have described the
modeling language [4], code generation of the components
[5] and infrastructure [4]. The contribution of this paper is
the automated synthesis of the data conversion rules in the
connectors and the integration of the various generated parts
into a complete, cohesive tool chain.

II. APPROACH

From our experience of developing tool chains in an
industrial context, tool chains are often developed with an
iterative prototyping approach. While the general goal for
the tool chain might be clear to all stakeholders, the exact
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details of the execution and conversion in the tool chain
might not be clear and different design options are explored
with prototype implementations. The challenge lies in the
large effort of creating one or potentially many prototype
implementations of the tool chain. It involves creating a
software adaptation layer – known as ToolAdapter – for each
integrated tool and model transformations that convert the
data between the proprietary data format of the tools. The
method and automated techniques of the proposed approach
aim to reduce the necessary development effort for tool
chains.

In our approach, the user models the tool chain using
abstractions from the domain of tool integration. A prototype
implementation of a tool chain is produced by generating
both source code and transformations from the model. In
the following sections, we describe how we achieve the
specification and the automated synthesis of the executable
prototype. We divide the approach into several steps, as
illustrated in Figure 1:

• Step 1 - Specification of a Tailored Tool Chain: The
essential design decisions are described by modeling
the tool chain in the Tool Integration Language (TIL)
[4]. More details on modeling with TIL are presented
in Section III.

• Step 2 - Synthesis of ToolAdapters: The synthesis
automatically generates code based on the specification
of the ToolAdapters. It is presented in Section IV.

• Step 3 - Synthesis of Channels: The synthesis automat-
ically generates code and transformation rules, based
on the specification of the Channels. It is presented in
Section V.

• Step 4 - Integration of Generator Results: The gener-
ated parts need to be integrated into a tool chain, as
presented in Section VI.

• Step 5 - From Prototype to Production Software: The
prototype tool chain can be refined into a production
tool chain, as presented in Section VII.

Steps 1 - 4 are typically iterated multiple times, until
a satisfactory prototype is identified. Since only step 1 is
manual and steps 2, 3 and 4 are automated, this is a viable
iterative development approach for tool chains. We evaluate
the approach qualitatively by a running example, which is
embedded in Sections III-VII. We evaluate the approach
quantitatively in Section VIII. In Section IX, we show the
relation of this approach to other work in the field; in
Section X, we mention future work and conclude.

A. Introduction to the Running Example

We illustrate all steps of the approach by stepwise con-
structing a tool chain, which serves as a running example.
The intended use of the tool chain presented as running
example is in the early design phase of automotive em-
bedded system development [2]. An engineer creates a
UML-conform model with behavioral and fault propagation

Figure 1. Overview of steps 1-4 of this approach

models using the GUI of the development tool and commits
the model to the repository. Every time a new version
of the UML model is committed, the tool chain executes
a transformation of the UML model to the input format
of the fault tree analysis tool HiP-HOPS (Hierarchically
Performed Hazard Origin and Propagation Studies) [25] and
executes HiP-HOPS. Another model transformation creates
a MATLAB/Simulink model that mirrors the structure of the
UML model. When the results of the fault tree analysis are
satisfactory, i.e., there are no single points of failure, the
engineer manually extends this Simulink model to perform
simulations.

III. STEP 1 - SPECIFICATION OF A TAILORED TOOL
CHAIN

The prototyping process starts by specifying the big
picture of the tool chain. We use TIL, a declarative, domain
specific modeling language for tool chains. TIL models
are concise, and expresses domain concepts, so users can
relate to it. TIL allows us not only to describe a tool chain
graphically and with well-defined semantics, but also to
analyze it and generate code from it.

Here, we can only give a short overview of the language,
for more detailed description of syntax and semantics, we
refer to [4]. In the following, we introduce the language
concepts and their concrete graphical syntax (compare 1© ..
7© in Figure 2). TIL is a component-based language and con-

sists of Components (ToolAdapter, Repository, Sequencer,
User) and Connectors (ControlChannel, TraceChannel, Dat-
aChannel).

• A ToolAdapter 1© exposes the data and functionality
of a tool in a common technical format, making the
data and functionality accessible for other ToolAdapters
within the tool chain. A ToolAdapter is specified by
means of a ToolAdapter metamodel. It describes the
selection of data and functionality of the tool, which is
exposed to the tool chain (see Figure 4, for an exam-
ple). Creating the metamodel requires some engineering
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Figure 2. A simple TIL model illustrating the graphical syntax of the
language concepts

effort, since each tool has its own metamodel, there is
no common metamodel.

• A ControlChannel 2© describes the control-flow be-
tween two Components by specifying a triggering event
in the source, a called service in the target and a guard
for conditional execution.

• A TraceChannels 6© connects two ToolAdapters and
describes the possibility of creating traces between
elements of certain data types of the ToolAdapter
metamodels.

• A DataChannels 5© connects two ToolAdapters and
describes the data-flow between them. The DataChan-
nel preserves the semantics of the data. Since the
ToolAdapter delivers all exposed data in a common
technical format, only the data structure needs to be
adapted. The data of the source ToolAdapter needs
to be transformed into the structure expected by the
target ToolAdapter. A model transformation can either
be manually specified or it can be automatically syn-
thesized, as described in Section V.

• A Sequencer 3© describes sequential control-flow; it
executes a sequence of services in a specified order. The
sequencer is used in combination with ControlChan-
nels: it is activated by a ControlChannel and each
of the sequentially called services is connected via a
ControlChannel.

• A User 4© is a representative for a real tool chain user.
This concept is used to describe the possible interac-
tions of the real users with the tool chain. Outgoing
ControlChannels from the User denote services invoked
by the user, incoming ControlChannels to a User denote
a notification sent to the user.

• A Repository 7© is a specific type of ToolAdapter that
provides storage and version management of tool data.

A. Running Example: Step 1

We specify the previously introduced tool chain in TIL,
resulting in the model displayed in Figure 3. An engineer,
depicted by the user symbol, develops a new function of
an embedded system as a UML component model. The

engineer checks the model into the Subversion Repository,
depicted by a ControlChannel, which activates the Dat-
aChannel uml2repository. Automatically, the model will be
analyzed by a safety analysis tool to detect single points of
failure in the embedded system. This is depicted by the tri-
angular shape for the Sequencer Seq0, which is activated by
a ControlChannel, whenever new UML models are checked
into the repository. The Sequencer Seq0 first triggers the
DataChannel uml2safety to transfer the UML model to
the safety analysis tool involving a model transformation.
The Sequencer Seq0 then calls the function to analyze
single points of failure in the safety analysis tool. If no
single points of failure have been found, which is expressed
as a guard condition on the ControlChannel, a simulation
of the behavior of the new model is started in Simulink.
This is realized by another set of ControlChannels and the
Sequencer Seq1. Finally, the engineer receives an email
notification about the simulation results.

The TIL model presented in Figure 3 is linked to several
ToolAdapter metamodels, which are illustrated in Figure 4.
In addition, model instances of these metamodels are linked
to each ToolAdapter. They serve as test data for the pro-
totype implementation. Each of the metamodels describes
the subset of the data of the tool that is exposed by the
ToolAdapter towards the tool chain. The metamodel for
the MATLAB/Simulink tool (A) describes a basic block
diagram. The metamodel for the UML tool (B) comprises
the elements of a basic UML component diagram. The
metamodel for the safety analysis tool HiP-HOPS (C) is
organized into systems and subsystems.

IV. STEP 2 - SYNTHESIS OF TOOLADAPTERS

ToolAdapters are realized as software components that
have a web-based, RESTful architecture. This provides plat-
form independence and allows for a distributed tool chain,
where tools may reside on different network nodes. The
input of the generator is the ToolAdapter metamodel and
a model with test data, which conforms to the metamodel.
The output is a Java source code and configuration files for
the service infrastructure, such as a web server listening for
requests. The generated Java source code provides a skeleton
of the tool adapter implementation, including an implemen-
tation that operates on static test data and serves it conform
to the format and protocols of the industrial initiative OSLC.
The generated ToolAdapter is thus functional, but does not
yet connect to the tool instance via APIs. The connection to
the tools has to be added manually in step 5.

Since the details of generating service-oriented tool
adapters are not the focus of this work, we refer to paper
[5] for more details and examples.

V. STEP 3 - SYNTHESIS OF CHANNELS

The Channels between ToolAdapters can describe control-
flow or data-flow. Control-flow is expressed by ControlChan-
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Figure 3. Specification of the tool chain as a TIL model

Figure 4. ToolAdapter metamodels for the Simulink tool (A), UML tool (B) and safety analysis tool (C)

nels, which are straightforward to synthesize as remote
service calls to other ToolAdapters. Data-flow can be ex-
pressed by TraceChannels or DataChannels. TraceChannels
provide the infrastructure for creating traces at runtime of
the tool chain and this infrastructure is quite straightforward
to generate.

DataChannels denote the transfer of data from a source
ToolAdapter to a target ToolAdapter. The tool data is served
by the ToolAdapter in the form of a model that conforms
to the ToolAdapter metamodel. If the metamodels of source
and target ToolAdapters are the same, the data can be simply
copied between the ToolAdapters. In the more common case
that the metamodels are different, the data needs to be trans-
formed before it can be accepted by the target ToolAdapter.
For this purpose, TIL offers the possibility to link a model
transformation to each DataChannel. This transformation is
a part of the implementation of the DataChannel and can be
either manually specified or synthesized. If a transformation
is required (due to different source and target ToolAdapter
metamodels), but none is specified, a prototype transfor-

mation can be automatically synthesized. Another part of
the implementation of DataChannels is the infrastructure
for executing the transformation and transferring the data
to another ToolAdapter.

The synthesis algorithm generates source code for the
ControlChannels as well as source code for the infrastructure
of DataChannels. This infrastructure accomplishes the fol-
lowing tasks at runtime of the tool chain: it gets the source
model from the source ToolAdapter and provides it together
with the transformation to the transformation engine. The
target model, which is produced by the transformation
engine, is sent to the target ToolAdapter.

In the following, we take a closer look at the automated
generation of an appropriate prototype transformation. A
transformation is appropriate if its source and target meta-
model is identical to the metamodels of source and target
ToolAdapters of the DataChannel and if it is semantics
preserving. The TIL model contains some information for
synthesizing the transformation, such as its execution di-
rection and both its source and target metamodels. This
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information is not sufficient for an algorithmic approach, but
a heuristic approach for prototyping model transformations
can be realized. The intention is to use an automated
approach to quickly create a first model transformation. In
the following sections we explain each step of the generator
for prototype transformations in more detail.

A. Step 3.1 - Finding Correspondences

We assume a certain level of similarity between the source
and target metamodels; so we can find correspondences
between them based on structural and naming similarities.
To find correspondences, we use a matching algorithm that
is based on the similarity flooding algorithm [20] and the
Levensthein distance [16]. The similarity flooding algorithm
is used to detect structural similarities, the Levensthein dis-
tance is used to identify naming similarities. The matching
algorithm produces a matching table, consisting of a number
of correspondences between metaclasses, metaattributes and
metareferences of source and target metamodels. In more
formal terms, the matching algorithm σ(ms,mt) = µ
produces a matching table µ for a given tuple of source
metamodel ms and target metamodel mt.

B. Step 3.2 - Refining the Matching Table into a Matching
Model

To ensure that a valid target model can be produced
by the synthesized transformation, we automatically refine
the matching table µ into a matching model ν by adding
information about the containment hierarchy of the target
metamodel with the refinement function ρ, which is defined
as ρ(µ,mt) = ν. This refinement is necessary, so the
synthesized transformation can produce target models with
an adequate containment structure, which is specified in
the target metamodel mt. The containment hierarchy of a
metamodel is a partial order over all metaclasses in the
metamodel that have a direct parent-child relationship.

The metamodel of the matching model is depicted in
Figure 5. It consists of a number of ordered matchings.
A matching describes a correspondence and consists of a
description of the source and target elements, a number of
related matchings and a type. The type of the matching is
based on the role that the target element of the matching
takes in the target metamodel. We differentiate five types of
matchings:

• Top: A top matching has a target element that is
the root element of the containment hierarchy of the
target metamodel, i.e., the element that is not contained
anywhere else. A top matching specifies the names
of classes and usually has a number of containment
matchings.

• Containment: A containment matching represents a
reference between two metaclasses in the target meta-
model, where one class is the parent and the contained

class is the child. A containment matching specifies the
names of the reference and metaclasses.

• Reference: A reference matching represents a link
between two arbitrary metaclasses in the target meta-
model. A reference matching specifies the names of the
reference and metaclasses.

• Class: In a class matching, the target element is a
metaclass. A class matching specifies the names of
the metaclasses and usually has a number of related
matchings, which are of type containment, reference or
attribute.

• Attribute: In an attribute matching, the target element
is a metaattribute of a metaclass. An attribute matching
specifies the names of the metaattribute and metaclass.

The automated refinement ρ adds a containment matching
for a target metaclass if necessary and ensures that all target
metaclasses are properly contained. It also checks that no
target element is produced by more than one rule. Note,
that this classification depends on the target element only,
since the target element needs to have proper containment
hierarchy to be produced.

C. Step 3.3 - Synthesis of Transformation Rules from the
Matching Model

The model transformation τ1 is automatically synthesized
based on the matching model ν, which is produced in the
previous step and is executed at runtime of the tool chain for
the exchange of tool data. The synthesis of τ1 is performed
by a second model transformation τ2, which is a higher-
order model transformation, defined as τ2(ν) = τ1. The
transformation τ2 produces τ1 and is executed at design time
of the tool chain. The transformation τ1(ns) = nt maps
the model ns to the model nt, where ns corresponds to
the source metamodel ms, and nt corresponds to the target
metamodel mt. The synthesized model transformation τ1 is
a model-to-model transformation, implemented with OMG
QVT-R [23]. The synthesizing model transformation τ2 is a
model-to-text transformation, implemented with OMG MTL
[22].

For each matching in the matching model ν, the trans-
formation τ2 produces one or several QVT relations. For
each type of matching a different template for the relations
is used. The template is instantiated with the values from
the current matching. All customized QVT relations for all
matchings together form the synthesized transformation τ1.
See listing 1 for an example.

D. Running Example: Step 3

For the DataChannels simulink2uml and
simulink2hiphops, this transformation is synthesized
by the generator. The metamodels for UML, Simulink and
HiP-HOPS show a certain degree of structural and naming
similarity, as they represent a hierarchical composition of
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Figure 5. Metamodel of the matching model

components and components are linked by connectors via
ports.

Table I
MATCHING TABLE FOR UML AND SIMULINK

UML Metaclass Simulink Metaclass
Port InOutPort
EString EString
Class Block
Property Attribute
Connector Line
Class.properties Block.attributes
Property.type Attribute.type
Class.ports Block.ports
Connector.source Line.line source
Connector.target Line.line target

Table II
MATCHING TABLE FOR UML AND HIP-HOPS

Simulink Metaclass HiP-HOPS Metaclass
Port Port
Connector Line
EString EString
Class Component
UMLModel System
Property.type Port.name
UMLModel.connectors System.lines
Connector.target Line.target
Connector.source Line.source

As a first step in the automated synthesis of the transfor-
mation, a matching table is created. The automated meta-
model matching algorithm is applied on the UML and the
Simulink metamodels, yielding the matching table I. Apply-
ing the algorithm on the UML and the HiP-HOPS metamod-
els yields matching table II. Since the matching algorithm in
step 3.1 is a heuristics, the automatically created matching
table needs to be checked manually. All the mappings identi-
fied between Simulink and UML are correct, between UML
and HiP-HOPS the matching algorithm correctly identified
many mappings, however the heuristics introduced one error
by mapping Property.type to Port.name. The subsequent
refinement step 3.2 automatically corrects this error by
replacing the matching with (Property.type,Component.type)
through analysis of the containment hierarchy of the target
metamodel, which is the Simulink metamodel.

Afterwards, the higher-order model transformation τ2

of step 3.3 converts the matching model into a QVT-R
transformation. A part of this synthesized transformation
for the mapping between UML and Simulink is depicted
in Listing 1. It shows the transformation code for different
types of matchings, namely top, containment and class
matchings. As the root element, the UML model is mapped
to a Simulink model, contained UML Classes to Simulink
Blocks, and the attributes of Classes to attributes of Blocks.
In a similar manner – but not shown here due to space
constraints – the value of each attribute is mapped, as well
as Connectors and their attributes.

The computed mapping is 100% correct, but not complete,
as not all elements are mapped. The missing mappings
describe attributes, e.g., mapping the name attribute of the
UML Class to the name attribute of Component or Block.
Such missing attribute mappings concern only values and
are relatively easy to add, since no other mappings depend
on them. We evaluate the generated transformations with
precision/recall metrics in Section VIII-B.

Listing 1. Synthesized QVT-R transformation from UML to Simulink
0 t r a n s f o r m a t i o n uml22s imu l ink2 ( s o u r c e : uml2 , t a r g e t : s i m u l i n k 2 ) {

−−Top Matching
t o p r e l a t i o n r Model {

c h e c k o n l y domain s o u r c e p : uml2 : : Model {
5 };

e n f o r c e domain t a r g e t s : s i m u l i n k 2 : : Simul inkModel {
};
where{

r M o d e l c l a s s e s ( p , s ) ;
10 r M o d e l c o n n e c t o r s ( p , s ) ;

}
}

−−Conta inmen t Matching
15 r e l a t i o n r M o d e l c l a s s e s {

c h e c k o n l y domain s o u r c e p : uml2 : : Model {
c l a s s e s = co : uml2 : : C l a s s{
}

};
20 e n f o r c e domain t a r g e t s : s i m u l i n k 2 : : S imul inkModel {

e l e m e n t s = sb : s i m u l i n k 2 : : Block{
}

};
where{

25 r C l a s s ( co , sb ) ;
}
}

−−C l a s s Matching
30 r e l a t i o n r C l a s s {

c h e c k o n l y domain s o u r c e co : uml2 : : C l a s s{
};
e n f o r c e domain t a r g e t sb : s i m u l i n k 2 : : Block{
};

35 where{
r C lass name ( co , sb ) ;
r C l a s s p o r t s ( co , sb ) ;
r C l a s s p r o p e r t i e s ( co , sb ) ;

}
40 }

[ . . ]
}
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VI. STEP 4 - INTEGRATION OF GENERATOR RESULTS

The generators in steps 2 and 3 produce ToolAdapters
and DataChannels using different generative techniques.
The generator for ToolAdapters uses code generation; the
generator for DataChannels applies a matching algorithm
to produce model transformations, which realize the con-
version of tool data. Both generators use the ToolAdapter
metamodels that are linked to the TIL model, but they use
the metamodels in a different way.

The generator for ToolAdapters uses the tool metamodel
as specification of the data managed by the ToolAdapter.
The tool data is accessible as a model through the generated
ToolAdapter and conforms to the tool metamodel.

The generator for transformations uses the metamodels of
both ToolAdapters it connects to. Data-flow connections be-
tween ToolAdapters need to translate the tool data. The rules
for the translation can be determined at designtime, since it
is independent of the actual data, and only depends on the
tool metamodels. As we have generated the ToolAdapters
we know that they provide tool data that conforms to the
tool metamodels.

The ToolAdapter metamodels are used as interface be-
tween the different generators to ensure compatibility be-
tween the generated artifacts.

VII. STEP 5 - FROM PROTOTYPE TO PRODUCTION
SOFTWARE

The proposed approach promotes the iterative develop-
ment of tool chains, where steps 1 - 4 can be repeated
frequently to explore different what-if scenarios. This is
supported by the generative approach, which produces exe-
cutable source code and transformations automatically with
only a small effort from the tool chain designer. The com-
pletely automatically generated source code works on test
data and the automatically generated transformation might
not be complete. While this level of accuracy might be
sufficient for prototyping different what-if scenarios for tool
chains, it needs to be improved for production software.

To create production software, the generated source code
and transformation rules need to be manually adapted.
The generated source code of the ToolAdapter needs to
be extended to interact with the API of the integrated
development tool, to extract and inject the data from the
tool and to forward service calls to it. The generated model
transformation needs to be refined, mainly by adding new
transformation rules and less frequently by changing the
generated transformation rules.

VIII. EVALUATION

In this section, we intend to quantify to what extent a
tool chain can be generated with the proposed approach.
We separately evaluate the generator for tool adapters and
for transformations.

A. Generator for ToolAdapters

The generator for ToolAdapters produces code skeletons
and a complete prototype implementation, which serves test
data. This prototype implementation needs to be manually
replaced with code that serves the actual tool data using
the API of the tool. The size of the code that needs to be
manually added depends on the tool.

To show the effectiveness of the generator, it is not
sufficient to compare the LOC of generated code with
the manually added code. Instead, we create a baseline
implementation completely manually. We now have two
code bases realizing the same functionality. To quantify the
generated and manually added code, we measure lines of
code. This measurement has been criticized as a general
measurement of software size for complete software, but
here we apply it to fragments of code. We measure the
lines of generated vs. manually implemented code for all
ToolAdapters in the case study and present the measure-
ments in Table III.

Table III
LOC OF THE TOOLADAPTERS: GENERATED AND MANUALLY

IMPLEMENTED CODE WITH THE TIL APPROACH VS. COMPLETELY
MANUALLY IMPLEMENTED BASELINE

ToolAdapter TIL TIL manual
generated manually added baseline

UML 1409 59 1313
Simulink 2030 1118 3077
Safety 3833 317 2359
Sum 7272 1494 6749
Percentage 22% 100%

The size of the generated code is not a significant indicator
for the quality of the generated code. This is why we study
the comparison of the manually added LOC (in step 5) with
the LOC of the manual baseline. Both codes are manually
created, realize the same functionality and their sizes can
thus indirectly give clues about the quality of the generated
code. On average, only 22% of the source code from the
manual baseline needed to be implemented manually with
the TIL approach.

B. Generator for Transformations

The generator for transformations introduced in Section V
is a heuristics. It is the nature of heuristics to approximate
the optimal solution and it cannot be guaranteed that the
calculated result is the optimal solution. It is thus important
to measure the quality of the results. In the following, we
measure the quality of the results of applying our matching
algorithm on a number of tool metamodels. The matching
algorithm is based on two simplifying assumptions: (i) The
transformation, which is part of the DataChannel between
two ToolAdapters is intended to be semantics preserving.
(ii) A semantics preserving transformation maps elements,
which are similar regarding structure or naming. Assumption
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Table IV
RELATIONSHIP BETWEEN SEMANTICS PRESERVATION AND

STRUCTURAL/NAMING SIMILARITY

semantics preservation
yes no

structural/naming
similarity

yes 1 2
no 3 4

(i) is part of the semantics of the DataChannel in TIL (see
Section III). In the following, we will evaluate assump-
tion (ii). We analyze the relationship between semantics
preservation and structural/naming similarity in Table IV and
distinguish four situations.

Since assumption (ii) correlates semantics preservation
with structural/naming similarity, the algorithm only distin-
guishes between situations 1 and 4 in Table IV. Situations 2
and 3 are in the “blind spot” of the algorithm, as semantics
preservation may not be correlated with structural/naming
similarity. The impact of situation 2 is measured by the
precision metric, the impact of situation 3 is measured by
the recall metric, which are defined as follows.

Precision =
|{correctmatches} ∩ {foundmatches}|

|{foundmatches}| (1)

Recall =
|{correctmatches} ∩ {foundmatches}|

|{correctmatches}| (2)

where correctmatches is defined as the correct, semantics-
preserving mapping, and foundmatches is the mapping
that was identified by the matching algorithm. We use the
precision/recall measure and present statistics of the number
of false positives and false negatives in the mappings.

We measure the quality of the calculated mappings of
all six possible combinations between the three metamodels
presented in Figure 4. The resulting precision/recall mea-
surements are displayed in Table V. On average, the syn-
thesis method returns mappings that have a high precision
(93%), but only an average recall (56%).

Table V
PRECISION/RECALL METRIC FOR THE COMPUTED MAPPING OF UML,

SIMULINK AND HIP-HOPS

Source Target Precision Recall
UML Simulink 1 0.56
UML HiP-HOPS 0.89 0.53
Simulink UML 1 0.67
Simulink HiP-HOPS 0.9 0.6
HiP-HOPS UML 0.89 0.53
HiP-HOPS Simulink 0.9 0.5
Average 0.93 0.56

In situation 2, no mapping should be found since there is
no semantic equivalent, but the algorithm finds a mapping
due to structural similarity; this would result in a low pre-
cision. The measurements in Table V show a high precision
metric. This means that the generated mappings are correct
and only need to be changed seldomly. The mappings that

need to be changed have a stable skeleton for manually
added mappings.

In situation 3, there are semantically equivalent meta-
models, for which no structural or naming similarity can
be detected. If it is not possible to deduce clues about
the semantic equivalence from the structural features of
the metamodels, the automated algorithm does not have
sufficient data to make mapping decisions. In this situation,
either additional user data would need to be provided as
input, e.g., via annotations, or the missing mappings need to
be manually added after the algorithm is finished. Situation
3 is captured by the recall metric. The average recall metric
in Table V is largely due to missing attribute mappings. Such
attribute mappings concern only one value and are relatively
easy to add manually, since no other mappings depend on
them. An example for the transformation between UML and
Simulink is the mapping (Class.name,Block.name).

Due to its high precision (93%) and average recall (56%)
characteristic, the matching algorithm can be classified as a
conservative method. The algorithm rather does not include
a mapping into the result than produce a wrong mapping.
The mappings that are included in the result are almost all
correct, maximally one of the mappings is incorrect. The
mappings that are not found automatically by the matching
algorithm can be manually added to the result.

IX. RELATED WORK

The contribution of this paper is in the intersection of sev-
eral fields, namely model-based tool integration, metamodel
matching and rapid prototyping. Related work can be found
in each of these fields. We list the approaches by fields and
point out approaches that are in the intersection of two or
more fields.

A. Tool Integration

Early work on tool integration focuses on identifying
the scope of tool integration in form of aspects [29] and
patterns [14]. A number of integration frameworks have
been defined to support building tool chains, such as the one
from Vanderbilt [13] and jETI [19]. Model-based integration
frameworks focus on data integration, the other integration
aspects (such as control, process, platform and presentation)
defined by Wasserman [29] are excluded or a secondary
issue. Examples are MOFLON [1] or ModelCVS [12]. These
related approaches use metamodeling for describing the tool
data. However, these approaches provide neither concepts
to model a complete tool chain nor concepts to describe
the architecture of the tool chain. The related approaches
assume that tool data is available in the form of models
and that the tool adapters are implemented manually. Only
the MOFLON approach mentions code generation for tool
adapters. The related approaches also use model transforma-
tions to translate between the metamodels of different tools,
but the transformation usually has to be specified manually.
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Tool integration platforms, such as ModelBus [11] or Jazz
[9], mainly provide support for executing the tool chain,
or generic building blocks, so constructing tailored, user-
defined tool chains requires a lot of work. We automate the
construction of such tailored tool chains.

B. Metamodel Matching

Matching metadata on data structures has been studied in
the field of databases as schema matching [20], [26], [27].
These matching algorithms have been adopted in the mod-
eling community, where metamodels are matched instead of
schema definitions. Algorithms based on similarity flood-
ing and naming similarity are described [6], [8]. Different
metamodel matching algorithms are compared in [15] and
formalized into a DSL for metamodel matching [10]. Model
weaving approaches [6] can leverage metamodel matching
to create weaving models that express the correspondence.

Del Fabro shows how metamodel matching can be applied
for data migration between two bugtracking tools [6]. The
approach assumes that the tool data is already available in a
model format and focuses on the use of metamodel matching
for weaving models. We use metamodel matching in an
integration scenario and focus on a comprehensive approach
for the creation of a complete tool chain.

C. Prototyping

Prototyping approaches focus on the early synthesis of an
executable system from a high-level specification. Bernstein
stresses the importance of prototyping [3] and lists advan-
tages of the approach, among them he sees prototyping as
a vehicle to better understanding the environment and the
requirements, to validate requirements with the user and to
study the dynamics of a system. We distinguish between
throwaway and evolutionary prototyping [17]. In throwaway
prototyping, the prototype is built to learn a specific thing
and is discarded before a completely new prototype is built.
In evolutionary prototyping, one prototype is refined over
several iterations. The technology proposed in this paper can
be used for either prototyping approach.

Many prototyping systems employ a prototyping language
in combination with code generation techniques. These ap-
proaches are usually specialized to certain domains, such as
CAPS and DCAPS [18] for embedded systems, information
systems and user interfaces [30], component based systems
[28] or data mining systems [21].

X. FUTURE WORK AND CONCLUSION

The creation of tool chains is usually regarded as a com-
pletely manual implementation task. The presented approach
shows that the tool chain implementation for a prototype can
be automatically created with generative techniques. Differ-
ent generative techniques need to be combined to produce
the heterogeneous parts of the tool chain: code generation
for ToolAdapters and a heuristic matching algorithm for

transformations. The generated code for the ToolAdapters
ensures compliance with standards and serves test data for
prototyping.

This code is also the basis for production software as it
provides a skeleton that needs to be refined with manually
written code that interacts with the API of the integrated tool.
In our case study the generated code for ToolAdapters makes
up 78% of the total production software. The generated
transformation code for the DataChannels provides a precise
mapping for the data elements (93% precision), but does not
cover all data elements (56% recall). Due to the conserva-
tive characteristic of the approach (high precision, average
recall), the generated mapping can be be extended into a
comprehensive mapping. The generated artifacts can serve
as a starting point for manual extensions and refinements of
the generated tool chain implementation.

The proposed approach for automated synthesis of both
source code and transformations makes it possible to sys-
tematically and rapidly create an executable prototype of a
tool chain. This allows the user to test and iteratively modify
the tool chain prototype, before investing time to extend the
prototype into the final production software.

An important next step is a further assessment of the
practical applicability of this approach. We will apply our
approach in additional case studies, which cover a broader
set of development tools. This will allow us to further narrow
down the conditions, in which the approach can achieve
the best mapping, measured with the precision/recall metric.
In addition, we will examine if the algorithm can also be
applied to support the evolution of a tool chain, when tool
A in the tool chain is exchanged against a similar tool B. The
here presented algorithm might be applicable for realizing
the migration of the data from tool A to tool B.
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