ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Architecture Centric Tradeoff

A decision support method for COTS selection afeddycle management

Subhankar Sarkar
Senior Manager, Public Sector ERP
IBM USA
ssarkar@us.ibm.com
Abstract—Current methods of COTS selection have not been 2002) added a Non-Functional Requirements (NFR)
widely accepted in industry, and have been found tdack framework to the selection process [6]. COTS-Aware
architectural orientation and a Cost of Ownership gerspective. Requirements Engineering (CARE, 2004) intertwined

This paper reviews the current methods, and proposea new
method - Architecture Centric Tradeoff (ACT) — for COTS
decision support. ACT prescribes a 3-layer Metamodge
Heuristics for Cost of Ownership computations, anda Processor
that iterates through candidate solutions to find he optimal
tradeoff. In ACT, COTS selection is not driven soly by
functional features, but also by architectural chagcteristics.
ACT also takes into account IT portfolio convergene and
various COTS delivery methods such as SaaS and Chbgervices.

Keywords- COTS; ERP; Composition based
Component evaluation; Cost of Ownership; Tradeofhdlysis

systems;

. INTRODUCTION

3.
Commercial Off the Shelf (COTS) products nowadays,

comprise a significant proportion of most IT polids. In-
house software development, following traditionatevfall
methodologies, started giving way tcomposition based
systemsin the late 1990s, and the trend accelerated én th
2000s. Lower costs and shorter implementation sysiere an
obvious driver. COTS products provided a viable mseto
replace outdated systems [1] or integrate dispgrattfolios
[2]. Also, in the face of the technology revolutionany CEOs
were content to
providers. Around the same time, generally acceptadtices
and well-formed standards started to emerge in rdamyains,
such as Accounting, Supply Chain and Human Reseurce

COTS vendors such as SAP, Oracle and PeopleSditedre |

products in these domains, using design pattemtsatltowed
the same product to be adapted for many businebasy
organizations adopted COTS as a platform for Bssine

Process Engineering (BPR), and as a means of gainin

strategic advantage [3].

Several COTS selection methods exist in literat@ee of
the first, and the one that gave shape to the giy@ccepted
COTS selection process, was the Off the Shelf @Qpi@T SO,
1995). This method employed progressive filteribgsed on
evaluation criteria that included functionality, méunctional
properties, strategic considerations and architectu
compatibility [4]. Procurement Oriented Requirensent
Engineering (PORE, 1998), stressed the use of leunye

discovery techniques for progressive elaboration OEO

requirements, and decision support techniques fodyct
ranking [5]. COTS-based Requirements EngineerinREC

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

leave product development to COTS

requirements engineering with component evaluatiéh
Mismatch-Handling Aware COTS Selection (MiHOS, 2P05
introduced processes for handling mismatches betwee
requirements and COTS, and suggested optimization
techniques, such as linear programming [8]. Andnthef
course, there is the ubiquitous fit/gap spreadsheet

II. ANALYSISOFCURRENTMETHODS

Most COTS selection methods fit into a general guait
referred to as General COTS Selection (GCS) [9]:
1. Define evaluation criteria based on stakeholder.
2. Search for candidate COTS.
Filter search results based on “must-haves”.
Evaluate candidates using decision support tecksiqu
Select COTS, and tailor as needed.

Data suggests that none of these methods have foided
adoption in industry. In a study of Small-and-Meadiu
Enterprises (SME) in Norway and lItaly, it was fouhdt none
of them used any of the formal methods for COT®t&n
[10]. Current criticism for the GCS is summarizezldov:

Although most of the proposed approaches were
developed for general use, there is no commonlged
approach for COTS selection [11]. Also, these apgines
were proposed without a clear explanation of hoeyth
can be adapted to different domains and projects.

Current approaches suggest using decision making
techniques such as weighted score method (WSM) or
analytic hierarchy process (AHP) [12]. However réhare
several limitations to these techniques [13]. Banraple,
these techniques estimate the fitness of COTS dateti
based on ‘one’ total fitness score. This is somesim
misleading due to the fact that high performancerne
COTS aspect might hide poor performance in another.
...what is needed is a more robust negotiation compion
through which COTS can be progressively selectseda

on functional and non-functional requirements,
architecture, and at the same time resolving azisfli
between stakeholders [9].

In this paper, we take a holistic look at the dadles in
TS selection, and discover several problemshhaé not
been adequately addressed in current literatupeamtice.

122

Current methods lack a “Cost of Ownership” perspecive.

They look at product features at face value, ahets¢he
product with the highest (weighted) feature scdrbe
focus is on the number of mismatches, and on retijudi
that to a low valueThe predicate is that the product will
not be customized, or that the cost of customiragoa
function of the number of mismatches aloi&e first
predicate is not true in most implementations; liguthe
persistent goal in the COTS life cycle is to arratethe
optimal level of customization, not to eliminate
customization as a possibility. The second predidat
even less true — the cost of customization is rfahation
of the number of mismatches, but of tmismatch type
and more importantly,
architecture and the extensibility mechanisms.

Development cost is only one component of thethe Design,
fundamentals of the ACT method remain unchangeautir
the life cycle, while the underlying model datgisgressively
refined. The salient features of ACT are:

customization cost (or theCbst of Repali), not even the
larger part. The life cycle impact of customization the
potential regressive impact, and resulting increéasthe

cost of sustenance — is by far the greater cosit Tbst, 1.

too, is driven not so much by the number of missing
features, but by thenismatch typeand the underlying
product architecture.

Current methods fail to capture the true businegsact 2.

of accepting a set of mismatches, or th€ost of
Acceptanceé This cost is not simply the (weighted)
mismatch score; it also depends on the level of the
requirements hierarchy where those mismatches occur
Mismatches at a higher level, involving foundatibna
requirements, will have a larger cost. The Cost of
Acceptance also depends on the mitigation thetadhe
simplest case, the customer organization will slopg
something; then the Cost of Acceptance is simply th
value of the lost function. In most cases, the oizgtion

will add a manual process, expand another function,

distribute work to another segment of the enteepris 3.

Current methods lack architectural orientation.

Copyright (c) IARIA, 2012.

While many methods mention “architectural
reconciliation”, there is insufficient detail on Wwosuch

reconciliation may be pursued. Most of the current
methods focus on requirements negotiation, andt trea
architectural characteristics or non-functional

requirements (NFRs), as simply another group ofy

requirements. But architectural characteristiesable
multiple functions; architectural gaps, unlike ftiooal
ones, have aultiplier effect on the Cost of Ownership. *
Current methods do not treat architectural charaties
as enablers, and fail to account for this multipéifect.
Current methods do not have portfolio perspective
Architectural characteristics influence IT porttoli
convergence, anROI of the organization’s ITportfolio.
For example, if the organization has invested sutistlly

in LDAP services, absorption of a product that does
support LDAP integration will lead to portfolio
divergence and diminished ROIl. While COTS
functionality is best viewed from a Line of Busises

ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

(LoB) perspective, COTS architecture is best vietfveth

a portfolio (i.e. CIO) perspective. Then again, tlife
COTS is delivered as Software as a Service (Saa& a
service from a shared community Cloud, the customer
organization need not have an equal interest in the
underlying architecture, and IT portfolio convergen
need not be an issue. Therefore, the CQiedivery
method of which there are several in industry today,
becomes a factor in the selection process.

. PROPOSEMETHOD

In this paper, we propose a new method for COT&ctieh
and life cycle managementArchitecture Centric Tradeoff
of the wunderlying product(ACT). ACT is a decision support method for the enti@TS
lifecycle, starting from COTS selection, and peisgthrough

Build, Deploy and Maintain phases. The

ACT explicitly recognizes that COTS based system
development is anoptimization, not a construction
problem. The central object in ACT is thEradeoff.
Matrix, not the Requirement Traceability Matrix (RTM).
ACT supports a holisti€ost of Ownershiperspective. In
ACT, the Cost of Ownership is a function of theihass-
product mismatch. The mismatch can be assessed from
multiple viewpoints, each resulting in one compdnein
the Cost of Ownership. (Function and Technologythee
fundamental viewpoints.) ACT seeks the minima foe t
Cost of Ownership function, i.e. the collectionAxfcept
and Repair decisions that result in the lowest QGifst
Ownership In ACT, the COTS product with the lowest
minimum Cost of Ownership is selected, which may no
necessarily be the product with the highest (weidht
feature score.

ACT is anarchitecture-centric procesdt goes beyond
features, and explores structural aspects of bsséseand
products. ACT recognizes the multiplier effect of
architectural characteristics such as extensibilityrough
the technology viewpoint, the method supports IT
portfolio convergence and ROI of IT investments.TAC
explicitly recognizes the need for new COTS to tage

IT investments already made.

Model Organization and Relationships

ACT comprises of 3 parts:

Metamodel: ACT uses a 3-layer metamodel, constructed
in the Unified Modeling Language (UML). The firstyer
describes the conceptual model, the second thedbgi
and the third the physical.

Heuristics: These process the model data to calculate the
various components of the Cost of Ownership. The
heuristics can be adjusted based on organizational
assessments and COTS architecture reviews.

Processor The processor iterates through various
candidate solutions, defined by the analyst, ta fihe
optimal tradeoff.

123

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

ACT is founded on theEvolutionary Process for B. Model Metadata
Integrating COTS (EPIC)14], which itself is an extension of

the Rational Unified Process (RUP). EPIC was depadoby

the Software Engineering Institute (SEI) at Caraegellon. relationships between them. Inferentially, it defin the
« Like RUP, EPIC is incremental, iterative and poundaries of the model and the subset of probliénssin
architecture-centric EPIC uses the well-formed artifacts gglyve. The metadata is in 3 layers - conceptugicéd and
(e.g. Use Cases) and the modeling language (Unifieghysical. The inheritance hierarchy of ACT, as shothe
Modeling Language (UML)) of RUP. But while the figure below, allows it to work with multiple prodts,

metadata describes the entities in the model

ACT is a repository based method. The repository
arel th

constructs are the same, the focus is differ&itlP
focuses on the progressive realization of a fixet of
requirements, while EPIC focuses on the systematic
tradeoff of requirements and COTS capabilities.

e EPIC represents a paradigm shift in COTS baseemsyst
integration. In EPIC, business needs and COTS
capabilities converge across multiple iteration®RIE
allows the understanding of requirements and COTS
capabilities to evolve along the life cycle. Bealisis
tradeoff oriented rather than requirements orienERIC
reduces risk, decreases cost and facilitates use of
delivered capabilities.Importantly, it also transforms
system integration into an optimization problemijaluhin
the traditional approach, it is not

Traditional

Approach EPIC Approach

Stakeholder Needs/

Requirements .
q Business Processes

Simultaneous
Definition
and Tradeoffs

Architecture &
Design

Architecture/
Design

q Marketplace

Implementation
Programmatics/
Risk

Figure 1. Evolutionary Process for Integrating COTS

ACT builds on the EPIC process frameworRCT
guantifies the tradeoffs in EPIC, and facilitatee fterative
convergence of function, technology and COTS. ERIG
broad process framework, and does not say how dffsde
should be calculated and managé< takes EPIC from
theory to practice; it enables tradeoff oriented T®program
management, governance and tool development.

C

ARCHITECTURE CENTRIC TRADEOFF (ACT)
- Tradeoff method to minimize Cost of Ownership

Metadata
Heuristics
Processor

EVOLUTIONARY PROCESS FOR INTEGRATING COTS (EPIC)
- Progressive convergence of function, technology and COTS

SDLC
Artifacts
Best
Practices

RATIONAL UNIFIED PROCESS (RUP)
- iterative, incremental, architecture-centric

C)

Figure 2. ACT Model Organization

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

businesses, SDLCs and EA frameworks, while maiirtgithe
same core metadata.

tradeOffMetamodel
</<impon>/>" n<\<import>‘>
- ‘\‘x
functionTradeOffMetamodel hnology Trade OffM del
<<im[;0n>> <<iméon>>
tionTradeOff_Imy ion1 hnologyTradeOff_Imy ion1

Figure 3. ACT 3-Layer Metamodel

Layer 1 Metadata describes the core concepts.

“Enterprise” is a unit (company, agency, department...)
that does, provides or supports “things of valu€he
enterprise is structured as a hierarchy, with tledative
importance” at each node distributed amongst lower
nodes. Function and technology are the two fundéahen
hierarchies.

“Mismatch” is where the Enterprise is not fully
supported by (or does not have) a Product Context.
Mismatch can be full or partial. Each mismatchraceéd

to a specific node in the Enterprise hierarchy, hwit
preference for the lowest possible node, and iy ful
distributed to “Accept” or “Repair”.

“Accept’ is where the enterprise needs to do something
differently, or stop doing something. Cbst of
Acceptancé measures the impact to the Enterprise. “Cost
of Acceptance” derives from the size and type & th
acceptance, the nodes in the Enterprise whichfeisf
and organizational factors, which may, in turn, dnh
from the business domain. Note that a mismatchn@a o
node may have to be resolved by doing things diffdy

at other nodes. This situation is common when
consolidating enterprises on a single COTS.

“Repair” is where the product needs to be changed to
support the enterpriseCbst of Repaif’ measures the
impact to the life cycle cost of ownership. “Cost o
Repair” derives from the size and type of the nephie
nodes in the product context which it affects, pnoduct
technology factors, which may, in turn, inheritrfrahe
technology domain.

124

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

technologyDomain — productFactors <
fi -7
contigure \ Repair costOfRepair
* function_id *function_id | ____
* mismatch_id * mismatch_id
extend . * repair_id * repair_id
- repair% * mod_component_id
- effort - mod_size
/ +allocate() + cost()
replace
productConstraint productComponent
* component_id * component_id
+ constraint() - component_class
enterpriseFunction Mismatch
* function_id * function_id
— N e " I «<OR productStructure
- p?ren_t ml_smatch_nld * component_class
- relative_imp - mismatch% - parent
enterpriseFunctionConstraint
* function_id
+ constraint()
¢ Accept
* function_id * function_id passive
* mismatch_id * mismatch_id
* accept_id *accept_id
* mod_function_id - accept% .
- mod_size - - effort - active
+ cost() e +allocate()
organizationFactors 4|>i businessDomain

Figure 4. ACT Layer 2 Metadata

Layer 2 Metadata implements the layer 1 concepts as -«
logical constructs.

“Enterprise Function” in Layer 2 implements
“Enterprise” from Layer 1. The Enterprise Function
hierarchy contains the functional decomposition tioe
Enterprise. The “relative importance” at each nigle
product of the “relative importance”s along thehpab

that node.

Product Structure is a function-oriented decomposition
of the relevant section of the COTS product. (Thsneo
need to model the entire COTS.) Product Component
relates specific repair candidates to the Prodtrocgire.
“Accept’ is extended into its subtypes — “Active” and
“Passive”. Passive is where the enterprise stops
performing a function e.g. stops selling a prodbetause

the COTS does not support it. Active is where the
enterprise reorganizes work, adds manual processes,
trains employees or adds compensating controls, to
resolve a mismatch. The available subtypes for a
function/mismatch depend on the Enterprise Comgai
For example, Passive will not be available for nzady

“Repair” is extended into its subtypes — Configure,
Extend and ReplaceConfigure is where only certain
literals that drive product behavior (i.e. configtion data

or settings) need to be changeHxtend is where
components may be extended to provide new
functionality without modifications to the delivere
COTS metadata, such that there is no potential for
regressive impact to adjunct componen®eplace is
where there are modifications to the COTS metaduatd,
thereby potential regressive impact or loss of
upgradeability. The subtypes available depend an th
Product ConstraintsWhere only certain components are
exposed through APIs, for example, the Extend qebty
available only for those component&€dst of Repair’ is
influenced by the type of the Repair, and the lénghe
component hierarchy where the changes are takianepl
For example, changes at the structural layer (atabase
schema) will have a greater Cost of Repair thah difia
changes at the presentation layer (e.g. JSP pages).

Layer 3 describes specific implementationghe logical

functions. ‘Cost of Acceptancgis influenced by the type
of the Acceptance, and the nodes in the functienahthy

that are impacted by the Acceptance. Cost of Acceget

is also influenced bgrganizational factors

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

constructs of layer 2 are implemented for a spedifisiness
and candidate COTS. Key activities include formatad the
function hierarchy and product structure. In additito
Function, Technology is another fundamental viewporhe

125

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

technology hierarchy, also known as thEechnology

Reference Modgbshows the relevant technology platforms ande

services within the organization. The relative imipoce at
each node indicates the technology investment &t ribde.
The principle is that ROI targets can be achieweddnuiring
COTS that leverage IT investments already made.avewy if
the COTS is provided as SaaS or Cloud service, i@obgy
ceases to be a viewpoint, and the choice of COT§ bea
made based on the Function viewpoint alone.

C. Model Heuristics

ACT is a quantitative model for COTS decision suppo
and the ACT metadata is structured to support coation
and optimization. Much of the computations thaldiel are
simple SQL operations on the ACT database. Theeinoas
to be calibrated, and the coefficients established, each
organization and COTS implementation program. (€bsts
shown are notional, and are meant to support velati
comparisons, not absolute dollar estimates.)

Cost of Ownership
C_own = C_accq +, > W,*(C_acpt, + C_repr,)

e C_own : Cost of ownership

» C_accq : Cost of acquisition (or licensing cost)
L) : Viewpoint (Function/Technology)

e W : Weight assigned to viewpojnt

» C_acpt : Cost of acceptance (from viewp@int
e C_repr : Cost of repair (from viewpoip}

Cost of Acceptance
The Cost

constituents. Passive is where the enterprise gfegerming

a function because of a mismatch. Active is whdre t

enterprise reorganizes work, adds manual processEBS

employees or adds compensating controls, to resalve

mismatch.

C_acpt = C_acpt_passive + C_acpt_active

C_acpt_passive §[[EM_flex;* > F*FM *MA *A *AP .,

 EM_flex: Effort multipliers related to the (lack)of
organizational flexibility

 m: Mismatch pointer

« F: Relative importance of the node where there’s a
mismatch

* FM: The percentage of mismatch

* MA: The percentage of the Mismatch that is Accept

» A The size of the acceptance.

» AP: The percentage of Accept that is Passive.

C_acpt_active§,EM_adapt* > An*(1-AP)*{ .>F_mod
n*mod_size, }

e EM_adapt: Effort multipliers related to the (ladi o
organizational adaptibility

 m: Mismatch pointer

* n: Modified function pointer

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

of Acceptance has passive and active

« F_mod: Relative importance of the node modified
mod_size: Size of the modification

Effort Multipliers

Organizational flexibility These multipliers quantify the
constraints that impede an organization from dnogai
function in the event of a mismatch. Where thesestaints
are severe, e.g. where the organization is boufuftth
certain functions by law, the EM_flex will be higimd
Passive acceptance will lead to an unsustainaldé @fo
Acceptance.

Organizational adaptability These multipliers quantify
constraints that impede an organization from remigjag
work or workforce to resolve a mismatch. Where ¢hes
constraints are severe, e.g. where there are atgsts on
hiring, the EM_adapt will be high.

Cost of Repair

The Cost of Repair comprises of th€ost of
Configuration, Cost of Extensioand Cost of Replacement
The product architecture, and the technology donfeam
which it inherits, will place limits on what optienare
available for a given repair.
C_repr =C _cfg + C_extn + C_repl

C_cfg =[[iEEM_cfg* ;> {R*RC, *(1 + ,Ymod_size,)}
C_extng[[EM_extn* S{R*RE *(1+ .Y mod_size ")}
C_repl=[[[EM_repl* . Y{R*RR, *(1 + n*,Ymod_size, ")}

EM_cfg: Effort multipliers related to configuraltili
EM_extn: Effort multipliers related to extensibjlit
EM_repl: Effort multipliers related to overwrite
r: Repair pointer
n: Modified component pointer
R: Size of the repair
RC, RE, RR: Percentages of Repair that are
Configuration, Extension or Replace
mod_size: Size of the modification to the component
measured as Source Lines of Code (SLOC), etc.
= A The level of the modified component in the
hierarchy. More foundational the level (lowgr
higher the effective size of the modification.
= 1: The number of upgrades expected during the
product life cycle, e.g. for a product life cycleld
years, where the vendor releases 2 upgrades anyear,
will be 20.

Effort Multipliers
These effort multipliers reflect the protis@rchitectural

characteristics.

Configurability.

* (Lack of) Configuration wizards or utilities

* (Lack of) Configurable rules engine and field edits

e (Lack of) Modularization or distinct inter-module
interfaces

126

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Optimized
Business/ coTs Tradeoff
. . usili .
OArgamzatlonaI Technology Architectural Fit/Gap Analysis Decision
ssessment M
odels Asessment
COTS Products [
{
Processor | “\
Executes Heuristics RN
— ()] O
Alternate mismatch resolutions T
XMI
Publish to community
- @
Repository Update knowledgebase; tune heuristics
Internet
Figure 5. The ACT Processor
Extensibility >
. ACT chooses COTS A -
* (Lack of) Integrated Development Environment (ID&), P s
support for common IDEs (e.g. Eclipse). Other methods choose COTS B - P

» Proprietary programming languages; (Lack of) Suppor
for Java, C++, etc; (Lack of) Object orientation

* (Lack of) Published APIs, user exits and extensible
abstract classes

Replacebility

e (Lack of) Integrated Development Environment (ID&),
support for common IDEs (e.g. Eclipse)

Costs->

D. Model Processor
Several iterations take place in the COTS life eysbme

before COTS selection, and some after. The praugssi - C_acpt(®)

. 7
sequence for a given iteration during the COTS watan & o
phase is as follows. Level of Customization ->

1. The metadata is populated with organizational assest
results, business and technology hierarchies, aodem
scaling factors and coefficients. IV. CONCLUSIONAND FUTUREWORK

2. COTS products are fed into the processor. For each pcT provides a comprehensive framework for COTS

COTS, the metadata is populated with results égdijt selection, implementation and governance.
and architectural assessments.

3. The Processor is run with alternate sets of mismatc Benefits to the customer organization include:
resolutions, and Cost of Acceptance and Cost obRép | Enables a true Cost of Ownership perspective.

calculated for each set. The Processor outputs . . L
performance profiles for each COTS, which grapte th Egib;isdiﬁvzfezelecnon at optimal customizaticiera

Cost of Ownership against the level of repair. . .
4. Finally, an Optimized Tradeoff Decision is reachee, a COStS.Of Acceptance and Repair are adjusted to
organization and product.

COTS product a4 specific repair levelks selected. . ;
produ pecilic repairfev « Emphasizes architectural capabilities rather tieatuires;
Figure 6 shows 2 COTS — B has a better featurehmatc Exposes What matters.m the long run.
while A is more extensible. The minima of the Cadt ° EXplicit shift from requirements to tradeoff colkgs

Ownership function is lower for A than for B. Mostirrent project schedules, cost and risk.
COTS methods will select B; ACT will select A. * Enables IT portfolio convergence and ROI.

Figure 6. Example of ACT Processor output

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1 127

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Benefits to the system integrator include:

e Standard analytical model for COTS/business
convergence reduces project risk.

* Quantitative model facilitates client communicat@and
Business Process Engineering (BPR) negotiation.

» Common metadata and process model can be reused
across engagements. Continual refinement of models,
based on engagement feedback.

Future work in this area will include the formatiohan
adjunct framework to assess configurability anaesgibility
of COTS products. Future work will also includeadsishing
UML profiles for the metamodel, and finally, thdibeation
of the model over multiple iterations in the field.

V. REFERENCES

[1] R. O'CallaghariTechnology Diffusion and Organizational

Transformation: An Integrative Framework”ldea Group
Publishing, 1998.

[2] M.L. Markus, “Paradigm Shifts -

(10), 2000.

[3] T.H. Davenport,'Mission Critical: Realizing the Promise
of Enterprise SystemsHarvard Business School Press, 2000.

E-Business and
Business/Systems IntegratiorCommunications of the AIS, 4

[11] G. Ruhe,"Intelligent Support for Selection of COTS
Products'; LNCS, Springer, vol. 2593, 2003.

[12] J. Kontio, G. Caldiera, and V. R. BasillDefining
factors, goals and criteria for reusable component
evaluation",CASCON'96Toronto, 1996.

[13] C. Ncube and J. C. DeatiThe Limitations of Current
Decision-Making Techniques in the Procurement ofTSO
Software ComponentsICCBSS 2002.

[14] C. Albert and L. Brownsword Evolutionary Process for
Integrating COTS-Based Systems (EPIC): An Overview”
(CMU/SEI-2002-TR-009), Software Engineering Ingdttu
Carnegie Mellon University, 2002.

[4] J. Kontio, “OTSO: A Systematic Process for Reusable

Software Component SelectignUniv. of Maryland report
CS-TR-3478, 1995.

[5] C. Ncube and N. A. Maiden;PORE: Procurement-
Oriented Requirements Engineering Method for
Component-Based Systems Engineering

the
Development

Paradigm”, Second International Workshop on Component-

Based Software Engineering, Los Angeles, 1999.

[6] C. Alves and J. CastrdCRE: a systematic method for
COTS components SelectionXV Brazilian Symposium on

Software Engineering (SBES), Rio de Janeiro, 2001.

[7] L. Chung and K. CoopefDefining Goals in a COTS-
Aware Requirements Engineering Approach'Systems
Engineering, 7(1), Wiley, 2004.

[8] A. Mohamed, G. Ruhe and A. Eberlefecision Support
for Handling Mismatches between COTS Products astesh
Requirements’ICCBSS'07, Banff, 2007.

[9] A. Mohamed, G. Ruhe and A. EberleiGOTS Selection:
Past, Present, and FutureECBS'07Tucson Arizona, 2007.

[10] M. Torchiano and M. Morisio;Overlooked Aspects of

COTS-Based DevelopmentEEE Software, 2004.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

128

