
Architecture Centric Tradeoff
A decision support method for COTS selection and life cycle management

Subhankar Sarkar
Senior Manager, Public Sector ERP

IBM USA
ssarkar@us.ibm.com

Abstract— Current methods of COTS selection have not been

widely accepted in industry, and have been found to lack
architectural orientation and a Cost of Ownership perspective.
This paper reviews the current methods, and proposes a new
method - Architecture Centric Tradeoff (ACT) – for COTS
decision support. ACT prescribes a 3-layer Metamodel,
Heuristics for Cost of Ownership computations, and a Processor
that iterates through candidate solutions to find the optimal
tradeoff. In ACT, COTS selection is not driven solely by
functional features, but also by architectural characteristics.
ACT also takes into account IT portfolio convergence and
various COTS delivery methods such as SaaS and Cloud services.

Keywords- COTS; ERP; Composition based systems;
Component evaluation; Cost of Ownership; Tradeoff Analysis

I. INTRODUCTION

Commercial Off the Shelf (COTS) products nowadays
comprise a significant proportion of most IT portfolios. In-
house software development, following traditional waterfall
methodologies, started giving way to composition based
systems in the late 1990s, and the trend accelerated in the
2000s. Lower costs and shorter implementation cycles were an
obvious driver. COTS products provided a viable means to
replace outdated systems [1] or integrate disparate portfolios
[2]. Also, in the face of the technology revolution, many CEOs
were content to leave product development to COTS
providers. Around the same time, generally accepted practices
and well-formed standards started to emerge in many domains,
such as Accounting, Supply Chain and Human Resources.
COTS vendors such as SAP, Oracle and PeopleSoft created
products in these domains, using design patterns that allowed
the same product to be adapted for many businesses. Many
organizations adopted COTS as a platform for Business
Process Engineering (BPR), and as a means of gaining
strategic advantage [3].

Several COTS selection methods exist in literature. One of

the first, and the one that gave shape to the generally accepted
COTS selection process, was the Off the Shelf Option (OTSO,
1995). This method employed progressive filtering, based on
evaluation criteria that included functionality, non-functional
properties, strategic considerations and architecture
compatibility [4]. Procurement Oriented Requirements
Engineering (PORE, 1998), stressed the use of knowledge
discovery techniques for progressive elaboration of
requirements, and decision support techniques for product
ranking [5]. COTS-based Requirements Engineering (CRE,

2002) added a Non-Functional Requirements (NFR)
framework to the selection process [6]. COTS-Aware
Requirements Engineering (CARE, 2004) intertwined
requirements engineering with component evaluation [7].
Mismatch-Handling Aware COTS Selection (MiHOS, 2005)
introduced processes for handling mismatches between
requirements and COTS, and suggested optimization
techniques, such as linear programming [8]. And then, of
course, there is the ubiquitous fit/gap spreadsheet.

II. ANALYSIS OF CURRENT METHODS

Most COTS selection methods fit into a general pattern,
referred to as General COTS Selection (GCS) [9]:
1. Define evaluation criteria based on stakeholder.
2. Search for candidate COTS.
3. Filter search results based on “must-haves”.
4. Evaluate candidates using decision support techniques.
5. Select COTS, and tailor as needed.

Data suggests that none of these methods have found wide

adoption in industry. In a study of Small-and-Medium-
Enterprises (SME) in Norway and Italy, it was found that none
of them used any of the formal methods for COTS selection
[10]. Current criticism for the GCS is summarized below:
• Although most of the proposed approaches were

developed for general use, there is no commonly accepted
approach for COTS selection [11]. Also, these approaches
were proposed without a clear explanation of how they
can be adapted to different domains and projects.

• Current approaches suggest using decision making
techniques such as weighted score method (WSM) or
analytic hierarchy process (AHP) [12]. However, there are
several limitations to these techniques [13]. For example,
these techniques estimate the fitness of COTS candidates
based on ‘one’ total fitness score. This is sometimes
misleading due to the fact that high performance in one
COTS aspect might hide poor performance in another.

• …what is needed is a more robust negotiation component
through which COTS can be progressively selected based
on functional and non-functional requirements,
architecture, and at the same time resolving conflicts
between stakeholders [9].

In this paper, we take a holistic look at the challenges in

COTS selection, and discover several problems that have not
been adequately addressed in current literature or practice.

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Current methods lack a “Cost of Ownership” perspective.
• They look at product features at face value, and select the

product with the highest (weighted) feature score. The
focus is on the number of mismatches, and on negotiating
that to a low value. The predicate is that the product will
not be customized, or that the cost of customization is a
function of the number of mismatches alone. The first
predicate is not true in most implementations; usually, the
persistent goal in the COTS life cycle is to arrive at the
optimal level of customization, not to eliminate
customization as a possibility. The second predicate is
even less true – the cost of customization is not a function
of the number of mismatches, but of the mismatch type,
and more importantly, of the underlying product
architecture and the extensibility mechanisms.

• Development cost is only one component of the
customization cost (or the “Cost of Repair”), not even the
larger part. The life cycle impact of customizations – the
potential regressive impact, and resulting increase in the
cost of sustenance – is by far the greater cost. That cost,
too, is driven not so much by the number of missing
features, but by the mismatch type and the underlying
product architecture.

• Current methods fail to capture the true business impact
of accepting a set of mismatches, or the “Cost of
Acceptance”. This cost is not simply the (weighted)
mismatch score; it also depends on the level of the
requirements hierarchy where those mismatches occur.
Mismatches at a higher level, involving foundational
requirements, will have a larger cost. The Cost of
Acceptance also depends on the mitigation thereof. In the
simplest case, the customer organization will stop doing
something; then the Cost of Acceptance is simply the
value of the lost function. In most cases, the organization
will add a manual process, expand another function, or
distribute work to another segment of the enterprise.

Current methods lack architectural orientation.
• While many methods mention “architectural

reconciliation”, there is insufficient detail on how such
reconciliation may be pursued. Most of the current
methods focus on requirements negotiation, and treat
architectural characteristics or non-functional
requirements (NFRs), as simply another group of
requirements. But architectural characteristics enable
multiple functions; architectural gaps, unlike functional
ones, have a multiplier effect on the Cost of Ownership.
Current methods do not treat architectural characteristics
as enablers, and fail to account for this multiplier effect.

• Current methods do not have a portfolio perspective.
Architectural characteristics influence IT portfolio
convergence, and ROI of the organization’s IT portfolio.
For example, if the organization has invested substantially
in LDAP services, absorption of a product that does not
support LDAP integration will lead to portfolio
divergence and diminished ROI. While COTS
functionality is best viewed from a Line of Business

(LoB) perspective, COTS architecture is best viewed from
a portfolio (i.e. CIO) perspective. Then again, if the
COTS is delivered as Software as a Service (SaaS) or as a
service from a shared community Cloud, the customer
organization need not have an equal interest in the
underlying architecture, and IT portfolio convergence
need not be an issue. Therefore, the COTS delivery
method, of which there are several in industry today,
becomes a factor in the selection process.

III. PROPOSED METHOD

In this paper, we propose a new method for COTS selection
and life cycle management – Architecture Centric Tradeoff
(ACT) . ACT is a decision support method for the entire COTS
lifecycle, starting from COTS selection, and persisting through
the Design, Build, Deploy and Maintain phases. The
fundamentals of the ACT method remain unchanged through
the life cycle, while the underlying model data is progressively
refined. The salient features of ACT are:
1. ACT explicitly recognizes that COTS based system

development is an optimization, not a construction,
problem. The central object in ACT is the Tradeoff.
Matrix, not the Requirement Traceability Matrix (RTM).

2. ACT supports a holistic Cost of Ownership perspective. In
ACT, the Cost of Ownership is a function of the business-
product mismatch. The mismatch can be assessed from
multiple viewpoints, each resulting in one component of
the Cost of Ownership. (Function and Technology are the
fundamental viewpoints.) ACT seeks the minima for the
Cost of Ownership function, i.e. the collection of Accept
and Repair decisions that result in the lowest Cost of
Ownership. In ACT, the COTS product with the lowest
minimum Cost of Ownership is selected, which may not
necessarily be the product with the highest (weighted)
feature score.

3. ACT is an architecture-centric process. It goes beyond
features, and explores structural aspects of businesses and
products. ACT recognizes the multiplier effect of
architectural characteristics such as extensibility. Through
the technology viewpoint, the method supports IT
portfolio convergence and ROI of IT investments. ACT
explicitly recognizes the need for new COTS to leverage
IT investments already made.

A. Model Organization and Relationships

ACT comprises of 3 parts:
• Metamodel: ACT uses a 3-layer metamodel, constructed

in the Unified Modeling Language (UML). The first layer
describes the conceptual model, the second the logical,
and the third the physical.

• Heuristics: These process the model data to calculate the
various components of the Cost of Ownership. The
heuristics can be adjusted based on organizational
assessments and COTS architecture reviews.

• Processor: The processor iterates through various
candidate solutions, defined by the analyst, to find the
optimal tradeoff.

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

ACT is founded on the Evolutionary Process for
Integrating COTS (EPIC) [14], which itself is an extension of
the Rational Unified Process (RUP). EPIC was developed by
the Software Engineering Institute (SEI) at Carnegie Mellon.
• Like RUP, EPIC is incremental, iterative and

architecture-centric. EPIC uses the well-formed artifacts
(e.g. Use Cases) and the modeling language (Unified
Modeling Language (UML)) of RUP. But while the
constructs are the same, the focus is different. RUP
focuses on the progressive realization of a fixed set of
requirements, while EPIC focuses on the systematic
tradeoff of requirements and COTS capabilities.

• EPIC represents a paradigm shift in COTS based system
integration. In EPIC, business needs and COTS
capabilities converge across multiple iterations. EPIC
allows the understanding of requirements and COTS
capabilities to evolve along the life cycle. Because it is
tradeoff oriented rather than requirements oriented, EPIC
reduces risk, decreases cost and facilitates use of
delivered capabilities. Importantly, it also transforms
system integration into an optimization problem, which, in
the traditional approach, it is not.

Figure 1. Evolutionary Process for Integrating COTS

ACT builds on the EPIC process framework. ACT
quantifies the tradeoffs in EPIC, and facilitates the iterative
convergence of function, technology and COTS. EPIC is a
broad process framework, and does not say how tradeoffs
should be calculated and managed. ACT takes EPIC from
theory to practice; it enables tradeoff oriented COTS program
management, governance and tool development.

Figure 2. ACT Model Organization

B. Model Metadata

ACT is a repository based method. The repository
metadata describes the entities in the model and the
relationships between them. Inferentially, it defines the
boundaries of the model and the subset of problems it can
solve. The metadata is in 3 layers - conceptual, logical and
physical. The inheritance hierarchy of ACT, as shown the
figure below, allows it to work with multiple products,
businesses, SDLCs and EA frameworks, while maintaining the
same core metadata.

Figure 3. ACT 3-Layer Metamodel

Layer 1 Metadata describes the core concepts.
� “Enterprise” is a unit (company, agency, department…)

that does, provides or supports “things of value”. The
enterprise is structured as a hierarchy, with the “relative
importance” at each node distributed amongst lower
nodes. Function and technology are the two fundamental
hierarchies.

� “Mismatch” is where the Enterprise is not fully
supported by (or does not have) a Product Context.
Mismatch can be full or partial. Each mismatch is traced
to a specific node in the Enterprise hierarchy, with
preference for the lowest possible node, and is fully
distributed to “Accept” or “Repair”.

� “Accept” is where the enterprise needs to do something
differently, or stop doing something. “Cost of
Acceptance” measures the impact to the Enterprise. “Cost
of Acceptance” derives from the size and type of the
acceptance, the nodes in the Enterprise which it affects,
and organizational factors, which may, in turn, inherit
from the business domain. Note that a mismatch in one
node may have to be resolved by doing things differently
at other nodes. This situation is common when
consolidating enterprises on a single COTS.

� “Repair” is where the product needs to be changed to
support the enterprise. “Cost of Repair” measures the
impact to the life cycle cost of ownership. “Cost of
Repair” derives from the size and type of the repair, the
nodes in the product context which it affects, and product
technology factors, which may, in turn, inherit from the
technology domain.

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 4. ACT Layer 2 Metadata

Layer 2 Metadata implements the layer 1 concepts as
logical constructs.
• “Enterprise Function” in Layer 2 implements

“Enterprise” from Layer 1. The Enterprise Function
hierarchy contains the functional decomposition for the
Enterprise. The “relative importance” at each node is a
product of the “relative importance”s along the path to
that node.

• Product Structure is a function-oriented decomposition
of the relevant section of the COTS product. (There is no
need to model the entire COTS.) Product Component
relates specific repair candidates to the Product Structure.

• “Accept” is extended into its subtypes – “Active” and
“Passive”. Passive is where the enterprise stops
performing a function e.g. stops selling a product, because
the COTS does not support it. Active is where the
enterprise reorganizes work, adds manual processes,
trains employees or adds compensating controls, to
resolve a mismatch. The available subtypes for a
function/mismatch depend on the Enterprise Constraints.
For example, Passive will not be available for mandatory
functions. “Cost of Acceptance” is influenced by the type
of the Acceptance, and the nodes in the function hierarchy
that are impacted by the Acceptance. Cost of Acceptance
is also influenced by organizational factors.

• “Repair” is extended into its subtypes – Configure,
Extend and Replace. Configure is where only certain
literals that drive product behavior (i.e. configuration data
or settings) need to be changed. Extend is where
components may be extended to provide new
functionality without modifications to the delivered
COTS metadata, such that there is no potential for
regressive impact to adjunct components. Replace is
where there are modifications to the COTS metadata, and
thereby potential regressive impact or loss of
upgradeability. The subtypes available depend on the
Product Constraints. Where only certain components are
exposed through APIs, for example, the Extend subtype is
available only for those components. “Cost of Repair” is
influenced by the type of the Repair, and the level in the
component hierarchy where the changes are taking place.
For example, changes at the structural layer (e.g. database
schema) will have a greater Cost of Repair than that of
changes at the presentation layer (e.g. JSP pages).

Layer 3 describes specific implementations; the logical

constructs of layer 2 are implemented for a specific business
and candidate COTS. Key activities include formation of the
function hierarchy and product structure. In addition to
Function, Technology is another fundamental viewpoint. The

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

technology hierarchy, also known as the Technology
Reference Model, shows the relevant technology platforms and
services within the organization. The relative importance at
each node indicates the technology investment at that node.
The principle is that ROI targets can be achieved by acquiring
COTS that leverage IT investments already made. However, if
the COTS is provided as SaaS or Cloud service, Technology
ceases to be a viewpoint, and the choice of COTS may be
made based on the Function viewpoint alone.

C. Model Heuristics

ACT is a quantitative model for COTS decision support,
and the ACT metadata is structured to support computation
and optimization. Much of the computations that follow are
simple SQL operations on the ACT database. The model has
to be calibrated, and the coefficients established, for each
organization and COTS implementation program. (The costs
shown are notional, and are meant to support relative
comparisons, not absolute dollar estimates.)

Cost of Ownership
C_own = C_accq + ρ ∑ Wρ*(C_acptρ + C_reprρ)

• C_own : Cost of ownership
• C_accq : Cost of acquisition (or licensing cost)
• ρ : Viewpoint (Function/Technology)
• W : Weight assigned to viewpoint ρ
• C_acpt : Cost of acceptance (from viewpoint ρ)
• C_repr : Cost of repair (from viewpoint ρ)

Cost of Acceptance
 The Cost of Acceptance has passive and active
constituents. Passive is where the enterprise stops performing
a function because of a mismatch. Active is where the
enterprise reorganizes work, adds manual processes, trains
employees or adds compensating controls, to resolve a
mismatch.
C_acpt = C_acpt_passive + C_acpt_active
C_acpt_passive = ∏iEM_flex i* m∑Fm*FM m*MA m*A m*AP m

• EM_flex: Effort multipliers related to the (lack of)

organizational flexibility
• m: Mismatch pointer
• F : Relative importance of the node where there’s a

mismatch
• FM: The percentage of mismatch
• MA: The percentage of the Mismatch that is Accept
• A: The size of the acceptance.
• AP: The percentage of Accept that is Passive.

C_acpt_active=∏iEM_adapti* m∑Am*(1-APm)*{ n∑F_mod

n*mod_size n }

• EM_adapt: Effort multipliers related to the (lack of)
organizational adaptibility

• m: Mismatch pointer
• n: Modified function pointer

• F_mod: Relative importance of the node modified
• mod_size: Size of the modification

Effort Multipliers
Organizational flexibility: These multipliers quantify the
constraints that impede an organization from dropping a
function in the event of a mismatch. Where these constraints
are severe, e.g. where the organization is bound to fulfill
certain functions by law, the EM_flex will be high, and
Passive acceptance will lead to an unsustainable Cost of
Acceptance.

Organizational adaptability: These multipliers quantify
constraints that impede an organization from reorganizing
work or workforce to resolve a mismatch. Where these
constraints are severe, e.g. where there are restrictions on
hiring, the EM_adapt will be high.

Cost of Repair

The Cost of Repair comprises of the Cost of
Configuration, Cost of Extension and Cost of Replacement.
The product architecture, and the technology domain from
which it inherits, will place limits on what options are
available for a given repair.
C_repr = C_cfg + C_extn + C_repl

C_cfg = ∏iEM_cfgi* r∑ {R*RC r *(1 + n∑mod_size n

 1/λ)}
C_extn=∏iEM_extni* r∑{R*RE r *(1+ n∑mod_sizen

 1/λ)}
C_repl=∏iEM_repl i* r∑{R*RR r *(1 + η* n∑mod_size n

 1/λ)}

� EM_cfg: Effort multipliers related to configurability
� EM_extn: Effort multipliers related to extensibility
� EM_repl: Effort multipliers related to overwrite
� r: Repair pointer
� n: Modified component pointer
� R: Size of the repair
� RC, RE, RR: Percentages of Repair that are

Configuration, Extension or Replace
� mod_size: Size of the modification to the component,

measured as Source Lines of Code (SLOC), etc.
� λ: The level of the modified component in the

hierarchy. More foundational the level (lower λ),
higher the effective size of the modification.

� η: The number of upgrades expected during the
product life cycle, e.g. for a product life cycle of 10
years, where the vendor releases 2 upgrades a year, η
will be 20.

Effort Multipliers
 These effort multipliers reflect the product’s architectural
characteristics.
Configurability:
• (Lack of) Configuration wizards or utilities
• (Lack of) Configurable rules engine and field edits
• (Lack of) Modularization or distinct inter-module

interfaces

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Internet

Repository

COTS Products

Processor

(Executes Heuristics)

Organizational

Assessment

Business/

Technology

Models

COTS

Architectural

Asessment

Fit/Gap Analysis

Alternate mismatch resolutions

Update knowledgebase; tune heuristics

XMI

Publish to community

Optimized

Tradeoff

Decision

Figure 5. The ACT Processor

Extensibility:
• (Lack of) Integrated Development Environment (IDE), or

support for common IDEs (e.g. Eclipse).
• Proprietary programming languages; (Lack of) Support

for Java, C++, etc; (Lack of) Object orientation
• (Lack of) Published APIs, user exits and extensible

abstract classes
Replacebility:
• (Lack of) Integrated Development Environment (IDE), or

support for common IDEs (e.g. Eclipse)

D. Model Processor

Several iterations take place in the COTS life cycle, some
before COTS selection, and some after. The processing
sequence for a given iteration during the COTS evaluation
phase is as follows.
1. The metadata is populated with organizational assessment

results, business and technology hierarchies, and model
scaling factors and coefficients.

2. COTS products are fed into the processor. For each
COTS, the metadata is populated with results of fit/gap
and architectural assessments.

3. The Processor is run with alternate sets of mismatch
resolutions, and Cost of Acceptance and Cost of Repair is
calculated for each set. The Processor outputs
performance profiles for each COTS, which graphs the
Cost of Ownership against the level of repair.

4. Finally, an Optimized Tradeoff Decision is reached, i.e. a
COTS product at a specific repair level is selected.

Figure 6 shows 2 COTS – B has a better feature match,

while A is more extensible. The minima of the Cost of
Ownership function is lower for A than for B. Most current
COTS methods will select B; ACT will select A.

Figure 6. Example of ACT Processor output

IV. CONCLUSION AND FUTURE WORK

ACT provides a comprehensive framework for COTS
selection, implementation and governance.

Benefits to the customer organization include:
• Enables a true Cost of Ownership perspective.
• Enables COTS selection at optimal customization, rather

than as delivered.
• Costs of Acceptance and Repair are adjusted to

organization and product.
• Emphasizes architectural capabilities rather than features;

exposes what matters in the long run.
• Explicit shift from requirements to tradeoff collapses

project schedules, cost and risk.
• Enables IT portfolio convergence and ROI.

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Benefits to the system integrator include:
• Standard analytical model for COTS/business

convergence reduces project risk.
• Quantitative model facilitates client communications and

Business Process Engineering (BPR) negotiation.
• Common metadata and process model can be reused

across engagements. Continual refinement of models,
based on engagement feedback.

Future work in this area will include the formation of an

adjunct framework to assess configurability and extensibility
of COTS products. Future work will also include establishing
UML profiles for the metamodel, and finally, the calibration
of the model over multiple iterations in the field.

V. REFERENCES

[1] R. O'Callaghan,“Technology Diffusion and Organizational
Transformation: An Integrative Framework”, Idea Group
Publishing, 1998.

[2] M.L. Markus, “Paradigm Shifts - E-Business and
Business/Systems Integration”, Communications of the AIS, 4
(10), 2000.

[3] T.H. Davenport, “Mission Critical: Realizing the Promise
of Enterprise Systems”, Harvard Business School Press, 2000.

[4] J. Kontio, “OTSO: A Systematic Process for Reusable
Software Component Selection”, Univ. of Maryland report
CS-TR-3478, 1995.

[5] C. Ncube and N. A. Maiden, “PORE: Procurement-
Oriented Requirements Engineering Method for the
Component-Based Systems Engineering Development
Paradigm”, Second International Workshop on Component-
Based Software Engineering, Los Angeles, 1999.

[6] C. Alves and J. Castro, “CRE: a systematic method for
COTS components Selection”, XV Brazilian Symposium on
Software Engineering (SBES), Rio de Janeiro, 2001.

[7] L. Chung and K. Cooper, “Defining Goals in a COTS-
Aware Requirements Engineering Approach”, Systems
Engineering, 7(1), Wiley, 2004.

[8] A. Mohamed, G. Ruhe and A. Eberlein, "Decision Support
for Handling Mismatches between COTS Products and System
Requirements”, ICCBSS'07, Banff, 2007.

[9] A. Mohamed, G. Ruhe and A. Eberlein, "COTS Selection:
Past, Present, and Future", ECBS'07,Tucson, Arizona, 2007.

[10] M. Torchiano and M. Morisio, “Overlooked Aspects of
COTS-Based Development”, IEEE Software, 2004.

[11] G. Ruhe, "Intelligent Support for Selection of COTS
Products", LNCS, Springer, vol. 2593, 2003.

[12] J. Kontio, G. Caldiera, and V. R. Basili, "Defining
factors, goals and criteria for reusable component
evaluation", CASCON'96, Toronto, 1996.

[13] C. Ncube and J. C. Dean, "The Limitations of Current
Decision-Making Techniques in the Procurement of COTS
Software Components”, ICCBSS, 2002.

[14] C. Albert and L. Brownsword, “Evolutionary Process for
Integrating COTS-Based Systems (EPIC): An Overview”,
(CMU/SEI-2002-TR-009), Software Engineering Institute,
Carnegie Mellon University, 2002.

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

