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Abstract— Current methods of COTS selection have not been 

widely accepted in industry, and have been found to lack 
architectural orientation and a Cost of Ownership perspective. 
This paper reviews the current methods, and proposes a new 
method - Architecture Centric Tradeoff (ACT) – for COTS 
decision support. ACT prescribes a 3-layer Metamodel, 
Heuristics for Cost of Ownership computations, and a Processor 
that iterates through candidate solutions to find the optimal 
tradeoff. In ACT, COTS selection is not driven solely by 
functional features, but also by architectural characteristics. 
ACT also takes into account IT portfolio convergence and 
various COTS delivery methods such as SaaS and Cloud services. 
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I.  INTRODUCTION 

Commercial Off the Shelf (COTS) products nowadays 
comprise a significant proportion of most IT portfolios. In-
house software development, following traditional waterfall 
methodologies, started giving way to composition based 
systems in the late 1990s, and the trend accelerated in the 
2000s. Lower costs and shorter implementation cycles were an 
obvious driver. COTS products provided a viable means to 
replace outdated systems [1] or integrate disparate portfolios 
[2]. Also, in the face of the technology revolution, many CEOs 
were content to leave product development to COTS 
providers. Around the same time, generally accepted practices 
and well-formed standards started to emerge in many domains, 
such as Accounting, Supply Chain and Human Resources. 
COTS vendors such as SAP, Oracle and PeopleSoft created 
products in these domains, using design patterns that allowed 
the same product to be adapted for many businesses. Many 
organizations adopted COTS as a platform for Business 
Process Engineering (BPR), and as a means of gaining 
strategic advantage [3].  

 
Several COTS selection methods exist in literature. One of 

the first, and the one that gave shape to the generally accepted 
COTS selection process, was the Off the Shelf Option (OTSO, 
1995). This method employed progressive filtering, based on 
evaluation criteria that included functionality, non-functional 
properties, strategic considerations and architecture 
compatibility [4]. Procurement Oriented Requirements 
Engineering (PORE, 1998), stressed the use of knowledge 
discovery techniques for progressive elaboration of 
requirements, and decision support techniques for product 
ranking [5]. COTS-based Requirements Engineering (CRE, 

2002) added a Non-Functional Requirements (NFR) 
framework to the selection process [6]. COTS-Aware 
Requirements Engineering (CARE, 2004) intertwined 
requirements engineering with component evaluation [7]. 
Mismatch-Handling Aware COTS Selection (MiHOS, 2005) 
introduced processes for handling mismatches between 
requirements and COTS, and suggested optimization 
techniques, such as linear programming [8]. And then, of 
course, there is the ubiquitous fit/gap spreadsheet. 

II. ANALYSIS OF CURRENT METHODS 

Most COTS selection methods fit into a general pattern, 
referred to as General COTS Selection (GCS) [9]:   
1. Define evaluation criteria based on stakeholder. 
2. Search for candidate COTS. 
3. Filter search results based on “must-haves”. 
4. Evaluate candidates using decision support techniques.  
5. Select COTS, and tailor as needed. 

 
Data suggests that none of these methods have found wide 

adoption in industry. In a study of Small-and-Medium-
Enterprises (SME) in Norway and Italy, it was found that none 
of them used any of the formal methods for COTS selection 
[10]. Current criticism for the GCS is summarized below: 
• Although most of the proposed approaches were 

developed for general use, there is no commonly accepted 
approach for COTS selection [11]. Also, these approaches 
were proposed without a clear explanation of how they 
can be adapted to different domains and projects. 

• Current approaches suggest using decision making 
techniques such as weighted score method (WSM) or 
analytic hierarchy process (AHP) [12]. However, there are 
several limitations to these techniques [13]. For example, 
these techniques estimate the fitness of COTS candidates 
based on ‘one’ total fitness score. This is sometimes 
misleading due to the fact that high performance in one 
COTS aspect might hide poor performance in another. 

• …what is needed is a more robust negotiation component 
through which COTS can be progressively selected based 
on functional and non-functional requirements, 
architecture, and at the same time resolving conflicts 
between stakeholders [9]. 
 
In this paper, we take a holistic look at the challenges in 

COTS selection, and discover several problems that have not 
been adequately addressed in current literature or practice.  
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Current methods lack a “Cost of Ownership” perspective. 
• They look at product features at face value, and select the 

product with the highest (weighted) feature score. The 
focus is on the number of mismatches, and on negotiating 
that to a low value. The predicate is that the product will 
not be customized, or that the cost of customization is a 
function of the number of mismatches alone. The first 
predicate is not true in most implementations; usually, the 
persistent goal in the COTS life cycle is to arrive at the 
optimal level of customization, not to eliminate 
customization as a possibility. The second predicate is 
even less true – the cost of customization is not a function 
of the number of mismatches, but of the mismatch type, 
and more importantly, of the underlying product 
architecture and the extensibility mechanisms.  

• Development cost is only one component of the 
customization cost (or the “Cost of Repair”), not even the 
larger part. The life cycle impact of customizations – the 
potential regressive impact, and resulting increase in the 
cost of sustenance – is by far the greater cost. That cost, 
too, is driven not so much by the number of missing 
features, but by the mismatch type and the underlying 
product architecture.  

• Current methods fail to capture the true business impact 
of accepting a set of mismatches, or the “Cost of 
Acceptance”. This cost is not simply the (weighted) 
mismatch score; it also depends on the level of the 
requirements hierarchy where those mismatches occur. 
Mismatches at a higher level, involving foundational 
requirements, will have a larger cost. The Cost of 
Acceptance also depends on the mitigation thereof. In the 
simplest case, the customer organization will stop doing 
something; then the Cost of Acceptance is simply the 
value of the lost function. In most cases, the organization 
will add a manual process, expand another function, or 
distribute work to another segment of the enterprise.  

 
Current methods lack architectural orientation. 
• While many methods mention “architectural 

reconciliation”, there is insufficient detail on how such 
reconciliation may be pursued. Most of the current 
methods focus on requirements negotiation, and treat 
architectural characteristics or non-functional 
requirements (NFRs), as simply another group of 
requirements. But architectural characteristics enable 
multiple functions; architectural gaps, unlike functional 
ones, have a multiplier effect on the Cost of Ownership. 
Current methods do not treat architectural characteristics 
as enablers, and fail to account for this multiplier effect.  

• Current methods do not have a portfolio perspective. 
Architectural characteristics influence IT portfolio 
convergence, and ROI of the organization’s IT portfolio. 
For example, if the organization has invested substantially 
in LDAP services, absorption of a product that does not 
support LDAP integration will lead to portfolio 
divergence and diminished ROI. While COTS 
functionality is best viewed from a Line of Business 

(LoB) perspective, COTS architecture is best viewed from 
a portfolio (i.e. CIO) perspective. Then again, if the 
COTS is delivered as Software as a Service (SaaS) or as a 
service from a shared community Cloud, the customer 
organization need not have an equal interest in the 
underlying architecture, and IT portfolio convergence 
need not be an issue. Therefore, the COTS delivery 
method, of which there are several in industry today, 
becomes a factor in the selection process. 

III.  PROPOSED METHOD 

In this paper, we propose a new method for COTS selection 
and life cycle management – Architecture Centric Tradeoff 
(ACT) . ACT is a decision support method for the entire COTS 
lifecycle, starting from COTS selection, and persisting through 
the Design, Build, Deploy and Maintain phases. The 
fundamentals of the ACT method remain unchanged through 
the life cycle, while the underlying model data is progressively 
refined. The salient features of ACT are:  
1. ACT explicitly recognizes that COTS based system 

development is an optimization, not a construction, 
problem. The central object in ACT is the Tradeoff. 
Matrix, not the Requirement Traceability Matrix (RTM).  

2. ACT supports a holistic Cost of Ownership perspective. In 
ACT, the Cost of Ownership is a function of the business-
product mismatch. The mismatch can be assessed from 
multiple viewpoints, each resulting in one component of 
the Cost of Ownership. (Function and Technology are the 
fundamental viewpoints.) ACT seeks the minima for the 
Cost of Ownership function, i.e. the collection of Accept 
and Repair decisions that result in the lowest Cost of 
Ownership. In ACT, the COTS product with the lowest 
minimum Cost of Ownership is selected, which may not 
necessarily be the product with the highest (weighted) 
feature score.  

3. ACT is an architecture-centric process. It goes beyond 
features, and explores structural aspects of businesses and 
products. ACT recognizes the multiplier effect of 
architectural characteristics such as extensibility. Through 
the technology viewpoint, the method supports IT 
portfolio convergence and ROI of IT investments. ACT 
explicitly recognizes the need for new COTS to leverage 
IT investments already made.  

A. Model Organization and Relationships 

ACT comprises of 3 parts: 
• Metamodel: ACT uses a 3-layer metamodel, constructed 

in the Unified Modeling Language (UML). The first layer 
describes the conceptual model, the second the logical, 
and the third the physical.  

• Heuristics: These process the model data to calculate the 
various components of the Cost of Ownership. The 
heuristics can be adjusted based on organizational 
assessments and COTS architecture reviews. 

• Processor: The processor iterates through various 
candidate solutions, defined by the analyst, to find the 
optimal tradeoff.   
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ACT is founded on the Evolutionary Process for 
Integrating COTS (EPIC) [14], which itself is an extension of 
the Rational Unified Process (RUP). EPIC was developed by 
the Software Engineering Institute (SEI) at Carnegie Mellon. 
• Like RUP, EPIC is incremental, iterative and 

architecture-centric. EPIC uses the well-formed artifacts 
(e.g. Use Cases) and the modeling language (Unified 
Modeling Language (UML)) of RUP. But while the 
constructs are the same, the focus is different. RUP 
focuses on the progressive realization of a fixed set of 
requirements, while EPIC focuses on the systematic 
tradeoff of requirements and COTS capabilities.  

• EPIC represents a paradigm shift in COTS based system 
integration. In EPIC, business needs and COTS 
capabilities converge across multiple iterations. EPIC 
allows the understanding of requirements and COTS 
capabilities to evolve along the life cycle. Because it is 
tradeoff oriented rather than requirements oriented, EPIC 
reduces risk, decreases cost and facilitates use of 
delivered capabilities. Importantly, it also transforms 
system integration into an optimization problem, which, in 
the traditional approach, it is not. 

 

 

 

 

 

 

 

 

Figure 1. Evolutionary Process for Integrating COTS 

ACT builds on the EPIC process framework. ACT 
quantifies the tradeoffs in EPIC, and facilitates the iterative 
convergence of function, technology and COTS. EPIC is a 
broad process framework, and does not say how tradeoffs 
should be calculated and managed. ACT takes EPIC from 
theory to practice; it enables tradeoff oriented COTS program 
management, governance and tool development.   

 
Figure 2. ACT Model Organization 

B. Model Metadata 

ACT is a repository based method. The repository 
metadata describes the entities in the model and the 
relationships between them. Inferentially, it defines the 
boundaries of the model and the subset of problems it can 
solve. The metadata is in 3 layers - conceptual, logical and 
physical. The inheritance hierarchy of ACT, as shown the 
figure below, allows it to work with multiple products, 
businesses, SDLCs and EA frameworks, while maintaining the 
same core metadata.  

 

Figure 3. ACT 3-Layer Metamodel 

Layer 1 Metadata describes the core concepts. 
� “Enterprise” is a unit (company, agency, department…) 

that does, provides or supports “things of value”. The 
enterprise is structured as a hierarchy, with the “relative 
importance” at each node distributed amongst lower 
nodes. Function and technology are the two fundamental 
hierarchies. 

�  “Mismatch” is where the Enterprise is not fully 
supported by (or does not have) a Product Context. 
Mismatch can be full or partial. Each mismatch is traced 
to a specific node in the Enterprise hierarchy, with 
preference for the lowest possible node, and is fully 
distributed to “Accept” or “Repair”.  

� “Accept” is where the enterprise needs to do something 
differently, or stop doing something. “Cost of 
Acceptance” measures the impact to the Enterprise. “Cost 
of Acceptance” derives from the size and type of the 
acceptance, the nodes in the Enterprise which it affects, 
and organizational factors, which may, in turn, inherit 
from the business domain. Note that a mismatch in one 
node may have to be resolved by doing things differently 
at other nodes. This situation is common when 
consolidating enterprises on a single COTS.  

� “Repair” is where the product needs to be changed to 
support the enterprise. “Cost of Repair” measures the 
impact to the life cycle cost of ownership. “Cost of 
Repair” derives from the size and type of the repair, the 
nodes in the product context which it affects, and product 
technology factors, which may, in turn, inherit from the 
technology domain. 
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Figure 4. ACT Layer 2 Metadata 
 

Layer 2 Metadata implements the layer 1 concepts as 
logical constructs. 
• “Enterprise Function” in Layer 2 implements 

“Enterprise” from Layer 1. The Enterprise Function 
hierarchy contains the functional decomposition for the 
Enterprise. The “relative importance” at each node is a 
product of the “relative importance”s along the path to 
that node. 

• Product Structure is a function-oriented decomposition 
of the relevant section of the COTS product. (There is no 
need to model the entire COTS.) Product Component 
relates specific repair candidates to the Product Structure. 

• “Accept” is extended into its subtypes – “Active” and 
“Passive”. Passive is where the enterprise stops 
performing a function e.g. stops selling a product, because 
the COTS does not support it. Active is where the 
enterprise reorganizes work, adds manual processes, 
trains employees or adds compensating controls, to 
resolve a mismatch. The available subtypes for a 
function/mismatch depend on the Enterprise Constraints. 
For example, Passive will not be available for mandatory 
functions. “Cost of Acceptance” is influenced by the type 
of the Acceptance, and the nodes in the function hierarchy 
that are impacted by the Acceptance. Cost of Acceptance 
is also influenced by organizational factors. 

• “Repair” is extended into its subtypes – Configure, 
Extend and Replace. Configure is where only certain 
literals that drive product behavior (i.e. configuration data 
or settings) need to be changed. Extend is where 
components may be extended to provide new 
functionality without modifications to the delivered 
COTS metadata, such that there is no potential for 
regressive impact to adjunct components. Replace is 
where there are modifications to the COTS metadata, and 
thereby potential regressive impact or loss of 
upgradeability. The subtypes available depend on the 
Product Constraints. Where only certain components are 
exposed through APIs, for example, the Extend subtype is 
available only for those components. “Cost of Repair” is 
influenced by the type of the Repair, and the level in the 
component hierarchy where the changes are taking place. 
For example, changes at the structural layer (e.g. database 
schema) will have a greater Cost of Repair than that of 
changes at the presentation layer (e.g. JSP pages). 
 
Layer 3 describes specific implementations; the logical 

constructs of layer 2 are implemented for a specific business 
and candidate COTS. Key activities include formation of the 
function hierarchy and product structure. In addition to 
Function, Technology is another fundamental viewpoint. The 
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technology hierarchy, also known as the Technology 
Reference Model, shows the relevant technology platforms and 
services within the organization. The relative importance at 
each node indicates the technology investment at that node. 
The principle is that ROI targets can be achieved by acquiring 
COTS that leverage IT investments already made. However, if 
the COTS is provided as SaaS or Cloud service, Technology 
ceases to be a viewpoint, and the choice of COTS may be 
made based on the Function viewpoint alone. 

C. Model Heuristics 

ACT is a quantitative model for COTS decision support, 
and the ACT metadata is structured to support computation 
and optimization. Much of the computations that follow are 
simple SQL operations on the ACT database.  The model has 
to be calibrated, and the coefficients established, for each 
organization and COTS implementation program. (The costs 
shown are notional, and are meant to support relative 
comparisons, not absolute dollar estimates.) 

 
Cost of Ownership 
C_own = C_accq + ρ ∑ Wρ*(C_acptρ + C_reprρ) 

 
• C_own  : Cost of ownership 
• C_accq : Cost of acquisition (or licensing cost) 
• ρ       : Viewpoint (Function/Technology) 
• W       : Weight assigned to viewpoint ρ 
• C_acpt  : Cost of acceptance (from viewpoint ρ) 
• C_repr  : Cost of repair (from viewpoint ρ) 

 
Cost of Acceptance 
     The Cost of Acceptance has passive and active 
constituents. Passive is where the enterprise stops performing 
a function because of a mismatch. Active is where the 
enterprise reorganizes work, adds manual processes, trains 
employees or adds compensating controls, to resolve a 
mismatch.  
C_acpt = C_acpt_passive + C_acpt_active 
C_acpt_passive = ∏iEM_flex i* m∑Fm*FM m*MA m*A m*AP m 

 
• EM_flex: Effort multipliers related to the (lack of) 

organizational flexibility 
• m: Mismatch pointer 
• F : Relative importance of the node where there’s a 

mismatch 
• FM: The percentage of mismatch   
• MA: The percentage of the Mismatch that is Accept 
• A: The size of the acceptance.  
• AP: The percentage of Accept that is Passive.  

 
C_acpt_active=∏iEM_adapti* m∑Am*(1-APm)*{ n∑F_mod 

n*mod_size n } 
 

• EM_adapt: Effort multipliers related to the (lack of) 
organizational adaptibility 

• m: Mismatch pointer  
• n: Modified function pointer 

• F_mod: Relative importance of the node modified 
• mod_size: Size of the modification 
 
Effort Multipliers 
Organizational flexibility: These multipliers quantify the 
constraints that impede an organization from dropping a 
function in the event of a mismatch. Where these constraints 
are severe, e.g. where the organization is bound to fulfill 
certain functions by law, the EM_flex will be high, and 
Passive acceptance will lead to an unsustainable Cost of 
Acceptance.  
 
Organizational adaptability: These multipliers quantify 
constraints that impede an organization from reorganizing 
work or workforce to resolve a mismatch. Where these 
constraints are severe, e.g. where there are restrictions on 
hiring, the EM_adapt will be high.  

 
Cost of Repair 

The Cost of Repair comprises of the Cost of 
Configuration, Cost of Extension and Cost of Replacement. 
The product architecture, and the technology domain from 
which it inherits, will place limits on what options are 
available for a given repair.   
C_repr = C_cfg + C_extn + C_repl 

 
C_cfg = ∏iEM_cfgi*  r∑ {R*RC r *(1 + n∑mod_size n

 1/λ)} 
C_extn=∏iEM_extni* r∑{R*RE r *(1+ n∑mod_sizen

 1/λ)} 
C_repl=∏iEM_repl i* r∑{R*RR r *(1 + η* n∑mod_size n

 1/λ)} 
 

� EM_cfg: Effort multipliers related to configurability 
� EM_extn: Effort multipliers related to extensibility 
� EM_repl: Effort multipliers related to overwrite 
� r: Repair pointer  
� n: Modified component pointer 
� R: Size of the repair 
� RC, RE, RR: Percentages of Repair that are 

Configuration, Extension or Replace 
� mod_size: Size of the modification to the component, 

measured as Source Lines of Code (SLOC), etc. 
� λ: The level of the modified component in the 

hierarchy. More foundational the level (lower λ), 
higher the effective size of the modification. 

� η: The number of upgrades expected during the 
product life cycle, e.g. for a product life cycle of 10 
years, where the vendor releases 2 upgrades a year, η 
will be 20. 

 
Effort Multipliers 
        These effort multipliers reflect the product’s architectural 
characteristics. 
Configurability:   
• (Lack of) Configuration wizards or utilities 
• (Lack of) Configurable rules engine and field edits 
• (Lack of) Modularization or distinct inter-module 

interfaces 
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Figure 5. The ACT Processor 

 
Extensibility:   
• (Lack of) Integrated Development Environment (IDE), or 

support for common IDEs (e.g. Eclipse). 
• Proprietary programming languages; (Lack of) Support 

for Java, C++, etc; (Lack of) Object orientation 
• (Lack of) Published APIs, user exits and extensible 

abstract classes 
Replacebility:   
• (Lack of) Integrated Development Environment (IDE), or 

support for common IDEs (e.g. Eclipse) 

D. Model Processor 

Several iterations take place in the COTS life cycle, some 
before COTS selection, and some after. The processing 
sequence for a given iteration during the COTS evaluation 
phase is as follows. 
1. The metadata is populated with organizational assessment 

results, business and technology hierarchies, and model 
scaling factors and coefficients. 

2. COTS products are fed into the processor. For each 
COTS, the metadata is populated with results of fit/gap 
and architectural assessments. 

3. The Processor is run with alternate sets of mismatch 
resolutions, and Cost of Acceptance and Cost of Repair is 
calculated for each set. The Processor outputs 
performance profiles for each COTS, which graphs the 
Cost of Ownership against the level of repair.  

4. Finally, an Optimized Tradeoff Decision is reached, i.e. a 
COTS product at a specific repair level is selected.  

 
Figure 6 shows 2 COTS – B has a better feature match, 

while A is more extensible. The minima of the Cost of 
Ownership function is lower for A than for B. Most current 
COTS methods will select B; ACT will select A.  
 

 
Figure 6. Example of ACT Processor output 

IV.  CONCLUSION AND FUTURE WORK 

ACT provides a comprehensive framework for COTS 
selection, implementation and governance. 
 

Benefits to the customer organization include: 
• Enables a true Cost of Ownership perspective. 
• Enables COTS selection at optimal customization, rather 

than as delivered. 
• Costs of Acceptance and Repair are adjusted to 

organization and product. 
• Emphasizes architectural capabilities rather than features; 

exposes what matters in the long run. 
• Explicit shift from requirements to tradeoff collapses 

project schedules, cost and risk. 
• Enables IT portfolio convergence and ROI. 
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Benefits to the system integrator include: 
• Standard analytical model for COTS/business 

convergence reduces project risk. 
• Quantitative model facilitates client communications and 

Business Process Engineering (BPR) negotiation. 
• Common metadata and process model can be reused 

across engagements. Continual refinement of models, 
based on engagement feedback. 

 
Future work in this area will include the formation of an 

adjunct framework to assess configurability and extensibility 
of COTS products. Future work will also include establishing 
UML profiles for the metamodel, and finally, the calibration 
of the model over multiple iterations in the field. 
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