
On Re-Architecting Legacy Software Systems: The Case of Systems at Umm Al-

Qura University

Abstract—This short paper describes our proposed

architecture for the software systems at Umm Al-Qura

University (UQU). We adopted the notion of SOA to derive the

building block of the new architecture. The proposed solution

is the first step towards migrating the legacy systems at UQU

to new architecture that can respond seamlessly to the

emerging e-government requirements.

Keywords- legacy systems; SOA; e-government.

I. INTRODUCTION

Responding to rapidly changing IT markets - including
expanding e-government applications - requires adopting a
reliable, versatile and fully flexible system capable of
accommodating recent and upcoming changes and
modifications efficiently and smoothly while keeping old
business needs intact [1-2]. In this day and age, such a
system can be described as a mandatory rather than an
optional when responding to ever increasing business needs.

Adaptable systems nevertheless are not always available
to many large private companies, public organizations,
government agencies, hospitals, municipalities, and
universities in the Saudi Arabian context. These institutes in
reality usually maintain their respective legacy systems as far
as the systems provide the basic necessary functionality.
However, these organizations are aware of the rapidly
changing IT market and are duly planning to replace their old
systems at some point in order to accommodate the growing
new business requirements should finical resources become
available. They may also consider the more cost-effective
option of modernizing or re-architecting [3].

Many challenges are attributed to the nature of legacy
systems which cannot be easily modified. Systems are
usually treated as black boxes not because they lack
documentations or because the source code is not available.
Instead, the systems are poorly architected in the sense they
can no longer cope with new business needs. Hence, become
one of the key barriers to adopt any potential e-government
business models.

Poorly architected legacy systems can encourage CEOs
to replace them with entirely new ones. However, such a
decision should be informed and well researched as it still
has consequences. Legacy systems usually provide highly
customized functionalities that none of the available
solutions in the market may provide if purchased as is. For
example, setting up new systems may require making huge
modifications that can take up to several years to comply

with old business needs within organizations while
accommodating newer ones.

This research aims at investigating an architectural model
to analyze the feasibility of re-architecting legacy systems in
order to satisfy e-government business needs. The paper is
organized in six sections. Section II presents the background
work that set the context of our work. Section III introduces
a conceptual system architecture model of SOA. Our
proposed model is given in section IV. Section V describes
some potential advantages of applying the notion of re-
architecting as compared to purchasing new products.
Finally, the conclusion and future works is given in section
VI.

II. BACKGROUND WORK

We chose Umm Al - Qura University (UQU) [11] as a
typical Saudi organization running a legacy system in need
of urgent updating to act as our case study for applying and
evaluating our proposed alternative model. The goal is to
establish a fully integrated environment that supports e-
government business. In other words, the institution needs a
rigorous solution that promotes changes without interrupting
their daily working activities. However, funding seems to be
a major constraint that constantly influences the decision for
adopting any major new development plans.

Umm Al-Qura University launched its information
systems in early 2001 to serve around 3600 employees and
just over 40,000 students at the time. It owns old fashioned
systems based on Oracle 6i for forms and reports those are
built entirely on client-server pattern [7]. The major systems
include an in house built Enterprise Resource Planning
(ERP), Student Information System (SIS), Library
Information System (LIS), and Healthcare Information
System (HIS). These systems are still used today to serve
around 75000 students and more than 7000 employees, a
much higher figure than in 2001, with minor improvement to
the original functionality.

However, software systems at UQU still lack many
capabilities that become core-requirement nowadays in terms
of compatibility with different environments (e.g., Mobile
devices) and the services provided to students and faculty
members in the University. Moreover, with the pioneering of
e-government movements in Saudi Arabia, organizations
may need to apply major changes to their systems in order to
accommodate these new requirements; one of which is
process automation that solely requires splitting functional
aspects of an application from the business aspects.

Basem Y. Alkazemi

Department of Computer Science

Umm Al-Qura University, UQU

Makkah, Saudi Arabia

bykazemi@uqu.edu.sa

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Current practices for the modifications to add features to
any of the systems are done in an ad-hoc manner by which
an application's code is modified to satisfy requirements.
Specifically, business processes are implemented directly
into the forms confusing the functional aspects of an
application with the non-functional ones. As a result, the
complexity of UQU systems is building up rapidly in a
manner that will become very hard to manage in the near
future.

III. CONCEPTUAL SYSTEM ARCHITECTURE

One key driver for establishing our framework is the
representation of workflow within a software system.
Currently many systems develop their business processes
hardcoded into the source code. So, whenever new business
processes are required to be implemented the overall code
must be modified. Moreover, applications are integrated in a
one-to-one manner by writing glue code to establish the
integration. This glue code is usually written as a mediator
between two applications. Although this approach might
look simple to some developers, it causes process design to
become totally confused and mixed. In some cases glue code
is injected into one of the applications themselves. This is the
worst scenario as it will result in very tangled code that
cannot be managed over the years especially when
developers are dealing with an enterprise solution.

The described framework considers SOA [8] as an
integration facilitator mechanism and not as a service
delivery mechanism. The framework is composed of
different layers that, based on our previous work for
analyzing a number of systems [9], any enterprise solution in
the market must satisfy in order to ensure flexibility and
extensibility of their systems. Figure 1 presents our proposed
architecture for an enterprise solution.

Each layer is independent of the other surrounding layers
in terms of their main functionality. The description of these
layers is as follows:

 Data Access Layer: this layer is responsible for
managing the interaction between application and
database and hiding the databases used in the
organization. So, if different database technologies
are used (e.g., MYSQL, Oracle), this layer will
manage the connectivity with the corresponding
source.

 Application Layer: this layer is responsible for
executing the basic functionality that represents an
organization‟s business needs. In the context of an
ERP solution, this layer represents the fundamental
modules offered by the solution such as HR,
Finance, Projects, and Sales. Every one of these
modules must be a standalone application that is not
aware of any other modules.

 Packaging Layer: this layer is responsible for
wrapping the available applications from the
application layers into standard component model
[12]. All applications are therefore decoupled from
their underlying environment and made available
through request-response interaction mode.

Data Access Layer

Application Layer

Packaging Layer

Pooling Layer

Business Process Layer

Policy Layer

Frontend Layer

Figure 1. Architectural Layers for Enterprise Solutions

 Pooling Layer: this layer is responsible for hosting
the different packaged components and make them
ready to be used in a business. In addition, the layer
is responsible for establishing the communication
pattern and routing protocols that enable service
discovery and interaction. It defines the policies that
comply with the standards adopted by vendors. For
example, web services interact by exchanging SOAP
messages over HTTP protocol. Any interaction
between services must be accomplished through this
layer. This is usually referred to as the Enterprise
Service Bus (ESB) layer.

 Business Process Layer: this layer defines the
workflows that are employed by an organization. It
is responsible for establishing the sequence by which
services are going to be invoked to satisfy business
requirements. For example, an attendance service
might need to issue a request to a finance service to
deduct a certain amount from an employee salary.

 Policy Layer: this layer is responsible for defining
the privileges for accessing services. A different
level of access rights can therefore be granted at this
layer according to the defined policy.

 Frontend Layer: this layer is responsible for
exposing services for different types of devices and
technologies (e.g., web applications, mobile
application, cloud computing).

This layered architecture is technology neutral and

designed partially utilizing the concept of the SOA pattern.
The identified layers are not interchangeable as they must
build up in a bottom-up manner. So, for example, a database
can be established and tables created for an ERP system.
Then, a number of standalone applications are developed on
top of these tables to utilize the data in the tables. These
applications must then be exposed in a standard manner in
order to facilitate their integration with other applications to
achieve new business needs. So, the new exposed interfaces
are pooled and made ready for requests. Workflows can then
be defined on top of the available pool of services in order to
integrate different applications seamlessly without affecting

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

each application‟s concern. In fact, a workflow defines the
design of a system where different components can be
executed in a pre-defined sequence. Once all the business
requirements are established (i.e., all functionality is
implemented), there should be privileges assigned to
personnel who are authorized to execute certain processes in
the system.

IV. PROPOSED ARCHITECTURE FOR UQU SYSTEMS

UQU is moving steadily and progressively toward
providing e-government services which goes in line with the
university‟s technological ambitions. A main objective from
the university‟s website indicates fully automating all its
internal processes and establish rigorous infrastructure
capable of supporting internal and external exchange of data.
In fact, the organization dedicates huge resources and funds
in order to achieve this objective.

This requires a comprehensive architecture to be
established in order to facilitate harmonious integration of
different systems. UQU systems currently operate in three
different environments, SharePoint 2010, PHP (codeigniter),
and Oracle 6i. Our proposed architecture is meant to
integrate all systems regardless of technology in a rather
neutral manner. The proposed architecture model is given
below.

WCF

Data Access

Oracle

Oracle

Stored Procedures

SharePoint (Portal)

SQL

Server

PHP

Web Applications

MySQL

Consume

servicesActive Directory

Workflow Designer

SSO

Figure 2. UQU Proposed System Architecture

Figure 2 illustrates the proposed architecture for

facilitating the adoption of the emerging business need of
UQU based on the resources that are currently available to
the university. The main objective of this solution is to
promote fully integrated environment that facilitates internal
and external data exchange, in addition to promote
scalability for future development. UQU currently own full
package of SharePoint 2010, in-house built Oracle ERP
solution, website and a number of services in PHP, and an
Internet Information Server (IIS).

In our proposed solution, SharePoint is utilized to play
two main roles; the web presence and the service
orchestration layer where business processes are defined

through windows workflow foundations (WWF) provided by
the SharePoint workflow engine. Services are exposed to
SharePoint through the Microsoft-IIS layer where web
services are defined. As a result, every application must be
wrapped and exposed as a standalone web service that can be
consumed by SharePoint. This capability simulates the basic
functionality of the well-known Enterprise Service Buss
(ESB) pattern for service integration and management which
represent the communication layer for integrating the various
applications in an organization. SharePoint 2010 must work
only on SQL server, hence, in this solution; we propose to
use the SQL server for document flow management purposes
without interfering with the university database by any
means.

This architecture proposes a flexible solution for the ERP
system within the UQU and also establishes rigorous
platform for any potential ECM functionality required by the
university. SharePoint 2010 together with Microsoft-IIS
provides the necessary pool and management of services.
They facilitate services orchestration in order to enable the
interaction between the different services of the system. Any
new service can be exposed into this layer and then
composed with other services by defining a workflow that
corresponds to a predefined business process model.

Ideally, the resulted architecture should promote high
degree of extensibility and flexibility where different
business processes within or between departments become
composable and fully automated. The first step toward that
ultimate goal, as far as system structure is concerned, is re-
architecting of the legacy system in order to increase the
flexibility of IT within UQU. Re-architecting UQU legacy
systems with SOA concepts in mind allows for quick
response to changing market needs, can implement IT
systems that can quickly adapt to changing markets, shifting
customer requirements, and new business opportunities.

V. POTENTIAL BENEFITS OF RE-ARCHITECTING

Legacy systems‟ re-architecting is a cost-effective
modernization alternative to the creation of software systems
in an organization when a new market or business need
arises. Given that purchasing new software has huge cost
implications to the organization, it is better for organizations
to improve their own proven legacy systems to address their
specific emerging business needs. The huge costs of
purchasing new software from the market come from the
actual price of the software, rollout cost, and training costs.
In fact, being new, it might cost higher to maintain in the
initial days because it might involve vendor intervention
from time to time [4]. More so, this approach promotes low
operating costs, with the software built on existing hardware
and other systems [5].

The re-architecting approach is low risk modernization
option in the sense that existing software is already tested
and proven to work in addressing existing business needs.
This is more favorable as opposed to software systems an
organization purchases and have pilot tests done before
establishing if it actually addresses the organization‟s needs
[4]. It allows an organization to transform its existing legacy
applications to meet the current market demands without

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

overhauling the entire system. This, in turn, minimizes the
loss of existing IT systems‟ investments in which the legacy
systems hold crucial information and data that is required in
the daily operations of the organization.

Another advantage of this approach is that re-architecting
encourages the development of a custom software system
architecture that is based on the organization‟s demands and
capabilities. This is because this process allows the re-
architecting team to survey and understand not only the
requirements of the new system, but also the overall
capabilities of the organization in managing the new system
[6]. Consequently, this enables the development of a system
that the organization will use and manage comfortably.
During the re-architecting of legacy systems, highlights that
re-architecting legacy systems gives the development team
an opportunity to transform the current system user interface
to the popular web-based user interface if it is not in place
already. This helps the users interact with the new system in
a friendly manner and, thus, enable the usual operations of
the organizations to run with minimum delays.

Software system re-architecting approach permits
customization in the training of the system users and
maintenance teams. This is realized through re-architecting
experts who train the users at each stage of the development
process, thus, enabling them to understand the new system
with much ease. This is achievable since re-architecting
targets certain system enhancements concerning the central
part of the solution which aims at handling given business
needs.

Improving legacy systems helps sustain an organization‟s
reputation because it principally helps minimize any
interruption to routine business operations. This means that
customers, too, will feel minimal negative impact, if any.
This is critical in businesses where reputation is very
important, particularly due to competition. Consider a
situation where rolling out a new system takes days to
realize. Business operations would have to stop until the
system is working as expected but clients may not be that
patient and, therefore, consider the organization insensitive
to their needs.

Finally, this approach grants an organization the
opportunity to employ modern technical architecture such as
Service Oriented Architecture and Cloud Computing
Architecture. These have tested and proven levels of
flexibility to accommodate future technological changes. For
instance, when SOA is implemented to support business
intelligence (BI), it allows a flawless technology integration
to form a consistent BI environment that makes the delivery
of data straightforward while simplifying low latency
diagnostics at the same time.

VI. CONCLUSION AND FUTURE WORK

This paper accounts for a major obstacle that challenges
the decision to adopt e-business solution in any given
organization which is the lack of standard architecture of the
legacy systems. The paper proposed that re-architecting
legacy system can be beneficial to some organizations in
improving the architecture of their systems without affecting

their underlying business logics. We summarized the main
advantages of re-architecting in the following points:

 Re-architecting connects legacy business logic with
modern technologies and concepts.

 Re-architecting can evolve legacy applications into
SOA-based deployments.

 The new system will require less time spent coding
when modifying or developing logic.

 By being based on SOA concepts and built on an
advanced framework, the new system will be
flexible, transparent, and reliable.

 The new system will be expandable without the
danger of a 'spaghetti architecture' emerging.

The next step in this work is to utilize one of the tools
available in the market such as the BAZ [10] tool performs
the conversion of 6i forms into ADF [13] compatible
components. Then, components will be exposed as web
services and deployed into the IIS for business process
utilizations. Also, we will apply this model to some other
universities within the region in order to evaluate its
applicability to a wider range of cases.

REFERENCES

[1] C. Holland, and B. Light, “A Critical Success Factors Model for ERP
Implementation”, Software IEEE, vol. 16, no. 3, 1999, pp. 30 – 36.

[2] K. Bennett; M. Ramage, and M. Munro, M. Decision “Model for
Legacy Systems”, Software, IEE Proceedings, vol. 146, no. 3, 1999,
pp. 153 – 159.

[3] R. C, Seacord, D. Plakosh & G. A. Lewis, Modernnising Legacy
Systems: Software Technologies, Engineering Processes, and
Business Practices. 2003, Boston: Pearson Education.

[4] D. Reeves, “Legacy systems re-engineering: leveraging your existing
assets”, Revenue Solutions, Inc. 2009, Available from:
http://www.taxadmin.org/fta/meet/09tech/Tech%2009%20papers/Ree
ves-Legacy.pdf [retrieved: March 2012].

[5] A. Umar and A. Zordan, “Reengineering for service oriented
architectures: a strategic decision model for integration versus
migration”, Journal of Systems and Software, vol. 82 vo. 3, 2008, pp.
56 – 64.

[6] D. Quah, 2005. Thesis on „Case Study on Re-Architecting of
Established Enterprise Software Product: Major Challenges
Encountered and SDM Prescriptions from Lessons Learned.‟
Massachusetts Institute of Technology, pp. 1-122.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture Volume 1: a System of
Patterns, 1996.

[8] L. Grace, M. Edwin, S. Dennis, and S. Soumya. SMART: Analyzing
the Reuse Potential of Legacy Components in a Service-Oriented
Architecture Environment, In CMU/SEI-2008-TN-008. Software
Engineering Institute, Carnegie Mellon University, 2008.

[9] B. Y. Alkazemi, ,“A Conceptual Framework to Analyze Enterprise
Business Solutions from a Software Architecture Perspective ", in the
IJCSI, vol. 9, no. 3, 2012.

[10] SmartDeveloper Co., http://www.sd4it.com/Baz.html, [retrieved: Jan
2012]

[11] Umm Al-Qura University, http://www.uqu.edu.sa, [retrieved: Nov
2012].

[12] K. Lau, Z. Wang, “Software Component Models”, IEEE Transaction
on Software Engineering, vol. 33, no. 10, 2007.

[13] Oracle Co, Oracle Application Development Framework, Available
from:http://www.oracle.com/technetwork/developer-
tools/adf/overview/index.html [retrieved: June 2012]

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://www.alibris.co.uk/booksearch.detail?invid=11294921846&browse=1&isbn=9780471958697&qsort=&page=1
http://www.alibris.co.uk/booksearch.detail?invid=11294921846&browse=1&isbn=9780471958697&qsort=&page=1
http://www.sd4it.com/Baz.html
http://www.uqu.edu.sa/
http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html

