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Abstract—Business processes design and implementation
within a company are mainly based on the specification of
actors and their different tasks. Data and general information
are transmitted in a very specific organization among actors,
applications and the information system, which constitute a
workflow. In this paper, we present an approach for workflow
process modeling. The model is in charge of representing both
control flow and shared data in the workflow process, and it can
be analysed to verify its correctness before implementation. This
workflow modeling approach has been implemented into Opus
system that provides a set of graphical interfaces to model and
execute the business process tasks. The system also provides a
workflow engine that grants automatic workflow processing by
interpreting the workflow process.

Keywords—Workflow modeling; Workflow management sys-
tem; Petri Nets; Data-driven approach; Structured token.

I. INTRODUCTION

At the beginning of this century, workflow management
concentrated on the design and documentation of business
process [1]. Therefore, it focused on the dependencies be-
tween tasks and their sequencing, while data and resources
played a very minor role. Many new approaches have been
introduced, e.g, Petri Nets [2], Business Process Modeling
Notation (BPMN) [3], Business Process Execution Language
(BPEL) [4], etc.; but only a few of them are of ongoing interest
in modeling the exchanged data flow in the business process.
Moreover, the importance of data in business processes has
increased progressively in recent years with the appearance of
the data-driven approaches.

As execution and expressiveness have got more attention,
also validation of the workflow model has needed to get
attention. One big standard in this attribute is Petri Nets.
Petri Nets are currently among the best known techniques for
workflows specification [5].

In this paper, we present a formal approach inspired from
the data-driven approach and the Petri Net formalism to model
workflow processes. The resulting model can be analyzed for
validation and automatically generated by the workflow engine
for process execution.

The rest of the paper is organized as follows :we illustrate
the related work in Section II and then, we elucidate our
approach for workflow modeling in Section III. We illustrate
in Section IV the possible information flows routing. Then, we
demonstrate our approach by an example of workflow model

in Section V. In Section VI, we explain how our workflow
model can be analyzed and verified and we present our work-
flow management system Opus in Section VII. Section VIII
concludes the paper.

II. RELATED WORK

Many new approaches have emerged, which shifted their
focus to combination of data flow and control flow. An emerg-
ing approach uses artifacts, that combine data and process by
using atrifacts and Petri Nets model, is the Business Artifacts
(BA) [6].

The BA approach focuses on solving decision problems,
related to reachability, avoiding dead-ends and redundancy,
but it does not provide a graphical notation for process
modeling. Despite it was formally defined, the BA does not
provide a formal mechanism for process verification. Process
verification has been widely studied in workflow research,
with states machines in Petri Nets [7], [8], graphs [9], data
dependencies [10], etc.

Another formal approach based on Petri Nets model is the
CorePro Framework [1]. The CorePro enables to model the
data-driven specification and then, to create automatically the
process structures based on given data structures in the model
level. As well, CorePro provides some simple rules to verify
the soundness properties of the data-driven process structures.
However, it has skipped to retain the object states which have
already been activated before the execution.

Many extensions of Petri nets in which tokens carry data
have been defined in the literature, in order to improve
expressiveness of workflow models. Data Nets (DN) [11] are
an extension of Petri nets in which tokens are taken from a
linearly ordered and dense domain, and transitions can perform
whole place operations like transfers, resets or broadcasts.
Although, a data net can be viewed as a constrained mul-
tiset rewriting systems (CMRS) enriched with whole-place
operations. And, according to researches developped in [12],
whole-place operations augment the expressive power of Petri
nets only in the case of black indistinguishable tokens, but
not for models in which tokens carry data taken from an
ordered domain. Weakness refers here to the fact that the
CMRS encoding simulates a lossy version of data nets, e.g.,
data nets in which tokens may get lost.

All the approaches mentioned above focus on the data
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routing and data managed by the process, but they consider
activities as black-boxes in which application data is managed
by invoked application components. Some of them, like DN,
can apply transitions that read from or write to some data
element, but with limited power to manage all the handled data
element. This is why processes have to be modeled at a higher-
level of abstraction to reflect the preferred work practice.

III. WORKFLOW MODELING USING STRUCTURAL PETRI
NET TOKENS

We have inspired from Petri Nets to propose a new workflow
modeling approach leading to a workflow process model. To
manage all the data handled by the work procedures, we use
the notion of data-driven process structures.

So, we describe the process by respective data structures,
and we define a data structure as a pair s = (C, D), where C
is a list of attributes and D is a list of tuples, each tuple is an
ordered set of attribute values. Formally, ∀n, m ∈ N :

C = (c1, c2 . . . cn)
D = {(d11 , d12 . . . d1n), (d21 , d22 . . . d2n) . . . (dm1 , dm2 . . .

dmn)}
Each attribute ci is an ordered pair of attribute name ni and

type name ti, such as :
∀i, ti ∈ {SmallInt, Int, BigInt, F loat, Double, Real,

Decimal, Char, V archar, Text, Date, Y ear, Boolean}
∀i, j, dij ≡ tj :an attribute value is a specific valid value

for the type of the attribute.
The workflow process is defined as a Petri Net representing

the work, where a place corresponds to a data structure that
contains structured tokens (tuples) and a transition corre-
sponds to a task. A workflow is then a quadruplet WF =
(S, T, Pre, Post) where :

● S is a finite set of data structures,
● T is a finite set of tasks,
● Pre ∶ S × T → N is the pre-incidence matrix,
● Post ∶ T × S → N is the post-incidence matrix.
A workflow process is defined by an oriented net with

two node types representing data structures and tasks
manipulating the tuples of these structures. A task consumes
data structure tuples to produce others, which can then be
consumed by other tasks.

A task t is said to be enabled if each input data structure
s ∈ S is marked with at least xi tuples (refers to Pre(s, t),
which defines the weight of the edge from s to t). A firing
of an enabled task t consumes xi tuples from each input data
structure s, and produces xj tuples (refers to Post(t, s)) to
each output data structure of t. Post(t, s) is the weight of
the edge from t to s.

We have to clarify that in our case we cannot be limited
to a simple post-incidence matrix. In fact, each transition
consumes an undefined number of tuples and produces a
number belonging to a well determined range, depending on
its processing (See Table I, in Appendix). For example, if a
transition is a tuples union operation of two data structure
s1 and s2 containing respectively x1 and x2 number of

tuples, it will produce a number of tuples belonging to
the interval :max(x1, x2) and x1 + x2 (because the union
operation eliminates the duplicated tuples).

So, we define two post-incidence matrices :PostMin and
PostMax, as a values interval which limits all possible
post-incidence matrices. Formally :
∀t ∈ T and s ∈ S, PostMin(t, s) :is the edge going from

transition t to place s minimal weight.
∀t ∈ T and s ∈ S, PostMax(t, s) :is the edge going from

transition t to place s maximal weight.
∀t ∈ T and s ∈ S, Post(t, s) ∈

[PostMin(t, s), PostMax(t, s)].
We explain this idea in details through the example in

Figure 1.

Figure 1. Example of workflow model

The example illustrated by Figure 1 contains eight places
(s1, s2 . . . s8) and five transitions (ta, tb . . . te). Each edge is
associated with a weight (xi > 0).

We define its Pre matrix by :

Pre =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ta tb tc td te

s1 x1 0 0 0 0
s2 x2 x2 0 0 0
s3 0 x3 0 0 0
s4 0 0 x6 0 0
s5 0 0 x7 x7 0
s6 0 0 0 0 0
s7 0 0 0 0 x10

s8 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Following the example illustrated in Figure 1, and
the definition of its transitions in Table I, we can determine
the values range of output tokens for each fired transition as
follows :

● x4 ∈ [0, min(x1, x2)]
● x5 ∈ [max(x2, x3), x2 + x3]
● x8 = x6 × x7 ∈ [x6 × x7, x6 × x7]
● x9 = x7 ∈ [x7, x7]
● x11 = x10 ∈ [x10, x10]
So, we can deduce the matrices :

PostMin :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ta tb tc td te
s1 0 0 0 0 0
s2 0 0 0 0 0
s3 0 0 0 0 0
s4 0 0 0 0 0
s5 0 max(x2, x3) 0 0 0
s6 0 0 x6 × x7 0 0
s7 0 0 0 x7 0
s8 0 0 0 0 x10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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PostMax :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ta tb tc td te

s1 0 0 0 0 0
s2 0 0 0 0 0
s3 0 0 0 0 0
s4 min(x1, x2) 0 0 0 0
s5 0 x2 + x3 0 0 0
s6 0 0 x6 × x7 0 0
s7 0 0 0 x7 0
s8 0 0 0 0 x10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Using these three matrices (Pre, PostMin and PostMax)
we can derive several properties of the designed workflow
model to be verified. We detail this idea in Section VI.

To reach the lowest level of abstraction, we need algebra
over data structures. So, we have inspired from the relational
algebra to define the tasks needed to produce data structures
from others. As illustrated in Table I, we redefine the
relational algebra operations in a formal way in order to
suit the Petri Net formality. To keep equivalence between
the attributes of data structures assigned to operations as
Union, Difference, Intersection, and Division, we define the
Permutation and Substitution operations.

Furthermore,we suggest an Extension operation to add
attributes in a structure scheme, where its values are
generated through applying a function. And finally, to insert
data structure tuples in a data structure, we define the
Alimentation operation.

As for example, we explain the Projection operation
illustrated in Table I by the following example :

Whether the structure Products = (Cj , Dj), where :
Cj = (Id, designation, price, Stock),
Dj = {(1, aa, 20.5, 1000), (2, ab, 25.0, 2500), (3, ac,
22.75, 1500).
P rod = (Ci, Di) = �(Products, b) such as

b = (1, 0, 0, 1).
So, q is defined as following :

q =
5

∑
k=1

bk = 2 ⇒ Ci = (cjj′
1

, cjj′
2

)

j′1 = min
l = {1,2 . . .5}

l

∑
p=1

bp = 1

l = 1 ⇒ ci1 = cj1 = Id

j′2 = min
l = {1,2 . . .5}

l

∑
p=1

bp = 2

l = 4 ⇒ ci2 = cj4 = Stock

⇒ Prod = ((Id, Stock),{(1, 1000), (2, 2500), (3,
1500)})

IV. INFORMATION FLOWS ROUTING

Our workflow model can express sequential, conditional and
parallel routing flow.
Sequential routing is used to deal with causal relationships
between tasks [8]. Figure 2 shows that sequential routing can
be modeled by our operations graph.

Figure 2. Sequential routing

Parallel routing is used where two tasks B and C have
to be executed at the same time. To model parallel routing,
two building blocks are identified :The AND-Split and the
AND-Join [8]. Figure 3 shows that both building blocks can
be modeled by our operations graph.

Figure 3. Parallel routing

Conditional routing is used when there is a mutual ex-
ecution between two tasks according to a condition. We can
express conditional routing by a simple network using control
operations.

Indeed, the control operation decides to continue, or not,
the information flows routing according to the controlled data
structure content. Whether si is the controlled data structure,
sj is the data structure expected by the next transition if the
condition is verified, so, si will be controlled by one of the
control operations which are defined as follows :

Control operation 1, noted ± :

si ± sj = { si if sj = φ
φ otherwise

Control operation 2, noted ∓ :

si ∓ sj = { si if sj ≠ φ
φ otherwise

An example of control flow is illustrated in Figure 5 in
Appendix, where the structure s6, which contains all the
unpaid bills of the current customer, is used by task t5 to
decide the customer solvency. So, if s6 contains one or more
tokens, t5 will decide that the customer is not solvent, and it
will finish the order management process. Otherwise, t5 will
reproduce s2 tokens in s7 in order to be sent to Inventory
Check Role.

V. EXAMPLE MODELED USING OUR APPROACH

Consider an office procedure for order processing within
a company. When a customer sends his order by email, the
job is sent to the customer solvency check, and then to the
inventory check. After the evaluation, either a rejection mail
is sent to the customer, or the order is sent to shipping and
billing. In this paper, we restrict our example to the solvency
check and the inventory check processes.

To simplify the representation of the model, we group the
tasks related to the same function in the company according
to roles. So, each role work is presented by a sub-process
belonging to the whole workflow process definition.

As shown in Figure 5, when a customer mail arrives, the
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workflow will launch. S1 tokens (present customers data) are
to be consumed by t1 in order to select the current customer
(CC) information by his first name and his last name (the
selection condition is to be seized by the Solvency Check Role
(SCRole) during the execution of the workflow).

The resulted structure s2 token (s2 contains only one token
presenting the CC information), and the s3 tokens (present
bills data of customers) are to be used by t2 to produce
a single data structure containing bills data, and the CC
information. Resulted structure s4 tokens are to be used by
t3 to create an inner join between bills data and the CC,
in order to select only the CC bills. So, s5 tokens present
the CC history on bill payment. To check customer solvency,
t4 selects only s5 tokens which have a paid attribute value
equals to false. The resulted structure s6 is to be then used to
decide the customer solvency. Task t5 is a control operation,
which verifies s6 content. If s6 contains one or more tokens,
t5 will decide that the customer is not solvent (because he has
unpaid bills), and it will finish the order management process.
Otherwise, t5 will reproduce s2 tokens in s7 in order to be
sent to Inventory Check Role (ICRole).

To select the ordered products, t6 extends s8 (contains all
products data) by the ord qtity attribute (accepts only integer
values), in order to allow the ICRole to seize the ordered
quantities relatively to the ordered products. Then, t7 selects
from the resulted structure s10 only tokens having an ordered
quantity value higher than zero and lower than the stocked
product quantity. The resulted tokens are stocked in s11.

In parallel, t8 applies a projection operation on s7, to get
the structure s9 having as a token, the CC identifier. If there
are available ordered products, the ICRole has to create a new
order. To verify availability, we define the control operation in
t9. If s11 contains one or more tokens (there is, at least, one
available product), t9 will reproduce s9 token in s12, then, t10
will add a new order in s13. It remains to create the new order
lines. So, the ICRole has to seize the new order identifier, t13
will save his seizure in s17. Then, t14 will create the new order
lines by applying a simple inner product between s17 token
and s15 tokens (present identifiers of the ordered products and
their relative ordered quantities).

VI. THE WORKFLOW VERIFICATION

We provide techniques based on Pre and Post matrices,
to ensure that WF satisfies the minimum requirements for
correctness.

First of all, we verify that each data structure is the result
of at most a single transition. Formally, consider n places and
m transitions in the workflow model :∀ i ∈ {1, 2 . . . n},

∀ i ∈ {1, 2 . . . n}, ∣j ∈ {1, 2 . . .m}, P re(si, tj) ≠ 0∣ ≤ 1.
(1)

To explain Equation 1, we resume the example in Figure 1,
and we verify s4. So, for i = 4 :

∣j ∈ {a . . . e}, P re(s4, tj) ≠ 0∣ = ∣x6∣ = 1 ⇒ s4 verifies
the condition.

In the rest of this section we focus on the verification of

liveness property of the model. For us, to verify this property,
we have to begin with defining the initial and the final marking
of WF .

Formally, the initial marking i is defined as : i =
⎛
⎜⎜⎜
⎝

i1
i2
. . .
in

⎞
⎟⎟⎟
⎠

,

such as :∀j ∈ {1, 2, . . . n}

ij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
k∈{1, 2,...m}

Pre(sj , tk),
if ∀l ∈ {1, 2, . . .m}PostMax(sj , tl) = 0.

0, otherwise.
(2)

We explain Equation 2 using the example in Figure 1 :
∀j ∈ {1 . . .8}, the condition ∀l ∈

{a . . . e}PostMax(sj , tl) = 0 return true only for
j = 1, j = 2 and j = 3. So, ∀j ∈ {4 . . .8}, ij = 0.

For j = 1 : max
k∈{a...e}

Pre(s1, tk) return Pre(s1, ta) = x1.

⇒ i1 = x1
For j = 2 : max

k∈{a...e}
Pre(s2, tk) return Pre(s2, ta) = x2

(or Pre(s2, tb) = x2).
⇒ i2 = x2
For j = 3 : max

k∈{a...e}
Pre(s3, tk) return Pre(s3, tb) = x3.

⇒ i3 = x3
As we define an interval for Post matrices, we

define an interval for final possible markings. Formally,
∀j ∈ {1, 2, . . . n} : A minimal final marking o− is defined

as :o− =
⎛
⎜⎜⎜
⎝

o−1
o−2
. . .
o−n

⎞
⎟⎟⎟
⎠

, where :

o−j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
k∈{1, 2,...m}

PostMin(sj , tk),
if ∀l ∈ {1, 2, . . .m}Pre(sj , tl) = 0.

0, otherwise.

(3)

Let us calculate o− of the model in Figure 1 :∀j ∈ {1 . . .8},
the condition ∀l ∈ {a . . . e}Pre(j, l) = 0 return true only for
j = 6, j = 8. So, ∀j ∈ {1 . . .8}/{6,8}, o−j = 0.

For j = 6 :
max

k∈{a...e}
PostMin(s6, tk) return PostMin(s6, tc) = x6×x7.

⇒ o−6 = x6 × x7
For j = 8 :
max

k∈{a...e}
PostMin(s8, tk) return PostMin(s8, te) = x10.

⇒ o−8 = x10
The maximal final marking o+ is defined as o− but with

using the PostMax matrix instead of the PostMin :

o+ =
⎛
⎜⎜⎜
⎝

o+1
o+2
. . .
o+n

⎞
⎟⎟⎟
⎠

, such as :

o+j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
k∈{1, 2,...m}

PostMax(sj , tk),
if∀l ∈ {1, 2, . . .m}Pre(sj , tl) = 0.

0, otherwise.

(4)
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Assuming i as the initial state, o as the final state of a
process, the workflow model is live if and only if :

● For every state M reachable from state i, there exists a
firing sequence leading from state M to state o [8]. We
adopt this rule to WF by applying the following rule :
Whether R+ (resp. R−) is the net presenting the maximal
(resp. minimal) output function, such as :

R+ = (S, T, Pre, PostMax),
R− = (S, T, Pre, PostMin),

∀M(i ∗→ R+(M))⇒ (R+(M) ∗→ o+),
(i ∗→ R−(M))⇒ (R−(M) ∗→ o−).

(5)

● There are no dead transition in the workflow model [8].
We also adopt this rule to WF by applying the following
rule :

∀t∈T∃M,M ′ , (i ∗→ R+(M) t→M ′). (6)

We define the simple algorithm below to ensure the verifi-
cation of Equations 5.

Algorithm 1 Verification
/* t is a task to verify */
Procedure VerificationT(t)
VerificationT(t)= ⋀

i ∈ {1, 2 . . . n}
Pre(si, t) ≠ 0

VerificationS(si);

Procedure VerificationS(s)
/* s is a root node */
if ∀j ∈ {1, 2 . . .m}, PostMax(s, tj) = 0 then

VerificationS(s)=true;
else

/* ti is the task which has PostMax(s, ti) ≠ 0 */
VerificationS(s)=VerificationT(ti) where
PostMax(s, ti) ≠ 0 ;

end if

We apply Algorithm 1 on the example illustrated in
Figure 1, and we choose to verify task te since its output
data structure is a final state in the model; so, its verification
generates the verification of all firing sequences leading from
a state M to this final state.

VerificationT(te)= ⋀
i ∈ {1, 2 . . .8}
Pre(si, te) ≠ 0

VerificationS(si)

= VerificationS(s7) = VerificationT(td)
= VerificationS(s5) = VerificationT(tb)
= VerificationS(s2) ∧ VerificationS(s3)
= true ∧ true = true.

To verify Equation 6, we have to verify that the model
is without structural conflicts. we assume that WF has a
structural conflict if it contains at least two tasks ti and tj
having the same input data structure s. As the case in Figure 1,
the model has a structural conflict caused by tb and tc which
share s2. To avoid these cases, we extend the model by adding
extra tasks T ∗ = {tcopy1 , tcopy2 . . . tcopyk} such as k is the
number of data structures which cause conflicts, and tcopy is

a Copy operation (See Table I), which allow to create copies
from a shared data structure to satisfy the need of tasks in a
conflict.

The extended model WF+ = (S+, T+, P re+, Post+) is
defined as follows :S+ = S, T+ = T ∪ T ∗, Pre+ = S × T+
and Post+ = T+ × S.

Figure 4. Removing the conflict

So, to resume, Algorithm 1 can verify that WF+ is live.

VII. IMPLEMENTATION OF THE WORKFLOW
MANAGEMENT SYSTEM Opus

The Opus workflow system consists of a number of com-
ponents including a workflow engine and a Petri Net editor.
Workflow specifications can be designed using the Opus editor
and deployed in the Opus engine for execution.

The Opus engine follows the workflow model definition
and interprets automatically the code executing the workflow.
Then it invites each role to perform its tasks according to
its feasibility and urgency. The verification of the conceived
model is automatically ensured as follows in Algorithm 1
and Equation 1. To integrate workflows with the Information
System (IS), we developed some tools, e.g., the Import tool
(it imports a table tuples to a definite data structure belonging
to the workflow process), the ImportId tool (it imports the
tuple identifier of the last tuple inserted in a definite table),
the Insert tool (it inserts data structure tuples in a definite
IS table) and the Update tool (it updates a table in the IS
with a data structure tuples). To perform these operations, and
operations which requires two identical data structure schemes,
Opus system is equipped with a matching tool, which uses the
Substitution and the Permutation operations.

VIII. CONCLUSION AND FUTURE WORK

The proposed approach is modular in a sense that the work-
flow process is to be decomposed on sub-processes which fa-
cilitates any eventual updates on the workflow process model.
In fact, the changes related to the evolution in the role work,
causes the change of its sub-process without damaging other
sub-processes. In particular, the detailed formal definition of
tasks and data structures is useful for the Opus engine, to
extract all the process specifications. However, this approach
must be completed by many functionalities. In fact, we plan
to provide techniques to verify others Petri Nets property,
like boundness, soundness, etc. We also plan to implement
a simulation tool to decision-makers, in order to improve
the business process, and a module for documents generation
(invoice, purchase order, etc.) :the system can manage the
content but not the container.
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APPENDIX

Table I
OPERATIONS DEFINITION

Operation Formal definition

Named :Inner Product
Description :Performs the
combination of all struc-
ture tuples with those of
another structure.
Noted:×

∀ sj = (Cj , Dj), sk = (Ck, Dk)
Cj = (cj1 , cj2 . . . cjnj

),
Ck = (ck1

, ck2
. . . cknk

)
si = sj × sk
⇒ si = ((cj1 . . . cjnj

, ck1
. . . cknk

),Di)
Where :

Di = ⋃
l ∈ {1 . . . nj}
p ∈ {1 . . . nk}

{(djl1 . . . djlnj ,

dkp1 . . . dkp
nk )}

Resulted tokens number :xi = xj × xk

Named :Selection
Description :Selects only
the structure tuples that
meet the desired criteria.
Noted :σ

Whether P is the selection property,
∀ sj = (Cj , Dj), si = σP sj
⇔ si = (Cj , ⋃

e ∈Dj

P (e)

{e})

Resulted tokens number :xi ∈ [0, xj]
Named :Difference
Description :Subtracts
the tuples of a data struc-
ture from another one.
Noted :−

∀ sj = (C, Dj), sk = (C, Dk)
⇒ sj − sk = (C, Dj − Dk)
Resulted tokens number :
xi ∈ [xj − xk, xj]

Named :Projection
Description :Selects only
the structure columns
(attributes) that we are
interested in.
Noted :�

sj = (Cj ,Dj),∀(b1 . . . bn) ∈ {0,1}n
si = (Ci,Di) = �(b1...bn)sj
Where ci is a selected (resp. not selec-
ted) attribute, if bi = 1 (resp bi = 0).

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci = (cj
j′
1

, cj
j′
2

. . . cjj′q
)

Di = {(dj1
j′
1

, dj1
j′
2

. . . dj1j′q
),

(dj2
j′
1

, dj2
j′
2

. . . dj2j′q
) . . . (djmjj′

1

,

djmjj′
2

. . . djmjj′q

)}

Such as :
q = ∑n

k=1 bk :is the number of attributes
in the structure result. And :
j′k =min l = {1,2 . . . n}

∑l
p=1 bp = k

l :refers to

the projection attributes indices.
Resulted tokens number :

{ xi = 0, if xj = 0
xi ∈ [1, xj], otherwise

Named :Union
Description :Groups the
tuples of two structures
into a single one.
Noted :∪

∀ sj = (C, Dj), sk = (C, Dk)
⇒ sj ∪ sk = (C, Dj ∪ Dk)
Resulted tokens number :
xi ∈ [Max(xj , xk), xj + xk]

Named :Intersection
Description :Retrieves the
common tuples of two
structures.
Noted :∩

∀sj = (C, Dj), sk = (C, Dk)
sj ∩ sk = (C, Dj ∩Dk)
Resulted tokens number :
xi ∈ [0, Min(xj , xk)]

Named :Division
Description :Allows to
get a data structure tuples
that are associated with
all tuples of another
structure.
Noted :÷

∀sj = (Cj , Dj), sk = (Ck, Dk)
Where :Cj = (c1 . . . cnj

),
Ck = (c1, . . . cmj

)
If nj >mj then :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

si = sj ÷ sk = (Ci, Di)
Ci = (cmj+1

, cmj+2
. . . cnj

)
∀ q ∈ Di, Dk × q ∈ Dj

Resulted tokens number :
xi ∈ [0, E(xj/xk)]

Named :Substitution
Description :Changes a
structure attribute name.
Noted :⧄

∀sj = (Cj , Dj), si = ⧄(cjk , c, sj)
⇔ si = ((cj1 . . . cjk−1, c, cjk+1
. . . cjn), Dj)
Resulted tokens number :xi = xj

Named :Permutation
Description :Allows
to permute two columns
in a data structure.

Noted : ↷º

∀si = (Ci, Di), sj = ↷
º (si, k, l)

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k, l ∈ {1,2 . . . n}
k < l
Cj = (ci1 . . . cik−1 , cil , cik+1
. . . cil−1 , cik , cil+1 . . . cin)
Dj = {(d1i1

. . . d1ik−1
, d1il

,
d1ik+1

. . . d1il−1
, d1ik

, d1il+1
. . . d1in), (dmi1

. . . dmik−1
,

dmil
, dmik+1

. . . dmil−1
, dmik

,
dmil+1

. . . dmin)}
Resulted tokens number :xi = xj

Named :Extension
Description :Extends a
structure scheme by ad-
ding a attribute c =(n,t)
and applying a function f.
Noted :�

∀sj = (Cj , Dj), si = �(sj , c, f)
⇔ si = ((cj1 , cj2 . . . cjn , c),{(dj11 ,
dj12

. . . dj1n
, f(dj11 , dj12 . . . dj1n ,

Dj)) . . . (djm1
, djm2

. . . djmn
, f(djm1

,

djm2
. . . djmn

, Dj))})
Resulted tokens number :xi = xj

Named :Add Tuple
Description :Add a tuple
of data d in a data
structure.
Noted :+

∀sj = (Cj , Dj), Dk = (dk1, dk2 . . . dkn),
si = +(sj , Dk)
⇔ si = ((cj1 . . . cjn),{(dj11 , dj12 . . .
dj1n

) . . . (djm1
, djm2

. . . djmn
), (dk1,

dk2 . . . dkn)})
Resulted tokens number :xi = xj + 1

Named :Copy
Description :Makes n
copies of a data structure.
Noted :tcopy

∀si = (Cj , Dj),
tcopy(si, n) = {Sj1

, Sj2
. . . Sjk

},
where k ∈ {1,2 . . . n} and sj = si.
Resulted tokens number :xj = xi
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Figure 5. Orders management workflow
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