
Specifying and Designing Exception Handling with FMEA

Tsuneo Nakanishi, Kenji Hisazumi and Akira Fukuda
Faculty of Information Science and Electrical Engineering

Kyushu University
744 Motooka, Nishi, Fukuoka 819-0395, Japan
Email: {tun, nel, fukuda}@f.ait.kyushu-u.ac.jp

Abstract—This paper proposes a methodology to specify
and design exception classes and exception handling codes
used in the try-catch-finally exception handling control
structure, which is available in C++, Java and similar program-
ming languages. Poorly described specifications of exceptional
operations cause ad-hoc, individual dependent use of the
try-catch-finally exception control structures and fail in
poorly designed exception classes and duplicated codes in the
exception handling codes. Therefore, the methodology employs
HAZOP (hazard and operability analysis) and FMEA (failure
modes and effects analysis) to specify the exceptional operations
in a consistent manner. HAZOP is used to find failure modes
of the specified normal operations and then FMEA is applied
to the failure modes to specify their countermeasures (namely,
exception handling). Commonality and variability analysis of
the specified countermeasures is performed. The result of this
analysis is used to design exception classes and exception
handling codes, which leads disciplined use of the exception
handling control structure and elimination of duplicated codes
in exception handling.

Keywords-FMEA; HAZOP; exception handling; commonality
and variability analysis

I. I NTRODUCTION

The system required higher safety and reliability must
provide valid behaviors, even if it cannot provide the spec-
ified normal services due to failures. The system should
avoid occurrence of anticipated failures as much as possible.
Furthermore, if a failure occurs unfortunately, the system
should detect its occurrence and localize, compensate, or
mitigate negative effects brought by the failure to minimize
the damage.

Such exceptional services are realized in a valid and
correct manner through a sound development process, espe-
cially in large and complicated systems. Exceptional services
must be analyzed, specified, designed, implemented and
then tested, as normal services are realized so. Apart from
distinguishing normal and exceptional services explicitly in
development, system behaviors on failures are usually spec-
ified to a greater or lesser extent during requirements and
specifications phase. However, it is impossible to identify
failures sufficiently that will occur at the component level,
since the system is not decomposed at all at this phase. As
the system is refined and decomposed in later phases, more
design decisions are made and more failure modes become
visible. Countermeasures to the failure modes identified in

later phases must be studied and specified. Their specifi-
cations must be integrated in the system specification as
exceptional services. We should keep it in mind that two
thirds of system failures are due to design faults hidden
in exception handling that occupies over two thirds of the
system [1].

Exceptional services tend to be specified insufficiently in
immature development sites. They are often decided individ-
ually by designers or programmers. That brings duplicated
and/or irregular design of exceptional operations as well as
a considerable amount of development rework. Furthermore,
that will cause large scale modification in exceptional opera-
tions in case we enhance the existing system with additional
functions.

The similar problem occurs also in implementation phase.
The try-catch-finally statement is an exception han-
dling control structure available in C++, Java and other
similar programming languages. This exception handling
control structure contributes to increase readability and
reusability of exception handling codes as long as its usage is
well disciplined. However, if exceptional operations are not
specified and designed in a systematic manner, the exception
handling control structure tends to be used in an ad-hoc,
individually dependent manner. Sometimes, exceptions are
ignored without taking responsible actions, although they
should be processed or transferred to the caller. Absence of
comprehensive view on exception handling fails in distribu-
tion of code clones doing the almost same but a little bit
different things in the exception handling control structure.
Moreover, poorly designed exception classes make exception
handling chaotic.

This paper presents a methodology to specify exceptional
operations at the class member function level and defines
exception classes for thetry-catch-finally exception
handling control structure. The proposed methodology em-
ploys HAZOP (Hazard and Operability Analysis) [2] and
FMEA (Failure Modes and Effects Analysis) [3]. HAZOP
is a risk analysis method to identify risks to the system and
its stakeholders brought by the system under consideration
when a concerned property deviates from its intended extent.
FMEA is a failure analysis method to study countermeasures
to failures of the system under consideration. The proposed
method identifies failures of the normal operation with HA-

188Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

ZOP and then, studies countermeasures to the failures with
FMEA. FMEA establishes comprehensive view on exception
handling and helps consistent and disciplined design of
exception handling. Moreover, the proposed methodology
performs commonality and variability analysis of the coun-
termeasures, which the authors believe the novel idea in
the field of exception handling. Commonality and variability
analysis is a technique that has been commonly performed
in software product line engineering [4] to separate com-
mon and variable structures and behaviors among products.
Introduction of this idea into exception handling contributes
to eliminate duplicated codes in exception handling codes
for different exceptions and design well-structured exception
classes.

The paper is organized as follows: Section 2 describes
HAZOP and FMEA and its application to software. Section
3 gives a brief description on thetry-catch-finally
exception handling control structure of C++, Java and similar
programming languages. Section 4 presents the proposed
methodology with an example. Section 5 describes related
works. Section 6 concludes the paper.

II. HAZOP AND FMEA

HAZOP [2] is a risk analysis method to identify possible
risks to the system and its stakeholders, which was originally
used in chemical process engineering. In HAZOP, risks are
identified by drawing up hazardous scenarios caused when a
concerned property of the system such as temperature, pres-
sure, velocityetc. deviates from its intended extent. Guide
words are applied to the properties to facilitate imagination
of hazardous scenarios;more, less, none, reverse, andother
than are examples of the guide words. Countermeasures to
the hazardous scenarios are studied. The result of HAZOP
is summarized in the tabular format.

FMEA [3] is a failure analysis method used to assess and
improve reliability and safety of the system. FMEA is so
generic that it has been used (maybe, more than HAZOP)
in various industries such as aviation, space, automotive,
nuclearetc. to develop and operate safety critical systems
for several decades.

In FMEA, various stakeholders of the system come to-
gether; identify failure modes for each component of the
system; analyze what negative effects will be brought to
the component, the subsystem, and/or the system for each
failure mode; and study countermeasures to compensate or
mitigate the effects. Moreover, for each failure mode of
the component, the stakeholders evaluate criticality of the
negative effects and, based on the evaluation, prioritize the
countermeasures to be realized. The criticality is basically
evaluated in terms of probability of failure mode occurrence
and severity of the negative effects. FMEA with this prob-
ability and severity evaluation is sometimes referred to as
FMECA (Failure Modes, Effects, and Criticality Analysis).
(See [5], [6], for some methods of criticality evaluation in

FMECA.) The result of FMEA is also summarized in the
tabular format.

Since FMEA is inherently a bottom-up analysis method
starting from failure modes of the component, it may seem
impossible to apply FMEA to the system extent until the
system is completely decomposed into the components.
However, it is absolutely unreasonable for large and compli-
cated systems to perform FMEA and modify the system to
increase reliability and safety after the system is completely
decomposed. That will force us to abandon a large part
of detailed design artifacts, or require a huge amount of
development rework to satisfy non-functional requirements
such as performance or for other reasons. Therefore, FMEA
has evolved from a simple, component oriented method
toward a process oriented method that performs analysis
at various granularity of system decomposition along with
stepwise refinement of the system. That is, FMEA is applied
to each subsystem after decomposition of the system first;
design of the system is improved at the subsystem level
based on its result; the subsystems are decomposed into
components; FMEA is applied to each component of the
subsystem to improve the design of the subsystem in the
similar manner.

FMEA is sometimes time-consuming. However, negative
effects to the system brought by failure modes are not fully
diverse; rather, we can observe a considerable amount of
duplication. It is possible to deal with multiple failure modes
having the identical negative effect as a group. This group
is referred to asFault Equivalent Class[7]. This concept
contributes to reduce duplicated works in analysis and the
scale of FMEA. It is reported that 12,401 failure modes are
shrinked into 1,759 failure equivalent classes in the case
study of the cabin management system of Boeing 777. The
failure modes obtained in FMEAs of different abstraction
levels are also grouped in the same failure equivalent class
if their negative effects to the system are identical. That
enables partial reuse of FMEA results performed in earlier
phases in later phases.

HAZOP and FMEA are used for similar objectives and
their results are summarized in similar tabular formats. The
proposed method uses the “deviation” concept and the idea
of guide words of HAZOP to identify failures of the normal
operation. Countermeasures to the failures are studied with
FMEA, not with HAZOP.

III. E XCEPTION HANDLING CONTROL STRUCTURE

The proposed methodology assumes use of the
try-catch-finally exception handling control
structure used in C++, Java and other similar programming
languages. This section is dedicated to remind the readers
of exception handling control structure.

These programming languages have the exception han-
dling control structure of the form shown below:

try {

189Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

...
}
catch (ExClass formalExInstance) {

...
}
finally {

...
}

Normal operations are implemented in thetry block,
exceptional operations are implemented in thecatch block,
and clean-up operations are implemented in thefinally
block. Each try block can follow one or morecatch
blocks with different exception classes. Thefinally block
is optional.try , catch and finally blocks can include
anothertry-catch-finally block.

If it is impossible to continue execution of thetry
block or its callee functions,throw statement shown below
should be executed:

throw actualExInstance;

Execution of thethrow statement terminates execution of
the try block. A catch block with the formal instance
(formalExInstance) of an exception class (ExClass),
which is compatible to the exception class of the thrown
actual instance (actualExInstance), is responsible for
the exception issued by thethrow statement. The processor
tries to find such acatch block out of thecatch blocks of
the currenttry block. If it is not found, the processor tries to
find acatch block to be executed out of thecatch blocks
of another try block containing the currenttry block
directly. The processor continues this backward traversal
of nestedtry blocks recursively until it finds thecatch
block to be executed. Furthermore, if thecatch block
to be executed is not found in the function, the processor
try to find it out of thecatch blocks of thetry block
containing the current invocation point in the caller. The
processor performs this backward traversal of function calls
recursively, whenever there is no moretry block to be
checked in the function. After the propercatch block is
found and executed, the processor transfers its execution to
the point immediately after the exception handling structure
having the executedcatch block and the stack frames for
the terminatedtry blocks and functions are released. The
finally block is executed whenever control leaves the
exception handling structure to which it belongs, regardless
of whether acatch block is executed or not.

The actual instance of the exception class specified in
the throw statement (actualExInstance) can be ref-
erenced in the correspondingcatch block as its formal
instance (formalExInstance). Therefore, the exception
class is used not only to distinguish exceptions but also
to pass data and control information required for exception
handling by embedding them as its attributes.

IV. SPECIFYING AND DESIGNING EXCEPTION

HANDLING WITH FMEA

In this section, we propose the methodology to specify and
design exception handling with FMEA. The methodology
assumes that the system has already been decomposed into
classes and the classes have already been designed for
normal operations.

The methodology is described below in a stepwise manner
with an example of the login form of the graphical user
terminal. A user inputs his/her name and password in the
text fields and then presses the login button on the form
shown in Figure 1 to use the terminal. A member function
Login() of classLoginForm is called on the login button
press. The member function inquires of the user DB if the
input name and password are correct by calling a member
functionAuth(username, passwd) of classUserDB .
If they are correct, the member function closes the form and
notifies its caller that the login is accepted. Otherwise, the
member function waits user’s further input of his/her name
and password without closing the form or notifies its caller
that the login is failed with closing the form.

Figure 1. Login Form

A. Describing Normal Specifications

First, we describe the normal specification of each mem-
ber function which are identified in class design. The
normal specification of a member function is a sequential
description of its internal operations from invocation to
termination where the function successfully provides its
service specified in the class specification. The steps must be
in even granularity. The step should be in active verbal form,
namely “do ...”, and should not include multiple operations.
The step can include conditional or iterative operations.
A pseudo-code describing only normal operations of the
member function can be dealt with a normal specification.

Normal specifications ofUserDB.Auth(username,
passwd) and LoginForm.Login() are shown in the
Normal Operationcolumn of Tables I and II, respectively.

B. Deriving Failure Modes

Second, we apply the methodology deriving failure
modes, which was proposed by the authors [8], to normal
specification steps in active verbal form “do ...” and look for
failure modes of each step by imaging cases where the step

190Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table I
FMEA RESULTS ONUserDB.Auth(username, passwd)

Normal Op. Failure Modes/Causes Detection Effects Countermeasures Not. to Callers
1) Checking
if the user
DB is con-
nectable.

The user DB
cannot be ac-
cessed.

The handle for
user DB ac-
cess is NULL.

I: User authentication is
impossible.

Run-Time: Throw an exception. The user DB
is not acces-
sible.

2) Reading
the password
of the user
specified
by the user
name from
the user DB.

Reading of
the user DB
is failed. /
The user DB
is locked.

The return
value and the
error code
from the DB
library

I Run-Time: Throw an exception. The user DB
is locked.

Reading of
the user DB
is failed.
/ Other
reasons

The return
value and the
error code
from the DB
library

I Run-Time: Throw an exception. The user DB
is unreadable
for a certain
reason.

The
specified
user is not
found.

The number of
the matched
records is
zero.

I Run-Time: Throw an exception. The
specified
user is not
found. + The
specified
user name

Two or more
specified
user is
found.

The number of
the matched
records is
equal to or
greater than
two.

II: The user DB is log-
ically corrupted. Further
accesses may destroy the
user DB completely and
prohibit even partial re-
covery.

Run-Time: Throw an exception. The
specified
user is
found too
much. + The
specified
user name

3) Checking
if the pass-
word is cor-
rect.

The
password is
not correct.

The password
is not equal to
one in the user
DB.

I Run-Time: Terminate the function
without authenticating the user.

Return
value: false

4) End user
authentica-
tion.

(The user is authenti-
cated successfully.)

Run-Time: Terminate the function with
authenticating the user.

Return
value: true

cannot be accomplished successfully. The methodology as-
sumes abnormal deviation of properties of objects, relation-
ships among objects and behaviors as failures. Four HAZOP
guide wordsno, less, moreandother thanare applied to the
properties to derive failure modes by their deviation. To de-
rive failure modes on behaviors, the methodology examines
properties common to all the behaviors and specific to each
behavior. The common properties are beginning time, ending
time, duration, frequency, rate, interval, orderetc.

The second normal operation step of
UserDB.Auth(username, passwd) , “Reading
the password of the user specified by the user name from
the user DB.” has a behaviorread and objectspassword,
user, user nameanduser DB. The HAZOP guide words are
applied to their properties. The properties of the behavior
read are the common ones mentioned above as well as
success or failand the number of the recordswhich are
specific to read. The properties of the objectsuser is
the number of the usersand the properties of the object
password are the number of the passwordsand length.
Table III shows candidates of failure modes found by

HAZOP application to these properties.
They are all candidates of failure modes. The candidates

which are actually hazardous are adopted as the failure
modes and listed in theFailure Modes/Causescolumn of
the FMEA table after adjustment of their terms.

Countermeasures can be different depending on the cause
of the failure. Therefore, if the abstraction level of a derived
failure mode is too high to find a single countermeasure for
the failure mode, we apply FTA [9] to the failure mode to
identify its causes and study countermeasures depending on
the causes. For example, in Table I, causes of the failure
mode “Reading of the user DB is failed.” are analyzed.
A couple of causes, “The user DB is locked.” and “Other
reasons”, are found and the countermeasures for them are
studied separately. (The countermeasures for the both causes
are same, namely, “Throw an exception.” However, note
that exception objects representing different meanings are
thrown.)

If the function calls other functions, the contents of the
Notification to Callerscolumn must be duplicated in the
Failure Modes/Causescolumn. For example, the failure

191Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table II
FMEA RESULTS ONLoginForm.Login()

Normal Op. Failure Modes/Causes Detection Effects Countermeasures Not. to Callers
1) Getting
the user
name from
the User
Namefield.

The user
name is not
specified.

I Run-Time: i) Displaying a message
telling the user name is not specified; ii)
Clearing theUser NameandPassword
fields; iii) Focusing theUser Name
field; iv) Continuing the login form.

Nothing.

Invalid
characters
are used
in the user
name.

III: The user DB will
reject login at Step 3.

(Unnecessary) Nothing.

The user
name is too
long.

III Dev. Time: Set the maximum length
of the user name field to the maximum
length of the user name.

Nothing.

2) Getting
the password
from the
Password
field.

The
password
is not given.

IV: No problem because
some users may not set
their passwords.

(Unnecessary) Nothing.

Invalid
characters
are used
in the
password.

III (Unnecessary) Nothing.

The
password
is too long.

III Dev. Time: Set the maximum length
of the password field to the maximum
length of the password.

Nothing.

3) Asking
the user DB
if login is
possible.

The user DB
is not con-
nected.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
that the user DB is unavailable; ii)
Terminating the login form.

Nothing.

The user DB
is locked.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that the user DB is locked; ii)
Focusing the login button; iii) Contin-
uing the login form. (Because the user
DB may be unlocked later.)

Nothing.

The user
DB is not
available
for other
reasons.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that the user DB is unavailable;
ii) Terminating the login form.

Return
value: false

No user is
found.

Exception
from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that the user is unknown; ii)
Clearing theUser NameandPassword
fields; iii) Focusing theUser Name
field; iv) Continuing the login form.

Nothing.

Two or more
users are
found.

Exception
from
UserDB.Auth()

II Run-Time: i) Displaying a message
telling that the user DB is logically cor-
rupted; ii) Terminating the login form.

Return
value: false

Password is
not correct.

Return
value from
UserDB.Auth()

I Run-Time: i) Displaying a message
telling that password is incorrect; ii)
Clearing thePasswordfield; iii) Focus-
ing the Passwordfield; iv) Continuing
the login form.

Nothing

4) Terminat-
ing the form.

(The user accomplishes
login successfully.)

Return
value: true

192Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table III
HAZOP GUIDE WORDSAPPLICATION TO “READ” (UPPER), “U SER” (MID) AND “PASSWORD” (LOWER)

Properties Type No Guide Word Applied Guide Words
ϕ no less more other than

beginning time time instant Start reading at
right timing

Do not start read-
ing

Start reading too
early

Start reading too
late

/

ending time time instant End reading at
right timing

Do not end read-
ing

End reading too
early

End reading too
late

/

...
success/fail boolean Read

successfully
Fail in reading × × ×

of the records number Read a right
number of the
records

Read no record Read too few
records

Read too many
records

/

of the users number A right number
of the users

No user Too few users Too many users /

of the pass-
words

number A right number
of the passwords

No password Too few
passwords

Too many pass-
words

/

The length of the
password

number A right length of
the password

Null password Too short pass-
word

Too long pass-
word

/

...

modes at the third normal operation step of the operation
LoginForm.Login() in Table II are from theNotifica-
tion to Callerscolumn of theUserDB.Auth(username,
passwd) in Table I.

C. Assessing Each Failure Mode

Third, we assess each failure mode; study how to detect
the failure mode, how the failure mode brings negative
effects, how to devise countermeasures against the failure
mode, and what kind of information should be given to the
caller; and complete the FMEA table. The FMEA table for
the proposed methodology has, in addition toNormal Op-
eration and Failure Modes/Causescolumns,Detection, Ef-
fects, CountermeasuresandNotification to Callerscolumns
described below.

Detection: If the failure mode can be detected in the
member function, we describe how to do it briefly.

If the failure mode can be detected in the callee of the
member function, we describe how the callee notifies the
member function that the failure mode is detected. See
the Notification to Callerscolumn described below for the
details.

Effects: We describe how the failure mode brings negative
effects with grouping them into fault equivalent classes
described in Section 2 and assigning a sequential number
referred to asFault Identifier Number (FIN). Negative
effects which are previously described in earlier and current
phases are referenced by FINs, instead of describing the
same thing twice or more. In theEffectscolumn of Tables I
and II, negative effects appeared first time are described with
new FINs in the Roman numeral, however, ones appeared
previously are just referenced by their FINs.

Countermeasures:We describe countermeasures to the
failure mode, namely, how to avoid the failure mode and/or

how to localize, compensate or mitigate the effect brought
by the failure mode.

Various types of countermeasures are possible. Develop-
ment time countermeasures are ones taken before release of
the product, while run-time countermeasures are ones taken
after release of the product. Some of run-time countermea-
sures are executed as exception handling.

Note that the countermeasures must be subject to the
specification on the exceptional behaviors specified in earlier
phases if they are available.

Notification to Callers: We describe manners and con-
tents of notification to the caller when this member function
encounters the failure mode. This notification is not manda-
tory and should not be performed in vain to keep information
hiding and loose coupling. The notification is needed in the
following cases:

• This member function cannot manage the failure mode
within its specified responsibility.

• The caller of this member function can provide worthful
actions to localize, compensate, or mitigate the effect
of the failure mode.

• Expected reactions to the failure mode can be different
depending on the caller of this member function.

There are some manners to notify the caller of failure
mode occurrence such as the return value or reference pa-
rameters of the function, exceptions thrown by the function,
global variables, invocation of prescribed or preregistered
functions etc. The contents of the notification are data
used in exception handling and/or control information which
changes behaviors of exception handling in the caller. Note
that description in this column will appear in theDetection
column of the FMEA tables for the callers of this function.

Others: We can describe criticality, namely probability of
failure mode occurrence and severity of the negative effects,

193Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

for each failure mode to prioritize countermeasures to be
taken.

D. Performing Commonality and Variability Analysis of
Failure Mode Countermeasures

Fourth, we perform commonality and variability analysis
of run-time failure mode countermeasures and construct a
variability model of them. As the variability model, the pro-
posed methodology uses an extension of the feature model
[10], which is often employed in product line engineering
[4] to describe commonality and variability among products
in terms of their features.

The original feature model is a static model to represent
variability among products in the product line (or product
line variability), that is, the feature model represents how
each product can select the features to be equipped. The
variability model used in the proposed methodology repre-
sents not only product line variability but also variability in
dynamic behaviors of the system (or run-time variability),
that is, the variability model additionally represents how the
system changes its behavior in terms of the features.

The variability model represents product line variability
in an almost same manner as the original feature model:
mandatory features are represented by nodes without any
decoration, optional features are represented by ones with
decoration of the white circle, and the nodes corresponding
to a set of alternative features are grouped by the solid arc
across the edges from the nodes to their parent node. It
is also same as the original feature model that the solid
thin edge represents the feature of the parent node partially
consists of the feature of the child node and the solid
thick edge represents the feature of the parent node is
implemented by the feature of the child node. However,
generalization/specialization relationship between the fea-
tures is represented by the white arrow from the child node
corresponding to the specialized feature to the parent node
corresponding to the specialized feature, although the dotted
thin edge is used in the original feature model.

Furthermore, the variability model represents run-time
variability with symbolic extension to the original feature
model. The solid edge means that the feature of the child
node is always executed if the feature of the parent is
executed. The dotted edge means that the feature of the
child node may or may not be executed if the feature of the
parent is executed. The dotted arc across the edges means
that the features of the children of the bundled edges are
alternatively executed if the feature of the parent node of
the bundled edges is executed.

Figure 2 shows a variability model for the countermea-
sures described in Table II. The model does not include
any variability on software construction, since the example
system is not in product line development, but variability
on software execution. For example, the variability model
shows that the error message is always displayed but the

message to be displayed is alternatively selected out of
“Unknown user name”, “User DB is locked”,etc. The
variability model tells us that the input fields may not be
cleared, but if cleared, the user name field is always cleared
and the password field may or may not be cleared.

There are some reasons why the authors use this variabil-
ity model. While the class of the class diagram can represent
only structural aspect of exception handling, the feature
of the variability model can represent relating structural
and behavioral aspect of exception handling in a consoli-
dated manner. Moreover, variability modeling is a powerful
technique to facilitate separation of concerns. For example,
in Figure 2, features “Clearing fields” and “Focusing UI
Object” are modeled separately. Since this separation en-
ables independent handling of these behaviors, we can avoid
scattering of similar or duplicated codes on these behaviors
in the exception handling. The variability model can be used
also in product line development, not only in single product
development, since it inherits the properties of the original
feature model.

E. Describing Exceptional Specifications

Fifth, we describe the exceptional specification of the
member function. At the same time, we add and/or modify
the normal specification of the member function if necessary.

We classify features in the variability model intonormal
featuresexecuted as normal operations in thetry block
andexceptional featuresexecuted as exceptional operations
in the catch block. The features which terminate a se-
ries of normal operation steps for its execution should be
exceptional features. The other features can be executed as
either. After the classification, we describe the exceptional
specification relating to the exceptional features in the same
format as the normal specification. Moreover, we add and/or
modify the existing normal specification to add the normal
specification relating to the normal features identified in run-
time failure mode countermeasures.

For the example of Figure 2, we can regard all the features
in the variability model as exceptional features, since all the
behaviors relating to the features require termination of the
normal operation.

F. Designing Exception Classes

Finally, we design exception classes with referencing
variability models. The variability model, which has al-
ready been constructed for each member function of the
class, contains features that represent run-time behaviors
as countermeasures for failure modes, namely exceptional
operations, and data used in the exceptional operations.
Moreover, note that the variability model represents control
information specifying which feature should be executed
conditionally in exceptional operations.

Before designing exception classes, to reduce the number
of exception classes, variability models of member functions

194Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Error Message
Focusing
UI Object

User Name
Field

Password
Field

LoginForm.Login()
Failure Effect Countermeasures

Clearing fields

User Name
Field

Password
Field

Login
Button

Terminating
the form

Empty
user name

User DB
locked

User DB
unavailable

Unknown
user

User DB
corrupted

Incorrect
password

Mandatory

Optional

Alternative

Run-Time Variability

Mandatory

Product Line Variability

Optional

Alt. Alt. Alt.

Feature Relationships

generalization/
specialization

implemented-by

consists-of

Figure 2. A Variability Model for Run-Time Failure Mode Countermeasures

should be merged and integrated if they are closely related
and share a lot of features. The merging and integration
are performed based on the names of the features. The
variability model may be required to be refactored in this
activity. For example, we have to rename the features, if they
have the same name although they have different meanings.
Moreover, we have to restructure the variability model for
integration, if the same features from different variability
models are organized in different tree structures.

We define an exception class for each integrated variabil-
ity model. The features which represent control information
changing run-time behaviors of the exceptional operations
are reduced into attributes for flagging. The features which
represent data used in the exceptional operations are reduced
into attributes. Reference and conversion of these attributes
are defined as member functions of the exception class.

The exception class reduced from the variability model
shown in Figure 2 is as follows:

class ExLoginForm : public Exception
{
public:

enum LoginFormError {
ERR_EMPTY_USER_NAME,
ERR_USERDB_LOCKED,
...

} login_form_error;
enum ClearingFields {

UserNameField = 0x01,
PasswordField = 0x02,

} clearing_fields;
enum FocusingUIObject {

UserNameField,
PasswordField,
LoginButton

} focusing_UI_object;
bool terminating;
string getErrorMessage();
...

};

In this reduction, a feature representing data or behaviors

taken alternatively such as “Error Message” and “Focusing
UI Object” is reduced to the enumeration data member. A
feature representing data or behaviors taken multiply such as
“Clearing fields” is reduced to the bit field data member. A
feature representing data or behaviors taken optionally such
as “Terminating the form” is reduced to the Boolean data
member.

Considering overheads, use oftry-catch-finally
exception handling control structure should be carefully
limited. Countermeasures can be implemented by general
control structures and variables instead of exception han-
dling control structures. If we can write the same thing
without losing readability and producing duplicated codes
in exception handling, use of general control structures is
preferable. The proposed methodology will be helpful also
in such a case to realize exception handling codes in a
consistent manner and without including duplication.

V. RELATED WORK

This work is refined from authors’ previous work [11] pre-
sented as a non-peer-reviewed, ongoing paper in Japanese.

Although FMEA was originally applied to mechanical and
hardware systems, efforts applying FMEA to software has
been continued so far [8], [12], [13], [14], [15], [16], [17].

HAZOP is an effective methodology to find possible
failure modes in a comprehensive manner. The failure mode
derivation methodology used in this work applies HAZOP
guide words to properties of behaviors and their targetting
objects [8]. The methodology is an extension of Kouno’s
work [18]. HAZOP is applied to software for UML in
Hansen’s work [19] and for state transition diagram in Kim’s
work [20], for example. Both works are for descriptions in
higher abstraction level than this work.

In this work, FTA is also used to seek for the causes of the
failure and study countermeasures depending on the causes,
in case the abstraction level of the failure mode is higher.
The approach looking for the causes from the failure mode
is taken by Lutzet al. [12] and Goddard [13], for example.

195Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

On the other hand, Maxionet al.presents an approach based
on the viewpoints given by fish-bone diagram that classifies
exceptional conditions into computation, hardware, input
and output, library, data, return value, external environment,
and null pointer and memory problems, which can be
abbreviated as “CHILDREN”. [21]

VI. CONCLUSION AND FUTURE WORK

In this paper, the authors proposed a methodol-
ogy to specify and design exception handling for
try-catch-finally exception handling control struc-
ture of C++, Java and other similar programming languages.

The proposed methodology applies a HAZOP based fail-
ure mode derivation method proposed by the authors to each
normal operation step of the member function. FMEA is
performed to study countermeasures to the identified failure
modes. The table produced in FMEA facilitates consistent
and disciplined design of exception handling. Commonality
and variability analysis is applied to the countermeasures
studied in FMEA. Commonality and variability analysis con-
tributes to eliminate duplicated codes in exception handling
codes. A variability model constructed by the analysis is
used to design exception classes.

The proposed methodology will be used not only for
newly development but also for refactoring of exception
handling codes in the existing system. The future work
includes large scale application of the methodology to real
applications and empirical validation of the methodology.

REFERENCES

[1] Flaviu Cristian, “Exception Handling and Tolerance of Soft-
ware Faults,” Software Fault TOlerance, M. R. Lyu, ed.,
Chapter 4, John Wiley & Sons, 1995.

[2] IEC Standard,Hazard and Operability Studies (HAZOP Stud-
ies): Application Guide, IEC 61882 ed1.0, 2001.

[3] IEC Standard,Analysis Techniques for System Reliability:
Procedure for Failure Mode and Effects Analysis (FMEA),
IEC 60812 ed2.0, 2006.

[4] Paul Clements and Linda Northrop,Software Product Lines:
Practice and Patterns, Addison-Wesley, 2001.

[5] John B. Bowles, “The New SAE FMECA Standard,”Proc.
Annual Reliability and Maintainability Symp. (RAMS) 1998,
pp. 48–53, Jan. 1998.

[6] John B. Bowles, “Fundamentals of Failure Modes and Effects
Analysis,” Tutorial Notes,Annual Reliability and Maintain-
ability Symp. (RAMS) 2003, Jan. 2003.

[7] C. Steven Spangler, “Equivalence Relations within the Fail-
ure Mode and Effect Analysis,”Proc. Annual Reliability
and Maintainability Symp. (RAMS) 1999, pp. 352–357, Jan.
1999.

[8] Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda, “A
Software FMEA Method and Its Use in Software Product
Line,” IEICE Technical Report, Vol. 111, No. 481, pp. 19–
24, Mar. 2012. (in Japanese)

[9] IEC Standard,Fault Tree Analysis (FTA), IEC 61025 ed2.0,
2006.

[10] Kyo-Chul Kang, Jaejoon Lee, and Patrick Donohoe, “Feature-
Oriented Product Line Engineering,”IEEE Software, Vol. 9,
No. 4, pp. 58–65, July/August 2002.

[11] Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda, “Spec-
ifying and Designing Exception Handling with using FMEA,”
IPSJ SIG Technical Report, Vol. 2012-SE-175, No. 14, pp. 1–
8, Mar. 2012. (in Japanese)

[12] Robyn R. Lutz and Robert M. Woodhouse, “Experience
Report: Contributions of SFMEA to Requirements Analysis,”
Proc. 2nd Int. Conf. on Requirements Engineering (ICRE ’96),
pp. 44–51, Apr. 1996.

[13] Peter L. Goddard, “Software FMEA Techniques,”Proc. An-
nual Reliability and Maintainability Symp. (RAMS) 2000, pp.
118–123, Jan. 2000.

[14] John B. Bowles and Chi Wan, “Software Failure Modes and
Effects Analysis for a Small Embedded Control System,”
Proc. Annual Reliability and Maintainability Symp. (RAMS)
2001, pp. 1–6, Jan. 2001.

[15] Dong Nguyen, “Failure Modes and Effects Analysis for Soft-
ware Reliability,”Proc. Annual Reliability and Maintainability
Symp. (RAMS) 2001, pp. 219–222, Jan. 2001.

[16] Nathaniel Ozarin, “Failure Modes and Effects Analysis dur-
ing Design of Computer Software,”Proc. Annual Reliability
and Maintainability Symp. (RAMS) 2004, pp. 201–206, Jan.
2004.

[17] Ajit Ashok Shenvi, “Software FMEA: A Learning Experi-
ence,” Proc. India Software Engineering Conf. (ISEC) 2011,
pp. 111–114, Feb. 2011.

[18] Tetsuya Kouno, “An Application of HAZOP to Risk Analysis
of Software Requirement Specification,”Proc. Japan Symp. on
Software Testing 2012, pp. 37–42, Jan. 2012. (in Japanese)

[19] Klaus M. Hansen, Lisa Wells, and Thomas Maier, “HAZOP
Analysis of UML-Based Software Architecture Descriptions
of Safety-Critical Systems,”Proc. 2nd Nordic Workshop on
the Unified Modeling Language (NWUML) 2004, pp. 59-78,
Aug. 2004.

[20] Zoohaye Kim, Yutaka Matsubara, and Hiroaki Takada, “A
Safety Analysis Method Based on State Transition Diagram,”
IEICE Trans. on Fundamentals of Electronics, Communica-
tions and Computer Sciences, Vol. J95-A, No. 2, pp. 198-209,
Feb. 2012. (in Japanese)

[21] Roy A. Maxion and Robert T. Olszewski, “Eliminating
Exception Handling Errors with Dependability Cases: A
Comparative, Empirical Study,”IEEE Trans. on Software
Engineering, Vol. 26, No. 9, Sep. 2000.

196Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

