
An Advanced Interactive Visualization Approach
for Component-Based Software: A User Study

Jaroslav Šnajberk, Lukas Holy, Kamil Jezek and Premek Brada
Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Pilsen, Czech Republic
{snajberk, lholy, kjezek, brada}@kiv.zcu.cz

Abstract—We present a user study that compares user per-
formance during architectural analysis using two different ap-
proaches to visualizing component-based applications structure:
AIVA (Advanced Interactive Visualization Approach) and UML
(Unified Modeling Language). AIVA is a research proof of
concept focused on extensive use of interactivity in visualization of
structure. UML is an industrial standard in the field of software
visual modeling. Participants of this user study tested how fast
they could perform six basic tasks which were selected so as to
gain understanding of component dependencies in a medium-
sized OSGi application. The results show that AIVA helps to
find answers on average three times faster than UML. The study
and its results provide a quantitative support for our hypothesis
that the structure of component-based applications should be
visualized interactively using dedicated notation rather than in
static UML diagrams to improve understanding of the whole
application architecture.

Keywords-software visualization; component; UML; user study;
interactivity.

I. INTRODUCTION

Component-based software engineering is a modern soft-
ware discipline that encapsulates objects into black box
structures called components to maximize re-usability and
to improve logical composition of the application. Although
the concept of a component is not new, approaches able to
fully visualize the structure of these applications are lacking.
However, such visualization is important for engineers to
thoroughly understand the applications.

AIVA (Advanced Interactive Visualization Approach) [1] is
our research visualization approach that is built on the idea
that interactivity is beneficial for the study of structure and that
different interactive techniques should be adopted to maximize
the impact of interactivity. This idea is in contrast with the
commonly used static approach of standardized UML [2] and
its component diagrams. Such an interactive approach should
be able to describe any component in at least the same level
of detail as UML can, without introducing more occlusion in
the diagrams. Interactivity should lead to a simplification of
structure visual representation, especially when combined with
techniques that are able to provide all details to the user just
when he needs them.

To validate the approach and assess its practical implemen-
tation, we have performed a controlled user study focused
on performance (time required to provide a correct answer)
during architectural analysis tasks. This paper describes the

whole study in terms of its design and results, together with
necessary background information on the AIVA approach and
further discussion of the results.

A. Current State of the Art

The Unified Modeling Language (UML) provides three
groups of diagrams to model both static and dynamic features
of software [2], including the component diagram. The nota-
tion used in this diagram, however, captures components only
on a general level, while their details differ greatly between
component models, both commercial and research ones –
OSGi [3], EJB [4], SOFA 2 [5] and others.

A component model can further introduce its own unique
features like behavior protocols [6] or hierarchical decomposi-
tion. To this end, UML supports user-defined profiles that are
able to model most – but not all – of the features satisfactorily;
although, their visual representation tends to be difficult to
read. An opposite approach is sometimes used, namely to
augment a given component model with its own visual notation
as, for example, in the case of SaveCCM [7]. A brief study of
the currently used approaches and tools is provided by Holy
[8].

Even when a UML profile is complemented with a tool
providing good visualization of the profile, an essential prob-
lem still remains: that the structure of component applications
tends to be more complex than most class structures. Contracts
between components often involve several features like event
queues, provided interfaces, imported packages, etc., leading
to many diagram lines per component pair. The resulting
structure is therefore more complex and harder to read.

B. Related Work

Research efforts related to our visualization of software
architectures fall in two broad categories: displaying the struc-
ture and dealing with interactivity. The efforts to display these
structures are most commonly oriented on extensions of the
UML itself, without taking interactivity under consideration;
while Dumoulin [9] introduces layers to support multiple
views in one diagram, Byelas [10] suggested the use of colored
areas of interest to improve orientation in classical UML
component diagrams. Other works are even less relevant to
the work presented in this paper.

Telea’s [11] work on (interactive) visualization of
component-based software is generic and mostly similar to

213Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



the work presented in this paper, but it does not provide
many details about components themselves and can hardly be
compared with UML. Wettel and Lanza [12] visualize software
as cities – they define three dimensions: two are used as the
base of a building and the third is used as the height of a
building. This approach could be easily used on component
software, but again it does not provide details needed to get
full comprehension of the structure.

Interactivity should help primarily with the creation of a
mental model, so that one will be able to reason about the
architecture and make decisions. It is important to lighten the
cognitive load, namely hide unnecessary details, as Ric Holt
highlighted with several examples in [13]. The importance of
interactivity for the ability to make decisions about a mental
model is mentioned in several studies, one of which is Meyer
et al. [14]. He goes even further and defines a new science
of visually enabled reasoning, implying that interactivity is its
key enabler.

Finally, works concerned with the evaluation of new in-
formation visualization approaches are also related, as we
studied them prior to designing our own user study. Therefore,
the work of Camilla Forsell [15] should be highlighted, as it
provides a clear guide for similar studies. Laidlaw [16] uses a
similar comparative study of performance on 2D vector field
visualization methods. Evaluation of software visualization
was also described by Sensalire et. al. in [17], cooperating
with Telea, mentioned earlier.

C. Structure of the Text

This paper first describes AIVA and UML in Section II
in order to provide sufficient understanding of them. Section
III describes the design of the presented user study in detail.
Technical information related to the hardware and specific
software technologies used are provided in Section IV.

Section V presents the results of the performed user study,
whose conclusions are then discussed in Section VI. Finally
this paper is concluded by Section VII with a summary of
findings.

II. OVERVIEW OF COMPARED APPROACHES

This section discusses both AIVA and UML, where the
former is described in greater detail, as it is an experimental
approach which is not commonly known. UML is touched only
briefly, being a common standard. Special care is given to the
techniques and features that were used by participants in the
study. Both approaches were already compared in a case study
[18] which focused solely on the readability of the diagrams in
these two approaches – compared to their performance testing,
which is the subject of this paper.

A. AIVA

The Advanced Interactive Visualization Approach (Project
page: http://www.assembla.com/spaces/comav)
uses an oriented graph to visualize components and their
relations. Its visual notation is unified for all component
models (including the hierarchical ones) and is partially

similar to that of a UML class diagram. However, it differs in
the representation of the list of elements inside the component
“box” – AIVA prefers hierarchical ordering based on the
characteristics of elements. The resulting groups of elements
stand each for itself to provide better orientation. A thorough
description of AIVA was published in [1], so below we
discuss mainly its interactive features that can help increase
user performance, in line with the goal of this paper.

The navigation and explore features that are most fre-
quently used when studying the diagram accommodate these
interactive techniques: scrolling, zooming, panning, outline
view and quick search (move the view on the diagram to
show the component selected in the project overview). AIVA
improves the zooming technique: when zoomed out, standard
zooming simply changes the scale of the standard output,
which makes the details of a component unreadable and thus
useless. AIVA in this case hides the details and enlarges only
the information that is always important – the name of the
component. This change should improve orientation in the
diagram.

Highlighting helps to further improve orientation in the
diagram. Almost any interaction will highlight the subject of
interaction with bright, easily distinguishable color in both
the diagram and the overview. One click on a component
highlights the component; one click on a connection line
highlights the line together with both components connected
by the line and the elements involved in this relation. Double
click on an element highlights all connection lines related to
this element as well as all connected components.

Decreased complexity of the diagram is yet another way
to improve diagram readability; AIVA uses information-hiding
techniques that help to achieve this goal, together with details
on demand (discussed next). A very effective complexity
reduction method is to collapse the connection lines, since
the reduction of the number of lines in the diagram makes
it less complex and easier to read; in AIVA, therefore, there
is only one connection line between each pair of connected
components. In addition, the information labels identifying the
connection type and connected elements are by default hidden.
Finally, interfaces and other component interface features are
not diagram nodes and the structure is therefore less complex.

Details on demand are used to access the hidden informa-
tion. When one clicks on the connection line, an information
box appears showing a detailed list of all connected elements;
therefore, no information value is lost. Additional details
are also provided when the user clicks on the component,
revealing information about, e.g., its version, license, symbolic
name, etc. Similar information about every component element
is accessible by hovering over its name.

Other features that are supported by AIVA are used mostly
to offer a different view on the same thing. However, these
features are not in the scope of this paper, so we mention
them only to present AIVA completely:

1) Grouping and filtering, based on the characteristics of
the elements. Support for user defined sets of groups.

2) Conditional formatting able to work with component-

214Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



model-specific information and various secondary data
that are normally hidden.

3) Reconfiguration features, namely change of representa-
tion of components or diagram layout.

B. UML

Unified Modeling Language on its own is a static approach
in which the diagrams look the same on a computer screen
and on paper. For full component modeling support, user
profiles are necessary, which considerably shortens the list
of available tools. The standard interactive techniques used
across all these UML tools are navigation ones – scrolling,
panning, zooming, and overview. The overall usability of UML
component diagrams is related more to the specific features of
concrete tools than to the UML notation itself. Therefore, tools
with some “added value” should be selected to objectively
investigate UML usability.

IBM Rational Software Architect (RSA) can be considered
as such an advanced UML tool. Besides all standard navigation
features, it supports some advanced ones that allow users to
manipulate the diagram, like changing the layout of nodes,
changing the line routing and modifying the look of compo-
nents and interfaces. Added value is in its “properties view”,
displayed at the bottom of the screen. This view shows all the
details about components and relations and, most importantly,
it can be used to navigate to related components. For example,
the “Relationships” tab shows a list of all elements that use or
are used by the component. This list clearly specifies which
kind of relation is used and which component is related. The
name of the related component has the form of a link, so the
user can easily find more information about it.

III. DESIGN OF THE STUDY

This section provides the details about the goal and me-
chanics of the performed user study.

A. Goal of the Study

The main goal of this study is to evaluate the performance of
users during architecture analysis in two different approaches
– UML and AIVA. The hypothesis tested was: “It is faster for
engineers to study the structure of component-based applica-
tions interactively rather than using static diagrams.” The null
hypothesis was that studying component-based applications’
structure is comparably fast when using interactive and static
visualization methods.

The results of this user study can therefore help in finding
out to what degree interactivity is useful. These questions
are important because the level of interactivity used in AIVA
is high and could negatively affect the user’s performance
while he collects some more detailed information, specifically
because a lot of this information is hidden and revealing it
requires user interaction.

The set of tasks used in the study simulates the activities
performed during one step of architecture analysis. These tasks
are focused on collecting knowledge about one component –
its features, dependencies and overall context consisting of

related components. When analyzing the whole architecture,
one needs to repeat this step for most of its components. The
concrete set of tasks is discussed thoroughly further below.

B. Profile of Participants

The structure of component-based applications is studied
by software engineers who work on these applications. They
have a deep knowledge of components and UML to be able
to understand the diagram presented. Such people are hard
to get to participate in a user study that takes at least one
hour; thus we decided to ask our colleagues to participate.
Use of academics and Ph.D. candidates was encouraged by
Sensalire et. al. in [17], based on their lessons learned: “They
are willing to take part in studies for the sake of gaining
knowledge and may require less or no additional motivation”,
while still clearly being professionals in the field of software
engineering.

The participants were young software engineers selected
from different groups at our department. They were confi-
dent in most UML diagrams; their knowledge of component
diagrams was tested specifically before participation. Most of
the participants use components on a daily basis and the rest
were briefly trained before the study. All of the participants
were confident in the required basics of component-based
development before undertaking the questions.

All participants were also trained in both tools that were
used to test the two approaches: UML/RSA and the AIVA
research prototype. First, the tool was presented to them. We
shared our working experience on how to get various types of
information effectively. Then every participant had unlimited
time to test all types of tasks that he would encounter.
Participants were handled individually and guidance was given
when asked. The training ended when the participant felt
confident and able to perform all types of tasks used in this
user study.

C. How the Study Was Performed

The process repeated with every participant was as follows:
1) Verification of knowledge
2) Training in Tool 1
3) Performing all tasks in Tool 1
4) Training in Tool 2
5) Performing all tasks in Tool 2
Verification of UML and component knowledge took about

20 minutes to ensure the participant’s expertise. Training in
both tools took about 40 minutes, until the participant felt
confident. All tasks were performed in under 10 minutes,
because the tasks were quite short.

All participants were observed for the whole time of the
study and there were no interruptions nor any advice while
they searched for the answers to a given task. The time
was measured from the moment the question was read and
understanding was confirmed by the participant, to the point
when a correct and full answer was given. We required users
to visually verify the information as part of the answer, i.e. to
pinpoint the found information in the diagram.

215Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



All participants were divided into two groups of the same
size. Group #1 started with AIVA and group #2 with UML.
The set of tasks was identical for both approaches; however,
the tested approaches provide such different diagrams that
the participants could not gain an advantage by performing
the same tasks again with the other tool. Moreover, training
in the second tool was performed after testing first tool to
distract participants from the tasks. During the training phase,
similar tasks were practiced by the participants on different
components in a completely different application to ensure that
they could not gain any knowledge related to the test tasks.

The study was intentionally designed this way to prevent
bias of participants which could erode the validity of results.

IV. TECHNICAL BACKGROUND

This section provides technical details required to recreate
the user study described. An overview of the OSGi component
model and CoCoME application used is provided, after which
the set of tasks (bound to the application) is described in its
final form. Finally, details about hardware are presented to
provide the whole picture.

A. OSGi Component Model

OSGi [3] is a multi-platform Java component solution
focused on dynamic deployment and assembly of components.
OSGi components are black-boxes; their nature and features
are described in a manifest file. The communication between
components is realized by services which are implementations
of interfaces, thus keeping their black-box nature.

Apart from services, both provided and required, these
components can depend on Imported packages and other com-
ponents – Required bundles. Thus there are three completely
different types of relations in the OSGi environment. Complex
analysis of OSGi and its key features is described in [19],
where the author suggests an OSGi profile for the ENT meta-
model which is used by AIVA.

After a thorough study of this profile, we developed a
similar one for UML, so it can model the same information
as the ENT meta-model. We already described this profile in
our previous study [18], which was more concerned with the
question of how this information is visualized.

B. CoCoME

CoCoME stands for Common Component Modeling
Example [20]. It models an information system for
supermarket chains and is used for the purpose of
comparing different approaches to component-based software
development. It has been officially implemented in 13
component models; we created an OSGi implementation
(http://www.assembla.com/spaces/comav/docu
ments/tag/CoCoME).

The CoCoME application consists of three main parts. First
is a Cashdesk part, which contains the cashdesk, including
barcode scanners, credit card readers, etc. The second part
is a store backoffice server and a store client. Finally,
the chain part consists of an enterprise server and client

applications. CoCoME is assembled from 37 components
using 12 interfaces, thus representing a medium-size
application. The complete diagram of the whole application is
accessible in both AIVA and UML forms on our project page
(http://www.assembla.com/spaces/comav/wiki
/Comparison_of_AIVA).

C. Tasks

The tasks described below were tested on the CoCoME
application. Because of this, they are formulated directly for
its components; however, they can be easily generalized. The
tasks are basic and contribute to answering one complex
question: how is a particular component (cocome-osgiDS-
store.impl) integrated in the CoCoME application. One has
to find out what this component offers and requires and
uncover its ties to other components, simulating the activities
performed during one step of the architecture analysis. The
most complex component of the application was chosen for
these tasks.

The tasks were identified based on our experience with the
structure of component-based applications and hints obtained
during interviews with several software engineers from local
software companies. The exact wording was then designed to
cover all aspects of one concrete component.
Q1. Which packages are imported by component cocome-

osgiDS-store.impl?
Q2. Which elements of component cocome-osgiDS-

store.impl are unused (i.e. have no relationship)?
Q3. Which components use the service StoreIf provided by

cocome-osgiDS-store.impl?
Q4. Which components depend on cocome-osgiDS-

store.impl?
Q5. Which components are required by cocome-osgiDS-

store.impl?
Q6. Which elements does cocome-osgiDS-store.impl need

from cocome-osgiDS-data?

D. Hardware

Computer hardware did not influence the results of the
study since the bottleneck for performance was the user’s
ability to interact and read the information from the diagram.
However, to provide complete technical background, here are
the specifications of the testing computer: Intel Core i5 3Ghz
CPU, 4GB DDR3 1066Mhz RAM, 7200RPM HDD and,
most importantly, 24” LCD with 1920x1080 resolution. This
computer proved to be fast enough to ensure a comfortable
working experience and the screen resolution was sufficient
for visualization purposes.

V. RESULTS

This section provides detailed results of this study for each
approach and their comparison. As the reader may note, the
results differ greatly depending on the participant. This was
caused by individual perception, orientation abilities and how
quickly they were able to click the mouse. (A lot of attention
was paid to preparing all of them thoroughly, see Section III.)

216Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Twelve users participated in the study, identified as A-L in
the tables below. The last two participants (K and L) are co-
authors of this paper and mentored the rest of the participants.
Our performance is listed in the results to show the peak
performance of the tasks, as we knew exactly what we were
looking for and how to retrieve this information. We followed
the same rules as any other participants and accepted the
answer only after visual confirmation. Our results are not used
in later statistics. The Q1-Q6 identifiers in the result tables
refer to the tasks from Section IV-C.

Statistical tables present important statistical values calcu-
lated per question. The “Total” column provides the sum of
values per row, calculated from results data with millisecond
precision (thus, the simple sum of provided values may differ).

A. Performance in AIVA

Results of all participants are presented in Table I, while
statistical values are in Table II. The biggest strength of AIVA
was the search for unused elements (Q2), as it provides the
answer immediately and most participants were able to read it
right away; however, a few of them did not at first understand
this information. The biggest weakness was finding the depen-
dent components (Q4), because most of the participants forgot
to read the type of arrow indicating the type of the connection
and got a little confused – searched for the answer elsewhere
before they found it. As a result, the time needed for a correct
answer was longer, as we waited for them to solve the problem
themselves.

TABLE I
RESULTS OF USERS IN AIVA [MIN:SEC].

ID Q1 Q2 Q3 Q4 Q5 Q6 SUM
A 0:46 0:11 0:20 0:32 0:33 0:28 2:50
B 0:16 0:09 0:42 0:25 0:35 0:25 2:32
C 0:22 0:08 0:18 1:02 0:23 0:27 2:40
D 0:51 0:33 0:20 0:41 0:44 0:50 3:59
E 0:12 0:10 0:11 1:20 0:22 0:10 2:25
F 0:25 0:09 0:23 0:27 0:31 0:38 2:33
G 0:23 0:22 0:19 0:40 0:23 0:29 2:36
H 0:29 0:06 0:16 0:37 0:29 0:16 2:13
I 0:07 0:04 0:08 0:24 0:16 0:24 1:23
J 0:15 0:24 0:17 0:31 0:25 0:17 2:09
K 0:08 0:03 0:08 0:13 0:19 0:10 1:01
L 0:12 0:04 0:08 0:15 0:17 0:11 1:07

TABLE II
STATISTICS OF USERS IN AIVA.

Measure Q1 Q2 Q3 Q4 Q5 Q6 Total
Avg 0:24 0:13 0:19 0:39 0:28 0:26 2:32

Median 0:22 0:09 0:18 0:34 0:27 0:26 2:18
Min 0:07 0:04 0:08 0:24 0:16 0:10 1:09
Max 0:51 0:33 0:42 1:20 0:44 0:50 5:00

Std dev. 0:13 0:08 0:08 0:17 0:07 0:10 N/A

B. Performance in RSA

Results of all participants are presented in Table III, while
statistical values are in Table IV. The biggest strength of RSA

was looking up service clients (Q3), as it provided the answer
almost immediately, while the biggest weakness was finding
the dependent components (Q4) due to worse RSA support
in connecting components through ports. Participants gave a
stable performance as they are familiar with UML notation.
The graphical user interface of RSA is more user friendly,
which also helped users in orientation. Often, Participants were
delayed by accidental clicking on the connection line – RSA
had centered the screen on it and they lost the context of the
studied component.

TABLE III
RESULTS OF USERS IN RSA [MIN:SEC].

ID Q1 Q2 Q3 Q4 Q5 Q6 SUM
A 1:04 2:40 0:12 2:56 2:43 2:10 11:45
B 1:22 2:06 0:11 1:40 2:39 2:08 10:06
C 1:13 2:30 0:25 1:58 2:49 2:14 11:09
D 1:19 1:30 0:27 1:23 2:25 2:10 9:14
E 0:36 0:59 0:17 0:43 1:41 1:00 5:16
F 1:24 1:05 0:21 1:01 1:40 2:49 6:12
G 0:43 0:30 0:07 0:39 1:46 1:20 5:05
H 0:46 1:14 0:09 0:54 2:17 0:52 6:12
I 0:52 0:34 0:08 0:28 1:00 0:36 3:38
J 0:59 1:06 0:21 0:40 1:48 1:28 6:22
K 0:32 0:42 0:10 0:34 1:07 0:46 3:51
L 0:39 0:52 0:11 0:25 0:54 0:39 3:40

TABLE IV
STATISTICS OF USERS IN RSA.

Measure Q1 Q2 Q3 Q4 Q5 Q6 Total
Avg 1:01 1:25 0:15 1:14 2:04 1:40 7:42

Median 1:01 1:10 0:14 0:57 2:02 1:48 7:14
Min 0:36 0:30 0:07 0:28 1:00 0:36 3:17
Max 1:24 2:40 0:27 2:56 2:49 2:49 13:05

Std dev. 0:16 0:43 0:06 0:43 0:33 0:41 N/A

C. Comparing the Results
Apart from the measured values, a useful piece of infor-

mation resulting from this study is the performance ratio of
AIVA to RSA. Comparing this ratio for every participant can
bring more insight than comparing the global numbers. The
highest ratio was for participant A, who was 4.15 times faster
in AIVA than in RSA. The lowest ratio was for participant G,
only 1.96 times faster in AIVA than in RSA. The rest of the
participants were within these extremes; however, they were
on average 3 times faster in AIVA – the average test time in
RSA was 462 seconds, compared to 152 seconds in AIVA.

The average results are compared with the standard devia-
tion in Figure 1. Normal distribution says that 70% of users
would fall within these limits. This figure clearly shows that
AIVA was faster in tasks Q1, Q2, Q4, Q5 and Q6, that is in
83% of cases, while it was slower in task Q3, which was the
strongest task in RSA.

Figure 2 comprehensibly presents minimum, maximum and
median values in a comparable way, so that these values can
be conveniently studied in one place.

Lastly, Figure 3 contrasts the longest times measured in
AIVA with the shortest times measured in RSA. This figure

217Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Fig. 1. Comparison of average results.

Fig. 2. Minimum and maximum values with median marked.

presents a different look at these extreme values, showing how
a poor use of AIVA compares with best-performing RSA users.
The numbers show that even in this case, AIVA is comparable
in two thirds of tasks; RSA has its best results significantly
faster in tasks related to service dependencies.

Fig. 3. Comparison of maximal AIVA results with minimal RSA results.

Two scenarios were tested to compare results in more depth.
The first scenario tested if users who perform best in UML
are also very fast in AIVA. All participants were ordered from
fastest to slowest in both AIVA and UML and their order was
compared. Four participants from the UML top 5 were also in
the AIVA top 5. The notes on the remaining participant who
did worse in AIVA showed that he was overconfident because
of his expertise in UML. He started the test in AIVA and had
to think longer about how to finish the given tasks. As a result
of this scenario, it is possible to conclude that good analysts
will benefit from using AIVA.

The second scenario tested where in the distribution are
users who were really slow in UML. All participants were
ordered from fastest to slowest in UML and, also, their
performance ratio between AIVA and UML was ordered from
highest to lowest. Four participants from the bottom 5 in UML

were among the top 5 users overall in the performance ratio.
(The one who was not in the top 5 also had significantly worse
results in AIVA – he also felt confident in AIVA although it
turned out he should have kept training for some more time.)
The five slowest participants in UML were on average 3.5
times faster in AIVA, while the top 5 UML participants were
on average only 2.5 times faster. It is possible to conclude that
casual users of UML will benefit the most from using AIVA.

VI. DISCUSSION

The previous section provided results of this user study and
compared them. By studying these results it is possible to
conclude several things on which this section comments. It
is important to realize that AIVA did trade-off some char-
acteristic features of UML to get these better results. The
most important trade-offs are that AIVA can not be used on
paper; it is usable only for component-based applications and,
moreover, only for the structure of these applications.

A. Measures of AIVA Performance

First of all, the time required to finish a task in AIVA
is more consistent – the standard deviation in RSA (48
seconds) is almost four times higher that that of AIVA (14
seconds). The reason is that UML itself and thus also RSA
has different levels of recognition and therefore handling for
different elements – work is really fast with some (tasks that
depend mostly on interfaces) but slow with others (tasks that
depend mostly on ports). On the other hand, AIVA provides
the same level of support for all types of elements on both
visual and interaction levels.

The previous conclusion leads to a more important one –
the choice of tasks is not so important for AIVA as it is for
UML. In other words, AIVA should be able to provide stable
user performance for any task set, in any component model. In
contrast, a user’s performance in UML depends on the selected
tasks, the selected UML tool and the component model.

Task Q4 (searching for clients of the studied component)
was the slowest one in both approaches. The reason is that
the component was widely used by many other components
in the CoCoME application. Therefore, it took time to find
them all.

One should also look at the fastest task for UML – Q3,
which worked with dependencies of interfaces in a tool which
is able to list all these dependencies at once. This can be
recognized as a best case UML scenario, with the fastest time
of 7 seconds, while AIVA required 8 seconds. Median values
are 14 seconds for UML and 18 seconds for AIVA – that is,
AIVA is 28% slower. The worst case scenario for UML would
be Q5, which worked a lot with dependencies of packages
(ports). The fastest user finished this task in 16 seconds in
AIVA but took 60 seconds in UML. Median values are 27
seconds in AIVA and 122 seconds in UML – UML is 450%
slower. These numbers again indicate that AIVA would be
faster in any mixed task set.

From the results provided, it is thus possible to conclude
that the level of interactivity used in AIVA is useful and that

218Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



the null hypothesis is not valid. Interactivity helped AIVA to
provide a simpler diagram, so users could orientate themselves
easier, and the overall user performance was better even
when the interaction was required to gather the necessary
information.

B. Participant Opinions

This user study confirmed that AIVA is faster than UML,
but we also asked the participants a few subjective questions
after they finished:

1) Do you consider the AIVA or UML diagram clearer?
Why?

2) Which was more comfortable to work in, AIVA or RSA?
Why?

3) Do you have other suggestions?
All participants answered that AIVA provides a clearer

diagram that is more readable and understandable. They men-
tioned these reasons: fewer lines, hidden details on zoom,
all information in one place and very readable structure of
elements.

One participant felt more comfortable in RSA because
labels were always visible and a click on lines centered the
screen. The rest of the participants felt more comfortable in
AIVA, giving these reasons: clearer GUI, packages shown
inside components, much faster operation, information easier
to reach, better interactive overview. These participants also
did not like the RSA feature that centered the screen after
they clicked on a line because it happened often by accident
and they lost thecontext.

VII. CONCLUSION AND FUTURE WORK

This paper described a complete user study that compared
performance in component architecture analysis tasks using
two different component visualization approaches – AIVA and
UML. AIVA is implemented as a research proof of concept,
while UML is supported by a lot of commercial tools. Rational
Software Architect was chosen to represent these tools because
of its ability to easily study relations, which was most needed
in this experiment.

The data obtained show that users working interactively (i.e.
in AIVA) are approximately three times faster than those using
UML. In only one of six tasks was UML faster, while AIVA
performed better in the remaining 5/6 of tasks. The discussion
section above provides insight into the reasons and on how
different tasks could affect the overall performance.

Results of this user study therefore confirm that advanced
visualization of component-based application architecture us-
ing a high level of interactivity is beneficial for users. Even the
increased interaction required to uncover hidden information
does not introduce significant problems.

Our future work will evaluate if AIVA can be used by
software engineers in real-life scenarios. In particular, we want
to test if it helps users to understand the application structure
starting from the beginning of the learning process to the
point where they have sufficient insight to make decisions and
answer complex questions.

ACKNOWLEDGMENT

The work was supported by the University of West Bohemia
grant SGS-2010-028 Advanced Computer and Information
Systems.

REFERENCES

[1] J. Snajberk and P. Brada, “Interactive Component Visualization,” in Pro-
ceedings of International Conference on Evaluation of Novel Approaches
to Software Engineering. SciTePress, 2011, pp. 218–225.

[2] Object Management Group, “UML Superstructure Specification,” Object
Management Group, OMG Specification formal/2009-02-02, 2009.

[3] OSGi Alliance, “OSGi Servise Platform Core Specification,” OSGi
Alliance, OSGi Specification, 2009.

[4] Sun Microsystems, Inc., “Enterprise JavaBeans(TM) Specification,” Sun
Microsystems, Inc., SUN Specification, 2001.

[5] T. Bures, P. Hnetynka, and F. Plasil, “SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model,” in SERA. IEEE
Computer Society, 2006, pp. 40–48.

[6] F. Plasil and S. Visnovsky, “Behavior Protocols for Software Compo-
nents,” IEEE Trans. Software Eng, vol. 28, no. 11, pp. 1056–1076, 2002.

[7] H. Hansson, M. Akerholm, I. Crnkovic, and M. Tarngren, “SaveCCM
- A Component Model for Safety-Critical Real-Time Systems,” in
EUROMICRO. IEEE Computer Society, 2004, pp. 627–635.

[8] L. Holy, J. Snajberk, and P. Brada, “Evaluation Component Architecture
Visualization Tools,” in Proceedings of International Conference on
Information Visualization Theory and Applications. SciTePress, 2012.

[9] C. Dumoulin and S. Gerard, “Have Multiple Views with one Single
Diagram! A Layer Based Approach of UML Diagrams,” Institut Na-
tional de Recherche en Informatique et en Automatique, Universite des
Sciences et Technologies de Lille, Research report INRIA-00527850,
October 2010.

[10] H. Byelas, E. Bondarev, and A. Telea, “Visualization of areas of
interest in component-based system architectures,” in Proceedings of the
32nd EUROMICRO Conference on Software Engineering and Advanced
Applications. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 160–169.

[11] A. Telea and L. Voinea, “A Framework for Interactive Visualization of
Component-Based Software,” in Proceedings of the 30th EUROMICRO
Conference. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 567–574.

[12] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in In
Proc. of the 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis. Society Press, 2007, pp. 92–99.

[13] R. Holt, “Software Architecture as a Shared Mental Model,” in Proceed-
ings of International Workshop on Program Comprehension, 2002.

[14] J. Meyer, J. Thomas, S. Diehl, B. Fisher, and D. A. Keim, “From
Visualization to Visually Enabled Reasoning,” in Scientific Visualization:
Advanced Concepts, ser. Dagstuhl Follow-Ups, H. Hagen, Ed. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010,
vol. 1, pp. 227–245.

[15] C. Forsell, “A guide to scientific evaluation in information visualization,”
in Information Visualisation (IV), 2010 14th International Conference,
july 2010, pp. 162 –169.

[16] D. H. Laidlaw, J. S. Davidson, T. S. Miller, M. da Silva, R. M. Kirby,
W. H. Warren, and M. Tarr, “Quantitative comparative evaluation of 2d
vector field visualization methods,” in Proceedings of the conference on
Visualization ’01, ser. VIS ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 143–150.

[17] M. Sensalire, P. Ogao, and A. Telea, “Evaluation of software visualiza-
tion tools: Lessons learned,” in Visualizing Software for Understanding
and Analysis, 2009. VISSOFT 2009. 5th IEEE International Workshop
on, 2009, pp. 19 –26.

[18] J. Snajberk, L. Holy, and P. Brada, “AIVA vs UML: Comparison of
Component Application Visualizations in a Case-Study,” in Proceedings
of 16th International Conference on Information Visualization, 2012.

[19] L. Valenta and P. Brada, “OSGi Component Substitutability Using
Enhanced ENT Metamodel Implementation,” Department of Computer
Science and Engineering, University of West Bohemia, Tech. Rep.
DCSE/TR-2006-05, 2006.

[20] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, The Common Com-
ponent Modeling Example: Comparing Software Component Models,
1st ed. Springer Publishing Company, Incorporated, 2008.

219Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances


