
Representing Topic Event-Based
Systems using Pluggable Units

Fernando J. Barros
Departamento de Engenharia Informática

Universidade de Coimbra, Portugal
Email: barros@dei.uc.pt

Abstract—In this paper, we present Pluggable Software Units
(PUs), a formalism aimed to represent independent and hier-
archical software units. PUs extend the request/reply paradigm
by introducing full support to anonymous invocation. PUs is a
reflective approach supporting the definition of dynamic software
topologies. We show that these features enable the representation
of modular topic event-based systems using gate-to-gate (g2g)
communication. PUs provide a unification of request/reply and
event-based paradigms. Our results contradict current research
that suggests event-based and request/reply approaches to be
independent and intrinsically incompatible. Application examples
are described in JUSE, a Java/Groovy implementation of PUs.

Keywords-topic event-based programming; pluggable soft-
ware units; dynamic software topologies.

I. INTRODUCTION

Hierarchical and modular design has its origins in the field
of General Systems Theory [1] and it has been later adapted
by the area of software engineering [2], [3]. Although the
advantages of independent software are evident, the definition
of reusable software has been elusive for many decades. Early
formal frameworks for defining independent software lack the
compliance with object-oriented design, becoming virtually
useless for software engineering projects. The area of soft-
ware architecture has produced specifications that have little
support from programming languages [4]. Earlier executable
specifications supporting the independence between software
components have been introduced in the area of event-based
programming [5]. Although the event-based paradigm has
many features enabling reuse, it is not compatible with the
request/reply principles of object-oriented programming, im-
posing an exclusive choice between programming paradigms
[6]. Given the known advantages of both event and request/re-
ply programming it would be desirable to develop a unifying
paradigm exhibiting the best of their features.

We have developed PUs [7], a modular and hierarchical
software specification framework, based on the General Sys-
tems Theory [8]. The PU approach is fully compatible with the
request/reply paradigm introducing the complete independence
between software units [9]. This approach the anonymous
request/reply paradigm, as defined in [6].

In this paper we unify topic event-based and anonymous
request/reply programming. In particular, we express events
using PUs gate-to-gate (g2g) primitives to achieve a frame-
work supporting both styles of programming. This unification
allows software models to combine the best features of both

paradigms, giving the choice to the modeler to represent parts
of the model using the multicast feature of event programming,
simultaneously with gate-to-gate communication provided by
request/reply.

To obtain the unification of both paradigms we map event
publish/subscribe operators into g2g links supported by PUs.
Since publish/subscribe operators can be made during applica-
tion runtime, the key to the unification is given by the ability
to support dynamic software topologies that adapts links to
these operators.

We shown that design patterns based on implicit invocation,
like the Observer pattern [10], can also be represented in PUs,
showing the generality of this approach. Application examples
are provided in JUSE, a Java/Groovy implementation of PUs.

The paper is organized as follows. Section II provides a
formal definition of basic and network pluggable software
units (PUs). Section III introduces a representation of topic
event-based programming using PUs with a dynamic topology.
Related work is described in Section IV. Conclusion and future
work are presented in Section V.

II. PLUGGABLE SOFTWARE UNITS

PUs comprises two types of software units: basic and
network. Basic PUs provide the actual method invocation,
whereas networks are a composition of PUs and provide
message passing. In PU composition, both basic and network
PUs can be used indistinctly. PUs supports a hierarchical
and modular type of software construction. Network definition
is dynamic, permitting the specification of adaptive software
topologies.

A. Basic PU

Basic PUs define a set of input and output gates. Input
gates correspond to object methods, whereas output gates
represent an abstract access to external PUs. Output gates
are an amendment to the object-oriented protocol and they
remove the need for PUs to refer to others explicitly. This
construct supports effectively the anonymous request/reply
programming. Since PU communication is made exclusively
through gates they are completely independent and can be
arbitrarily composed. Each basic PU has its own description,
referred to as the PU model. Let B̂ be the set of names of
basic PUS. The PU model associated with χ ∈ B̂ is given by:

220Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Mχ =
(
inGates, {inSigng}, S, s0, {ag}, outGates,

{outSignk}, {outDSignk}, {outFunctionk}
)
χ

where
inGates is the set of PU input gates
inSigng is the input-to-output signature of every gate g in

inGates
S is the set of PU states
s0 is the PU initial state
ag is an action for every gate g belonging to the set inGates

outGates is the set of PU output gates
outSignk is the output-to-input signature of every gate k in

outGates
outDSignk is the intermediate signature of every output gate

k ∈ outGates
outFunctionk is the output function of every gate k in

outGates

An input-to-output signature is a 2-tuple containing the
range set of the incoming parameters and the range set of
outgoing parameters. For example, if input gate g receives
real values R, and responds by sending integer values I, then
its input signature is given by inSigng = (R, I).

The function ag on input gate g of signature (Ig, Og) is
expressed by

ag : S × Ig  S ×Og
An action corresponds to a method in the object paradigm.

Action ag receives input values from (S × Ig), produces a
change in the PU state, and returns a value from Og . As a
side effect, an action on a PU can trigger other actions on the
PUs linked to it. The action can also request values from the
network where the PU is inserted. We do not formalize here
these side effects of action behavior.

An output-to-input signature is a 2-tuple (Ok, Ik) containing
the range set of the outgoing (direct) parameters Ok and the
range set of incoming (return) parameters Ik.

Output functions convert the set of values received by an
output gate. These functions are useful when several links are
connected to an output gate, and in general, to convert values
without creating special PUs.

Intermediate signatures define the values, Dk, that can be
received by an output gate k. These value are then converted
by the output function to the set Ik.

The output function outFunctionk on output gate k of
intermediate signature Dk and output signature (Ok, Ik) is
expressed by

outFunctionk : Dk
∗ −→ Ik

where Dk
∗ is a list of values from set Dk.

Semantics of the output function outFunctionk associated
with gate k is graphically sketched in Figure 1, where request
and reply semantics are represented in Figure 1(a) and Figure
1(b), respectively.

(a) Request. (b) Reply.

Fig. 1. Semantics of the outFunctionk .

In the request phase (Figure 1(a)), values from set Ok are
sent to all neighbors of gate k. In the reply phase (Figure
1(b)), values from set Dk are collected and transformed by
outFunctionk into a value of the set Ik.

We note that input gates of basic PUs do not define
intermediate signatures since these units do not have internal
connections, and thus their input gates are terminal.

Given an output gate k with output signature (Ok, Ik),
we assume the head function when the output function
outFunctionk is omitted and the intermediate and input
signatures match (Dk = Ik). This function returns the first
value from a list and it is defined by:

head(< arg0, . . . >) = arg0

Example: Position PU: To illustrate an example of a
basic PU we employ the Position PU represented in Figure
2. This PU has input gates: ax and x, corresponding to
actions it can provide. Position has also the output gate
x that sends the current position to the outside. Position
receives piecewise constant acceleration values and computes
the current position x by double integrating the input signal.
For simplicity we describe here one-dimension positions. 2D
coordinates are used in the next sections.

Fig. 2. Position PU.

Position state keeps the time of the last update (time),
position (x), velocity (vx) and acceleration (ax) values. The
PU is described by:

MPosition = ({ax, x},
{(R2, ∅), (R,R)},
R3, (time = 0, x = 0, ax = 0),

{actionax, actionx},
{x}, {(R, ∅)}, {∅},
{outFunctionx(∅, ...) = ∅})

where ∅ represents the empty set and ∅ represents the
null/absence of value.

The ax action sets the acceleration and is defined by:

221Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



actionax(t, a)
δ ← t− time
x← x+ vxδ + ax

2 δ
2

vx ← vx + axδ
ax ← a
time← t
out.x(x)
↑ ∅

This action also sends the current position to the outside
through gate x using the command out.x(x). The current
position at time t is computed by:

actionx(t)
δ ← t− time
↑ x+ vxδ + ax

2 δ
2

B. PU Network

Hierarchical composition of systems has been used as a
powerful construct to manage complex systems. We consider
that PUs can be hierarchically composed, being the resultant
PU indistinguishable from the basic PU of the last section.
This ability permits to handle in a homogeneous form both
basic and aggregated components. A PU network is a complex
PU built by the composition of other PUs. Let Ê be the set of
names corresponding to PU networks, constrained to Ê∩B̂ =
∅. The model of the network PU χ ∈ Ê is defined by:

Mχ =
(
inGates, {inSigng}, {inDSigng},

{inFunctiong}, ε,Mε, outGates,

{outSignk}, {outDSignk}, {outFunctionk}
)
χ

where
inGates is the set of the network input gates
inSigng is the input-to-output signature of every gate g ∈

inGates
inDSigng is the intermediate signature of every input gate

g ∈ inGates
inFunctiong is the input function of every gate g ∈ inGates

ε ∈ ε̂ is the network executive
Mε is the model of the network executive
outGates is the set of the network output gates
outSignk is the output-to-input signature of every gate k ∈

outGates
outDSignk is the intermediate signature of every output gate

k ∈ outGates
outFunctionk is the output function of every gate k ∈

outGates

with ε̂ representing the set of all names associated with
network executives, constrained to ε̂ ∩ B̂ = ε̂ ∩ Ê = ∅.

The PU network has the same type of interface of a basic
PU making it possible to use networks as components of other
networks, enabling the hierarchical composition of PUs. The
network topology is managed by a special PU termed here

by network executive ε. The executive keeps a list of the PUs
that compose the network. It also keeps the set of the links
existing among PUs. This information is not static, and can be
changed by executive actions [11]. The model of the network
executive is an augmented PU model defined by:

Mεχ =
(
inGates, {inSigng}, S, s0, {ag},

σ, Σ̂, outGates, {outSignk},

{outDSignk}, {outFunctionk}
)
εχ

Function σ maps the executive state into an network topo-
logy. The topology function σ is expressed by:

σ : S → Σ̂

Each topology Σ ∈ Σ̂ is given by

Σ =
(
C, {Mc}, L,Ξ

)
where
C is the set of PUs
Mc is the model of each PU c ∈ C
L is the set of links
Ξ is the order function
Given that the current network topology is a function of the

executive state, any change in this state can cause a topological
change in the network. A link in L is a 3-tuple defined by:(

(i, gi), (j, gj), (dC, rC)
)

where
i is the name of the source PU
gi is a gate of the i PU
j is the receiver PU
gj is a gate of j
dC is the link direct converter
rC is the link reverse converter

Converters transform both the values sent and received by
a PU. For example, if a PU works with values in m·s−1 and
needs to communicate with another PU operating in km·h−1,
then adapting capabilities provide a solution to make this
conversion without the creation of additional PUs. In this
case, the direct converter is given by dC(x) = 3.6 x, and
the reverse converter is given by rC(x) = x

3.6 to make
the conversions m·s−1 ↔ km·h−1. If omitted, converters are
considered to be the identity function. We note that reverse
converters are a consequence of the request/reply paradigm
that imposes the compatibility of the returned values.

Ξ : L+ → L+ is the order function, where L+ is the set of
all sets of links (excluding the empty set).

The order function establishes the order of the outside calls
when several links are connected at the same output gate.
For simplicity, when omitted, a non-deterministic order is
assumed. In the JUSE implementation the order function is
established implicitly by link declaration order.

The initial network topologyΣ0 is given by Σ0 = σ(s0,ε).

222Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Example: Mobile Entity: To illustrate the definition of a PU
network, we build a PU to represent an autonomous mobile
based on the Position PU of last Section. The network PU
is depicted in Figure 3 and it is defined by:

MMobile =({x}, {(∅,R)}, εMobile,
MεMobile , {x}, {(∅,R)}, {∅},
{outFunctionx(∅, ...) = ∅})

where

MεMobile =({}, {}, {s0}, s0, {}, σ, {Σ0},
{}, {}, {}, {})

Network single topology given by:

Σ0 = σ(s0) = (C, {Mc}, L)

where
C = {Position}
{Mc} = {MPosition}
L = {

((Mobile, x), (εMobile, x), dC(t) = t, rC(x) = x)
((εMobile, ax), (Position, ax), dC(t, a) =
(t, a), rC(∅) = ∅),
((εMobile, x), (Position, x), dC(t) = t, rC(x) = x),
((Position, x), (Mobile, x), dC(x) = x, rC(∅) = ∅)
}

The PU network, represented in Figure 3, is composed
of one Position PU, linked to the executive εMobile. The
network has the input gate x to access the value of the current
position. The executive requests the position through the call
x(time), where time represents the current time.

Fig. 3. Block diagram of the Mobile network PU.

At a random intervals, the executive updates the current
value of acceleration through gate ax. This value is integrated
by PU Position that computes current position and velocity
as described in the last section.

C. JUSE

JUSE is a Java/Groovy implementation of PUs and it pro-
vides an executable version of software units. JUSE supports
the following calls to create software units and to establish
links between PUs:

void addS(Class aClass, String aName), cre-
ates a PU named aName of class aClass;

void linkS(String aName, String aGate,
String bName, String bGate, Closure
dConverter, Closure rConverter), links a
PU named aName gate aGate to gate bGate of PU
bName, establishing direct converter dConverter and
reverse converter rConverter.

Input/output functions are associated with input/output
gates, respectively. In JUSE these functions are specified when
gates are added to PUs by the call:
GateCollection add(Class rSgnt, Class

iSgnt, String aGate, ArrayList<Class>
dSgnt, Closure aClosure), that adds aGate
with return signature rSgnt, intermediate signature
iSgnt and direct signature dSgnt, and associates it
with the function aClosure.

These primitives are used in the next sections for describing
several examples using JUSE. Anonymous Publish/Subscribe
JUSE provides support for anonymous publish/subscribe pro-
gramming enabling both static and dynamic topologies. We
consider the surveillance system depicted in Figure 4, with
one radar and a variable number of mobiles (ships, aircrafts,
...), that enter and leave radar range. The radar samples the
position of all mobiles at a regular rate and receives a list
of pairs with mobile position and name. Instead of modeling
mobiles as entities that publish their position, as required
by push event-based programming, we have considered that
mobile positions are pulled by the radar. The main advantage
is that we can directly express radar sampling rate instead
of handling an arbitrary pushing rate from the mobiles. This
representation makes the surveillance model more efficient
since it can easily accommodate several radars with different
sampling rates. When the radar issues the command xy it
receives a list of mobile positions at the current time. This
example exploits the bidirectional nature of request/reply that
unifies the push and pull styles of event-based programming.
These two styles can be used independently in some systems
like CORBA [12]. To override the default behavior of radar
output gate xy, we use the following output function that
return a list of values:
add(List, XY, ’xy’, [], List<XY> list->

list)
Surveillance initial topology is given by Listing 1 where the

name of mobiles is introduced by reverse converters using the
method setSource in lines 9-11.

1void structure() {
2super.structure();
3addS(’R1’, Radar);
4addS(’M1’, Mobile);
5addS(’M2’, Mobile);
6addS(’M3’, Mobile);
7linkS(’Network’, ’in’, ’Executive’, ’in’, {List<IOutput> m->

[m]}, {Void x-> x});
8linkS(’Executive’, ’leave’, ’Network’, ’move’, {List<String>s ->

[s]}, {Void x-> x});
9linkS(’R1’, ’xy’, ’M1’, ’xy’, {->}, {XY p-> p.setSource(’M1’)});
10linkS(’R1’, ’xy’, ’M1’, ’xy’, {->}, {XY p-> p.setSource(’M2’)});

223Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



(a) Initial topology. (b) Topology after the removal of mobile M2.

Fig. 4. Block diagram of the surveillance network.

11linkS(’R1’, ’xy’, ’M1’, ’xy’, {->}, {XY p-> p.setSource(’M3’)});
12}

Listing 1. JUSE definition of the surveillance initial topology

One of the radar tasks is to keep track of the mobiles
within its range. Mobiles out of range are removed and sent to
another surveillance system through output gate out. These
operations are described in Listing 2 where executive action
move receives a list of mobiles to be removed from the current
surveillance system.

1Void move(List<String>mobiles) {
2List<IOutput> leaving = new List<IOutput>();
3mobiles.each{String m-> leaving.add(remove(m)};
4out.out(leaving);
5return null;
6}

Listing 2. Removing mobiles

III. TOPIC EVENT-BASED PROGRAMMING

We consider event-based programming as a special case
of anonymous publish/subscribe systems with a dynamic
topology. This interpretation implies that the same type of
invocation is used, the difference being the way dynamic
topologies are specified. The event invocation is less expres-
sive than anonymous publish/subscribe due to unidirectional
information flow. The publish/subscribe mechanism character-
istic of event programming is kept since it enables simpler
specifications.

A. Basic Operators

A key feature introduced in publish/subscribe systems, and
not supported by many modular systems, is the ability to define
changes in topology. In fact, publish/subscribe operators can
be regarded as implicitly defining dynamic topologies that link
publishers and subscribers. However, in a reflective framework
like PUs, that provides full support for dynamic topologies,
the ability to change links between components can be easily
supported. While PUs topology is kept and controlled by the
executive, this does not mean that changes in topology must
be decided in the executive. In fact, decisions can be made

anywhere in the system, but they are only effective when they
are enforced by the executive. To provide similar operators
as defined by event-based systems we consider the executive
to act as the implicit hidden middleware supporting events.
The result is an explicit construct where publish/subscribe
messages can be handled. For this purpose, we provide each
PU with the output gate command. The executive is provided
with the input gate command, that receives a command and
the origin of the command. To support hierarchical event-
based systems, we extend PU network with the output gate
command, so publish/subscribe commands can be sent to
upper levels of the hierarchy.

JUSE supports the following executive commands to repre-
sent publish/subscribe systems:
Void publish(String aName, String

aGate, Closure dConverter, Closure
rConverter); where PU named aName publishes
output gate aGate, with direct converter dConverter
and reverse converter rConverter;

Void subscribe(String aName, String
aGate); where PU named aName subscribes gate
aGate and will receive notifications at gate aGate.

These operators establish g2g channels whenever there is an
intersection between the interest of publishers and subscribers.
The definition of hierarchical event-based systems is enabled
by the possibility to send/receive messages to/from the net-
work PU.

JUSE supports the following executive commands to destroy
links in publish/subscribe systems:
Void unpublish(String aName, String

aGate);
Void unsubscribe(String aName, String

aGate).
Although this can be seen as an exercise of expressing one

paradigm into another, this mapping combines advantages of
both techniques. The unifying approach allows multicast and
g2g topologies to co-exist. If we take the example of the last
section, while the links between the radar and the mobiles
can be easily expressed using publish/subscribe operators, a

224Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



pursuer launched to cancel a specific mobile will be better
specified using g2g operators. In every case the specification
ends up becoming g2g, but when using publish/subscribe op-
erators links are defined implicitly, providing a short notation
that in many cases becomes more convenient. The addition
of a new radar, for example, becomes quite simple, since the
radar needs only to publish its output gate xy.

The new representation of the Mobile PU presented in
Section II-B is given in Figure 5. Default gate command
and g2g links are provided to each PU so commands can be
transmitted. While the executive has the input gate command
linked to the output gate command of all other PUs, executive
output gate command is linked to network output gate cmd
so commands can be sent hierarchically to the upper level,
enabling dynamic scoping [6].

Fig. 5. Mobile PU supporting publish/subscribe operators.

A major contribution of the publish/subscribe paradigm
is a set of compact operators to express structural changes.
Gate-to-gate links require source and destination information
in order to establish a new channel. In some situations this
information is cumbersome to gather and publish/subscribe
operators can represent models in a simpler manner. However,
since the resulting topologies can still be expressed by g2g
networks, no increasing expressiveness is actually obtained.
We next provide an example that demonstrates the advantages
of the publish/subscribe operators.

B. Event-Based Surveillance System
We consider the event-based representation of the surveil-

lance system described in Section 3 and depicted in Figure
6. After the commands of Listing 3, the topology is changed
from the initial structure given by Figure 6(a) to the topology
of Figure 6(b).

1out.command({String s, Executive e-> e.publish(s, ’xy’, {->},
{String source, XY p-> p.setSource(source)})}) "In radar R1"

2out.command({String s, Executive e-> e.subscribe(s, ’xy’)}) "In
Mobile M1"

3out.command({String s, Executive e-> e.subscribe(s, ’xy’)}) "In
Mobile M2"

Listing 3. JUSE publish/subscribe commands to create the topology in Figure
6(b).

The commands originated at mobiles M1 and M2 are issued
by the respective executive and sent to the Surveillance ex-
ecutive through gates command. Line 1 publishes R1 output

gate xy. Line 2 subscribes to all output gates xy that have
been publishes and tries to create g2g channels to M1 input
gate xy. Line 3 is similar and it applies to mobile M2. Mobile
M3 did not subscribe any gate and it becomes stealthy since
it cannot be detected by any radar. The advantages of this
approach are self-evident. The introduction of new radars and
mobiles becomes very simple since the event-based executive
handles publications and subscriptions, freeing the modeler
from specifying g2g links. These links can be cumbersome to
establish as shown in this particular system.

The support in JUSE for systems requiring a hybrid specifi-
cation using events and request/reply can be exemplified by the
creation of a pursuer launched to cancel a specific threat. Upon
detection, the radar sends a signal to the executive to request
the creation of a pursuer and to make g2g links between the
pursuer and a specific mobile identified by the radar. Figure
7 depicts the surveillance system with pursuer P1 attached to
mobile M1. The radar and executive PUs are extended with
gate pursuer so the radar can make requests for purser
creation.

Fig. 7. Surveillance system with purser P1 targeting mobile M1.

JUSE executive action pursuer is given in Listing 4. The
executive finds the nearest purser to position aXY (Line 3),
adds the purser (Line 4) and links it to the mobile aName (line
5). These links are specified using g2g operations and they
would become difficult to be specified using publish/subscribe
operations.

1Void pursuer(String aName, Point aXY) {
2pursuer = findPursuerAt(aXY);
3add(pursuer);
4link(pursuer _name, ’xy’, aName ’xy’);
5}

Listing 4. Creation of pursuer P1 using g2g specification.

This solution requires the ability to program the executive
that no longer can be an implicit and hidden middleware layer
and needs to be made visible and reprogramable. A solution
in the event paradigm would require the use of content event-
based programming and the pursuer would only receive mes-
sages from a specific mobile. This solution, however, would

225Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



(a) Initial topology. (b) Topology after the radar R1 has published output gate
xy and M1-M2 have subscribed gate xy.

Fig. 6. Event-based surveillance system.

not be so elegant and mostly no so efficient since it would
require message conversion from a possibly large number
of mobiles. This solution would also require to disclose the
mobile name to the pursuer, breaking the modularity of the
approach.

C. Event-Based vs. Request/Reply

The multicast nature of events poses no difficulty in being
mapped into gate-to-gate communication. In the example of
the previous section, when a new mobile is added to the
surveillance system and subscribes gate xy it is immediately
linked to all radars in the systems, without the need to
explicitly find what are the current set of active radars, since
the executive can retrieve this information and use it to make
the required links. Analogously, when a new radar is created
and publishes gate xy it starts receiving data from all mobiles,
since the executive keeps tracks of all PUs having published
gate xy. The complementary situation is treated in a similar
form: when a mobile leaves the system by unsubscribing
gate xy, all radars stop receiving mobile position. Event-
based systems have been considered orthogonal to anonymous
request/reply programming [6]. This seems to be the case for
some request/reply systems, but it does not hold for PUs, as
shown here.

Event-based programming, through publish/subscribe con-
structs, has introduced a set of operators that provide a
compact specification for some types of changes in software
topology. However, these operators can be mapped into g2g
links defined in PUs. This situation is quite fortunate since
it allows the expression of event-based programming with
modular software units. Events can thus be integrated with
anonymous request/reply instead of being an additional form
of software specification.

The difficulty in integrating event-based and request/reply
approaches seems to be caused by the requirements event
systems impose on software topologies. As shown in the
examples, anonymous invocation is just one of the key factors
to integration, the other is the ability to modify software

topology during runtime. Anonymous requests/reply solutions
not exhibiting both features will thus provide limited support
for event-based systems.

We consider that a unifying effort is currently required given
the multiplicity and apparent disparate paradigms proposed
for software development. This situation forces practitioners
to master a large variety of paradigms, or in alternative, to
map models to a known paradigm that does not yield be best
representation. Since reality is, for complex systems, multi-
faceted, a unifying approach, like PUs, permits to choose the
best paradigm to each aspect of the system while guaranteeing
the overall integration.

IV. RELATED WORK

Hierarchical and modular principles have been used as a
powerful heuristic for handling complex problems in many
fields. One of the first formal descriptions of modular de-
composition have been made in the area of General Systems
Theory [1]. The decomposition of software into modules has
later been advocated in software engineering [3]. On this latter
work, however, the hierarchical decomposition of software
has not been really introduced but rather hierarchy is used
as synonymous of layered (software). Recently, there has
been a growing interest in modular representations and large
variety of formalisms have been modified/created [2], [13]–
[15]. Likewise General Systems Theory representations, these
formalisms are not compliant with request/reply principles,
imposing awkward software specifications. Given these lim-
itations, many formal models become virtually useless for
practical use in software projects.

To overcome the limitations of formal descriptions, so
called Architecture Definition Languages (ADLs) have been
developed [4], [16], [17]. However, ADLs are mainly fa ades
decoupling specification from implementation as pointed in
[18]. ADLs description need thus to be translated into a
programming language. This process is somewhat similar to
the one used by the Unified Modeling Language [19] with

226Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



the limitations and drawbacks of separating specification from
implementation.

To bridge this gap, hierarchical and modular constructs
have been introduced into existing programming languages
[18], [20], [21]. However, none of theses approaches pro-
vide the general support to modular hierarchical software as
provided by PUs. Limitations include the lack of converters
and input/output functions. Additionally, these systems do not
provide full support for topology adaptation. In particular, they
lack the ability to represent hierarchical mobility, as supported
by PUs [7].

The use of event-based programming has also been ad-
vocated as an alternative to anonymous request/reply [22],
(the reverse we have described in this paper). However, the
advantages are only apparent since signal wiring diagrams [22]
need to be manually mapped into object-oriented request/reply
languages becoming, in some aspects, similar to ADLs.

V. CONCLUSION AND FUTURE WORK

PUs provide a powerful framework for developing reusable
software units. This approach supports hierarchical and modu-
lar software development, permitting to handle complexity by
partitioning large models into smaller and independent units.
The introduction of converters and input/output functions
provide a great flexibility to software interconnection. PUs
also provide full support for dynamic software topologies. In
particular, we have shown that the ability to add and remove
software channels at runtime permits to describe the topic
event-based programming style using gate-to-gate connections
supported by PUs. This work has demonstrated that topic
event-based programming can be regarded as a particular case
of anonymous request/reply. Callbacks, used in the Observer
pattern and the Composite pattern, were also shown to be
particular cases of an anonymous request/reply representation
supporting converters and input/output functions. As future
work we intend to study the requirements for supporting con-
tent event-based programming and to introduce the required
operators to represent this paradigm in PUs. The representation
of event-based scoping exploiting hierarchical modeling also
looks promising.

ACKNOWLEDGMENT

This work was supported by the Portuguese Foundation for
Science and Technology under project PTDC/EIA-EIA/100-
752/2008.

REFERENCES

[1] A. Wymore, A Mathematical Theory of Systems Engineering: The
Elements. Krieger, 1967.

[2] R. Allen and D. Garlan, “A formal basis for architectural connection,”
ACM Transactions on Software Engineering and Methodology, vol. 6,
no. 3, pp. 213–249, March 1997.

[3] D. Batory and S. O’Malley, “The design and implementation of hierar-
chical software systems with reusable components,” ACM Transactions
on Software Engineering and Methodology, vol. 1, no. 4, pp. 355–398,
1992.

[4] D. Garlan, R. Monroe, and D. Wile, “ACME: An architecture description
interchange language,” in Conference of the Centre for Advanced Studies
on Collaborative Research, 1997.

[5] D. Luckham and J. Vera, “An event-based architecture definition lan-
guage,” IEEE Transactions on Software Engineering, vol. 21, no. 9, pp.
70–93, 1996.

[6] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event Based Systems.
Springer, 2006.

[7] F. Barros, “System and method for programming using independent and
reusable software units,” US Patent 6851104 B1, February 2005.

[8] ——, “Modeling formalisms for dynamic structure systems,” ACM
Transactions on Modeling and Computer Simulation, vol. 7, no. 12,
pp. 505–515, 1997.

[9] ——, “Achieving reuse with pluggable software units,” in 12th Interna-
tional Conference on Software Reuse: Top Productivity through Software
Reuse. Lecture Notes in Computer Science, Volume 6727, 2011, pp.
183–191.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[11] F. Barros, “Representing hierarchical mobility in software architectures,”
in International Workshop on Software Engineering for Adaptive and
Self-Managing Systems, 2007.

[12] OMG, CORBA Component Model Specification, 2006.
[13] J. Bradbury, “Organizing definitions and formalisms for dynamic soft-

ware architectures,” Queens University, Canada, Tech. Rep. 2004-77,
2004.

[14] F. Oquendo, “Formally modelling software architectures with the UML
2.0 profile for π-ADL,” ACM SIGSOFT Software Engineering Notes,
vol. 31, no. 1, pp. 1–13, 2006.

[15] F. Arbab, “Reo: A channel-based coordination model for component
composition,” Mathematical Structures in Computer Science, vol. 14,
pp. 329–366, 2004.

[16] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[17] M. Shaw and P. Clements, “The golden age of software architectures: A
comprehensive survey,” Carnegie-Mellon University, USA, Tech. Rep.
CMU-ISRI-06-101, 2006.

[18] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: Connecting software
architecture to implementation,” in International Conference on Software
Engineering, 2002, pp. 187–197.

[19] J. Arlow and I. Neustadt, UML 2 and the Unified Process: Practical
Object-Oriented Analysis and Design. Addison, 2005.

[20] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J. Stefani, “The
FRACTAL component model and its support in Java,” Software Practice
and Experience, vol. 36, no. 11–12, pp. 1257–1284, 2006.

[21] V. Sreedhar, “Mixinup components,” in International Conference on
Software Engineering, 2002, pp. 198–207.

[22] T. Faison, Event-Based Programming: Taking Events to the Limit.
Apress, 2006.

227Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances


