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Abstract—Safety-critical systems are complex entities, which,
due to severe regulations, demand continuous development of
approaches for supporting their construction. To keep safety-
critical systems free of failures, it is fundamental to identify
potential failure modes and their causes, and to eliminate them.
One major approach to solving failure modes is the application
of safety patterns at the architectural level of such systems.
However, this is not trivial, since safety patterns have not been
represented in a widely accepted way that would facilitate their
understanding and use. In order to contribute to filling this gap,
we present in this paper an approach for representing safety
patterns in a way that allows them to be properly modeled and
also offers means to support their application in architectural
models. To this end, we propose the joint use of a UML profile
and rules that are descriptive structures stating safety patterns
application constraints. We have observed that our approach
makes the safety patterns easy to represent and apply, thus
contributing to the development of safety-critical systems.

Keywords-Safety Pattern; UML Profile; Pattern Descriptive
Rule; Architectural Model.

I. INTRODUCTION

Domains such as automotive and avionics demand high
integrity levels between hardware and software to ensure
proper execution of their systems, which, in turn, are con-
stantly becoming larger and more complex [1]. A com-
mercial airplane, for instance, contains systems that con-
trol ground proximity, navigation, and engine commands,
amongst others. Almost all of these systems are safety-
critical; i.e., a failure would lead to a catastrophic situation,
endangering human lives and/or the environment. To mini-
mize the probability of failure in safety-critical systems, it
is necessary to integrate tactics based on well-known fault-
tolerant methods to deal with failure avoidance, detection,
and containment, for example, monitoring and redundancy
[2]. Most of these tactics are concretized by means of
specific design patterns, best known as Safety Patterns.
Examples of safety patterns are Watchdog, Homogeneous
Redundancy, and Sanity Check [3].

The growing popularity of model-driven approaches, such
as Model Driven Architecture (MDA) and Model Trans-
formation, has triggered the use of such tactics in the
construction of safety-critical systems [1]. In this context,
UML (Unified Modeling Language) [4] has been used by

several MDA-based approaches for representing the required
models. The reason is the diversity of elements and diagrams
offered by UML, which provides means for expressing
systems from diverse perspectives [5], and the existence
of extension mechanisms like UML Profiles, which allows
modeling particularities of domains by means of customiza-
tions of UML’s syntax and semantics [6].

The UML’s official specification for representing design
patterns consists of using Parameterized Collaborations [7].
However, due to singularities that are inherent to safety-
critical systems and safety patterns, UML and the others
initiatives mentioned in the literature [8][7][9][10][11] are
not appropriate for representing safety patterns in a stan-
dardized way that jointly facilitates their understanding and
supports the automatized application of patterns in archi-
tectural models. Actually, the existent approaches belong to
one of two extremes: (1) too complex and far from intu-
itive, requiring deep knowledge about formal specification
techniques for representing patterns, or (2) providing only
subjective information about the pattern that is useful only
for reasoning on high-level concerns, which is important,
but not enough to support the application of safety patterns
in architectural models.

To fill this gap, we propose an approach for representing
safety patterns that offers means for graphically expressing
the structure and purpose of a safety pattern, and also
provides information to facilitate its automatized application
in architectural models by means of Model Transformations.
In a nutshell, this corresponds to the joint use of UML Profile
and descriptive rules stating safety pattern constraints that
are worth being considered for their application in archi-
tectural models. After representing a set of safety patterns
relevant in the domain of safety-critical systems described in
[3] with our approach, we observed that the safety patterns
became easier to represent and reuse, thus indicating our
contribution to the construction of safety-critical systems.

The remainder of this paper is structured as follows: In
Section II, the overall context is presented; in Section III, the
related works are described; in Section IV, we present our
approach; in Section V, we show the complete representation
of a safety pattern using our approach; and in Section VI
we conclude and present perspectives for future work.
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II. CONTEXT

A. Safety-Critical Systems
Safety-critical systems are those that, in case of failure,

will cause unacceptable drastic consequences to human
beings and/or to the environment [12].

There are four concepts that are intrinsically related to
safety-critical systems [12]: (i) Mistake: Cause of a fault
happening during development; (ii) Fault: The adjudged or
hypothesized cause of an error; (iii) Error: If the system is
running, an error is an erroneous state that could lead to
a failure; and (iv) Failure: An event that occurs when the
system terminates its ability to provide the correct service.
As perceived, a Failure is caused by an Error, which is
caused by a Fault, which is a result of a Mistake. According
to Aviz̆ienis et al. [12], all faults that might affect a system
during its existence are part of specific Fault Classes, which,
in turn, are grouped into specific Fault viewpoints. With
respect to failures, Aviz̆ienis et al. [12] discuss service failure
modes. A service failure happens when a service delivered
by a system deviates from its correctness, and service failure
modes are the different ways in which the deviations are
perceived.

B. Safety Tactics and Safety Patterns
Safety tactics are architectural design decisions made

to avoid or handle failures that safety-critical systems are
subject to [2]. They are based on well-known fault-tolerant
design methods, and were inspired by the notion of ar-
chitectural tactics proposed by the Software Engineering
Institute (SEI). Architectural tactics are “means of satisfying
a quality-attribute-response measure by manipulating some
aspect of a quality attribute model through architectural
design decisions.” [13]. Following the same principle, Wu
and Kelly developed an analytic safety model focusing on
the relationship between safety attributes and architectures
with respect to failures. Based on this analytic safety model,
they organized safety tactics into three categories: (i) tactics
for failure avoidance, (ii) tactics for failure detection, and
(iii) tactics for failure containment. To be compliant with
the SEI’s tactics approach, they proposed a hierarchical
organization for such tactics, as illustrated in Figure 1.

Due to the nature of safety-critical systems, the decision
about whether the tactics should be addressed at the software
or at the hardware level are mainly driven by regulations,
which state exactly where and how a tactic must be applied
[2].

Safety tactics should be seen as the highest abstraction
level of a safety pattern. A safety tactic will be addressed
in a safety-critical system when any pattern (or combination
of patterns) that implements the tactic is considered in the
system architecture.

Safety patterns have been considered for years mainly in
the Electrical Engineering field, due to the fact that safety-
critical systems, in most cases, are the result of a very tight

synergy between the hardware and the software embedded in
electronic devices - so-called Embedded Systems [14]. How-
ever, methods originating from the Computer Science field
have been widely considered in the development of such
systems, mainly because the software portion of embedded
systems is continuously acquiring more responsibility. In
this regard, safety patterns have been considered a topic of
interest for software engineers.

Some aspects of safety patterns that make them special
and demand specific mechanisms for dealing with them are
[3]: (i) they can be essentially formed by roles that represent
software or hardware entities, or by a combination of both,
demanding specific ways to show how these entities are
related; (ii) a great number of roles are common to many
safety patterns, differentiating basically in how they are
connected and distributed along execution channels. Execu-
tion channels are pipes comprised of roles that sequentially
transform input data into output data [3]; (iii) each safety
pattern is meant to avoid, detect, or do the containment of
a failure and faults [12]. Therefore, it is necessary means to
deal with the reuse of roles while modeling safety patterns,
which will ensure that the roles are properly connected and
are associated with the proper execution channel. Moreover,
there must exist means to indicate the fault class and service
failure mode that the safety pattern is supposed to handle, as
well as the safety tactic that the safety pattern implements.

With respect to the description and representation of
safety patterns, we considered the general pattern description
principle proposed by Alexander [15] that, when reasoned
in our context, states that a pattern description also provides
means with which can be observed how the resulting system
architecture will look like after the application of a pattern.
This generative property enforces that a pattern description
should not only show the characteristics of a pattern, but
coach how to apply it [16]. In this regard, we understand
that a safety pattern constitutes a set of entities related to
each other by specific rules, which, by definition, represent
knowledge that states actions to be followed for the achieve-
ment of a purpose [17].

C. UML Profiles

UML Profiles are mechanisms for specifying rules to
be used in parts of the model of a system where specific
constraints are required [7]. Profiles are based on stereotypes
and tags, which are the concrete entities that must be
applied to UML elements such as classes, components, and
connectors, with the aim of ruling parts of a system with
respect to constraints of the domain or of the modeling
process.

III. RELATED WORK

In the computer science field, software pattern spec-
ification and representation have been widely discussed,
mainly after the work of GoF (Gang of Four) [18]. The
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Figure 1. Hierarchical organization of safety tactics (extracted from [2]).

UML’s official pattern representation approach is based on
a parameterized collaborations model, rendered in a way
similar to UML template classes [7]. Rosengard and Ursu
[19] proposed an ontological representation for patterns.
Mak et al. [20] proposed an extension to UML 1.5, using
meta-modeling techniques and collaboration diagrams to
specify the collaboration among the elements of the model.
Guennec et al. [21] proposed the use of UML collaboration
models combined with the Object Constraint Language
(OCL) for representing patterns. Eden et al. [10] proposed
a declarative and higher-order language, called LePUS, to
represent generic solutions indicated in the patterns. Kim
[9] proposed a language called Role-Based Meta modeling
Language (RBML), which comprises abstract syntax, meta
model level constraints, and constraint templates. Selonen et
al. [11] established a language for defining profiles hierarchy,
which is derived to support patterns representation using
only UML Profiles.

With respect to safety patterns, Douglass [3] [22], Pul-
lum [23], Koren and Krishna [24], and Hanmer [25] have
documented a vast list of safety patterns. However, their
presentation of these patterns focuses mainly on general
information related to the general structure, the problem
addressed, the context of use, and the consequences.

Regarding the representation of safety patterns, Armoush
et al. [8] proposed an approach for representing safety pat-
terns that consists of a traditional table template for pattern
documentation, with a series of fields that address subjective
information like the safety pattern’s name, problems that it
solves, and consequences of use. Such a canonical struc-
tural form of representing a pattern is basically useful for
understanding the nature and purpose of the patterns, but
does not offer any information to support the proper pattern
application in architectural models.

An approach that is closer to ours is the one proposed
by Tichy and Giese [26], which uses degradation rules to
describe the structure and deployment restrictions of safety
patterns and specify the behavior that is executed while

degrading the systems functional or non-functional proper-
ties. Actually, such rules are used only to complement the
structural and deployment documentation of safety patterns.
On the other hand, our rules were built foreseeing automa-
tized processes of safety patterns application in architectural
models by means of model transformation mechanisms.

IV. OUR APPROACH

Our approach for representing safety patterns aims at
facilitating the modeling and application of safety patterns in
the architectures of safety-critical systems. For this, it jointly
uses:

1) Graphic models of the safety pattern that show (i) the
structure of the safety pattern in terms of the roles
that compose the pattern and how they are connected,
modeled with elements defined in the Safety UML
Profile; (ii) the safety tactic that the pattern is related
to; (iii) the fault class, and (iv) the service failure mode
for which the pattern is appropriate.

2) Pattern Descriptive Rules, which express detailed de-
sign constraints of the safety pattern, providing in-
formation that is useful to support the construction
of statements used by mechanisms that perform auto-
matic application of safety patterns modeled with the
Safety UML Profile, in architectural models.

The remainder of this section covers: (i) the Safety UML
Profile; (ii) how to model safety patterns using elements
defined in the Safety UML Profile; and (iii) the Pattern
Descriptive Rules.

A. Establishing the Safety UML Profile

We have defined an UML profile, the so-called Safety
UML Profile, which aggregates stereotype elements rep-
resenting the roles of each safety pattern. Actually, each
role of a safety pattern becomes a stereotype of the Safety
UML Profile. For instance, Figure 2 shows the roles of
the Protected Single Channel Pattern (PSC). This pattern
is composed of six roles: Input Sensor, Input Processing,
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Data Transformation, Data Validation, Output Processing,
and Actuator. Each role corresponds to a stereotype in the
Safety UML Profile. The role Input Processing, for example,
becomes the stereotype �Input Processing�.

Figure 2. Roles of the Protected Single Channel pattern mapped to
stereotypes of the Safety UML Profile.

We understand that a unique UML profile is enough to
comprise the entities required for a concise representation of
a safety pattern, due to the fact that the roles of the safety
pattern are very often repeated in most patterns, differing
basically in how these roles are linked, the execution channel
that each role is part of, and in the quantity of elements that
are present in a specific pattern. For instance, consider the
PSC (shown in Figure 2) and the Triple Modular Redun-
dancy pattern (TMR) [3] (shown in Figure 3). It can be
seen that the TMR contains roles that are also present in the
PSC, but that are replicated along three execution channels.
TMR contains an additional role called Voter, while PSC has
another one called Data Validation. To address the roles of
the TMR, the Safety UML Profile shown in Figure 2 (which
already contains the roles of the PSC) is modified by adding
only a new stereotype that represents the role Voter.

Each stereotype representing a role of a safety pattern
has associated with it a textual description of the role. Such
information is useful for engineers to better understand the
purpose of each role. There is no standardized way for the
description. However, it must be detailed enough to ensure
that the purpose of the role is clearly understandable.

Beyond the roles that compose the safety patterns, the
Safety UML Profile also defines three other stereotypes:
�Safety Tactic�, �Fault Class�, and �Service Failure
Mode�. These stereotypes are respectively used to indicate
the safety tactic (cf. Figure 1) that the safety pattern is
associated with, and the fault classes [12] and service failure
modes [12] that a safety pattern solves when applied in

Figure 3. Triple Modular Redundancy pattern and its multiple execution
channels (adapted from[3]).

the architecture of a safety-critical system. This is done by
adding of three UML classes in the same diagram where the
structure of a safety pattern is represented with instances
of the stereotypes available in the Safety UML Profile.
The class associated with the fault classes is stereotyped
with the stereotype �Fault Class�, and named according
to the fault class that the safety pattern solves. The class
associated with the service failure modes is stereotyped with
the stereotype �Service Failure Mode�, and named with
the Service Failure Mode that the safety pattern solves. The
class associated with the safety tactic is stereotyped with the
stereotype �Safety Tactic�, and is named according to the
safety tactic that the safety pattern is associated with.

B. Representing Safety Patterns with Safety UML Profile

According to our approach, the structures of safety pat-
terns are designed using instances of the stereotypes avail-
able in the Safety UML Profile. The reason for using
instances is that we understand that the stereotypes defined
in the profile are reusable elements, which are present in
multiple patterns, since, as already mentioned, the same role
is present in various patterns. For example, consider that
the architect wants to model the PSC pattern (cf. Figure
2). In a separate diagram, he/she creates instances of the
stereotypes available in the Safety UML Profile that comprise
the PSC pattern, and connects these stereotype instances
with directed links indicating the direction of the information
flow, as shown in Figure 4.

Due to the fact that safety patterns can be composed of
hardware, software, or both entities at the modeling level,
it is important to reason on them in terms of functional
entities, regardless of their roles as hardware or software. For
instance, the Data Transformation role of the PSC pattern

231Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Figure 4. Protected Single Channel pattern specified with instances of
stereotypes defined in the Safety UML Profile.

can be a hardware or a software entity. Representing the
roles with stereotypes offers the flexibility of mapping the
Data Transformation of the PSC pattern, for instance, to
software components, deployment units, or any other UML
element of the architectural model, once they are conceptual
entities.

If we take a closer look at Figure 2, we observe that
the roles of the PSC pattern, except for Input Sensor and
Actuator, are surrounded by a boundary called Channel.
A particular characteristic of safety patterns is that the
roles that compose them, with the exception of Sensors
and Actuators, run under execution channels [3]. Our way
of dealing with this characteristic is to use Tagged Values
[7]. Each stereotype instance used for designing a specific
safety pattern is tagged with Name ≡ ExecutionChannel
and Value ≡ Name of the Channel. When the roles are
under a unique execution channel, as in the PSC pattern,
each stereotype instance is tagged with a tag that has Tag
Name ≡ ExecutionChannel, and Tag Value ≡ Channel A.
In other patterns, such as the TMR pattern, the roles are
under multiple execution channels (cf. Figure 3). In this
case, the stereotype instances of this pattern (cf. Figure
5) are tagged in accordance with the execution channel
they are part of. This means that the three instances of
the stereotype that represents the role Input Processing, for
instance, are tagged differently, due to the fact that they run
under different execution channels. Their tags will have Tag
Name ≡ ExecutionChannel, and Tag Value ≡ Channel A,
Channel B, and Channel C, respectively. On the other hand,
the roles Input Sensor, Voter, and Actuator will have Tag
Name ≡ ExecutionChannel and Tag Value ≡ null because
they are not associated with any execution channel.

With respect to the Fault Class, Service Failure Mode,
and Safety Tactic of the TMR pattern, consider Figure 5,
which shows the TMR pattern specified with stereotypes
instances. On the bottom left there are (i) a class called

Random Fault, stereotyped with �Fault Class�, (ii) a class
called Content Failure, stereotyped with �Service Failure
Mode�, and (iii) a third class called Failure Containment,
stereotyped with �Safety Tactic�. This indicates that the
TMR pattern is a concretization of a failure containment
tactic, and is appropriate for dealing with random faults and
content failures.

C. Pattern Descriptive Rules for representing Design Con-
straints of Safety Patterns

We understand that a safety pattern constitutes a set of
entities related to each other by a specific rule. Therefore,
we propose a set of rules, which we call Pattern Descriptive
Rules, which were designed to support the future construc-
tion of statements used by mechanisms that perform auto-
matic application of safety patterns in architectural models.
An example of such a mechanism are Model Transformation
rules, which provide indications on how the structure of a
model is orchestrated in the model transformation processes,
in terms of which elements should be created, updated, or
deleted [27].

Our Pattern Descriptive Rules are structured to describe
each specific role that participates in a safety pattern, which
was previously represented with instances of stereotypes
defined in the Safety UML Profile. As already mentioned,
we argue that the participation of a role in a safety pattern
composition is determined by (i) the information flow among
the roles in each pattern; (ii) the quantity of instances of the
same role in each safety pattern; and (iii) how the instances
of the same role are distributed along execution channels.
For example, in the PSC Pattern (cf. Figure 4), there is only
one instance of the Output Processing role, which receives
input from the Data Processing and provides output to the
Actuator. On the other hand, in the TMR pattern (cf. Figure
5), there are three instances of the Output Processing role,
each one in a different channel, and all of them providing
output to the Voter role.

In this regards, our approach states that for each role that
participates in a safety pattern:

1) There is one Pattern Descriptive Rule representing
the participation of the role (this includes information
about the execution channel where the role is located).

2) There is one Pattern Descriptive Rule describing to
which other roles the output flow is directed to.

For instance, for the Input Processing role in the PSC
pattern (cf. Figure 4), there is one Pattern Descriptive Rule
related to the role itself and its execution channel, and one
Pattern Descriptive Rule related to the connections between
the Input Processing and the Data Transformation, and
another one between the Input Processing and the Data
Validation.

The Pattern Descriptive Rule that we propose for
representing a role and its execution channel is:
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Figure 5. Triple Modular Redundancy pattern specified with elements of the Safety UML Profile.

rule Rule Name:
σ:UML ∪ ((ε ∈ κ) ∈ ψ: Safety UML Profile)

where,

σ ≡ Architectural model, modeled according to the standard UML
meta model, where the safety pattern will be applied.
ε ≡ UML element representing the role instance.
κ Execution channel where the role instance is located.
ψ ≡ Safety pattern modeled with instance of stereotype defined in
the Safety UML Profile.

This Pattern Descriptive Rule is read as: The architectural
model σ is modified by the insertion of a UML element
that represents the role instance ε, which is tagged with
information related to the execution channel κ and composes
the safety pattern ψ.

As already mentioned, if a role instance is not part of an
execution channel, like the Input Sensor and Actuator in the
PSC, and Input Sensor, Actuator, and Voter in TMR, the tags
will have Tag Name ≡ ExecutionChannel, and Tag Value
≡ null.

The Pattern Descriptive Rule that we propose for
representing connections between roles in a safety pattern
is:

rule Rule Name:
τ ∪ (

∑
λ ∈ (ε ∈ κ))

where,

τ ≡ σ:UML ∪ (
∑
ε ∈ ψ: Safety UML Profile), i.e., Architectural

model σ containing all the roles ε that compose the safety pattern
ψ being applied, but without presenting connections among the
role instances.

λ ≡ one connection originated in the element representing a
specific role ε that is part of an execution channel κ.

This Pattern Descriptive Rule is read as: The architectural
model with all the roles ε that compose the safety pattern
ψ being applied is modified by the insertion of all the
connections λ originated in the element that represents a
specific role ε, which, in turn, is part of an execution channel
κ.

For example, consider the PSC pattern (cf. Figure 4).
The rule that represents the Input Processing role of this
pattern and its execution channel is:

rule Input Processing of the PSC pattern Rule:
M1:UML ∪ ((Input Processing ∈ Channel A) ∈ PSC pattern:

Safety UML Profile)

This rule states that a UML element, stereotyped
with Input Processing and tagged with Tag Name =
ExecutionChannel, and Tag Value = Channel A, must be
introduced in the UML model M1 in the application of the
PSC pattern. It is worth emphasizing that every role that
composes the PSC pattern has a rule like this one. Consider
now the existence of a model M2, containing six UML
elements, one for each role that composes the PSC pattern.
The Pattern Descriptive Rule that represents connections
originated in the Input Processing role is:

rule Connections of the Input Processing of PSC pattern:
M2 ∪ (Connections Input Processing(Channel A): Data

Transformation(Channel A), Data Validation(Channel A)), where:

M2 = (M1 ∪ (
∑

Roles ∈ PSC pattern: Safety UML Profile))
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This Pattern Descriptive Rule states that the model M2 is
modified by adding the connections between the elements
representing the Input Processing role and the elements that
receive its output: Connection 1 = Input Processing and Data
Transformation; Connection 2 = Input Processing and Data
Validation. In this case, all the role are under the same
execution channel. However, it is important to have such
indication for the case of association of roles in different
execution channels.

The graphical representation of safety patterns with
stereotypes instances is an appropriate front-end that allows
engineers to reason on the safety pattern structure (roles
and connections) in terms of abstract functional entities.
Moreover, it provides means to state safety specificities (fault
classes, services failure modes, and safety tactics) that are
singular to each safety pattern. Our Pattern Descriptive Rules
state actions that foresee the automatized application of
safety patterns in architectural models, providing fundamen-
tal highlights on how the artifacts necessary to perform the
complete pattern application using Model Transformation
mechanisms should look like. When combining the graphical
representation with the Pattern Descriptive Rules, engineers
have means to represent the pattern, taking in consideration
not only the pattern design, but also explicitly indicating
application constraints.

V. REPRESENTING THE HOMOGENEOUS REDUNDANCY
PATTERN WITH OUR APPROACH

We have represented with our approach the safety patterns
proposed by Douglass [3] and observed that they become
easier to represent and reuse. Due to space constraints,
however, for this section, we selected the Homogeneous
Redundancy pattern to be represented with our approach.
This pattern is composed of seven roles: Input Sensor, Input
Processing, Data Transformation, Data Validation, Output
Processing, Actuation Validation, and Actuator. Consider
that initially, the Safety UML Profile contains only three
stereotypes: �Fault Class�, �Service Failure Mode�,
and �Safety Tactic�. The first step is to create stereotypes
on it that represent the roles of the Homogeneous Redun-
dancy pattern in the Safety UML Profile, as shown in Figure
6. At this point, each role has an associated documentation
providing general information of it, as can be seen in Table
I.

After having the roles available in the Safety UML Profile,
the pattern structure is created in a separate diagram using
instances of these stereotypes (cf. Figure 7). To clearly
differentiate between the execution channels that the roles
are part of, the roles in light gray are part of the Primary
Actuation Channel, the ones in dark gray are part of the
Secondary Actuation Channel, and the white elements are
sensors and actuators that are not part of any channel. The
roles that are part of the Primary Actuation Channel are

Role Name Role Description

Input Sensor This is the source of the information used to
control the actuator.

Input Processing Acquires and performs the first processing on the
data sent by the Primary Input Sensor.

Data Transformation Performs a single transformation step on the input
data.

Data Validation Validates if the data is correct or reasonable, and
also stops the processing on the current channel
and begins it on the second channel when a fault
is detected.

Actuation Validation Compares the output to the commanded output,
and determines when some application specific
fault occurs.

Output Processing Performs the last stage of the data transformation,
and controls the Actuator.

Actuator This is the device performing the actuation. This
is the actuator used by default.

Table I
DESCRIPTION OF ROLES THAT COMPOSE THE HOMOGENEOUS

REDUNDANCY PATTERN.

tagged with Tag Name ≡ ExecutionChannel, and Tag Value
≡ Primary Actuation Channel. The roles that are part of the
Secondary Actuation Channel are tagged with Tag Name ≡
ExecutionChannel, and Tag Value ≡ Secondary Actuation
Channel. The sensors and actuators are tagged with Tag
Name ≡ ExecutionChannel and Tag Value ≡ null. The three
classes on the bottom left side of Figure 7 represent the Fault
Class, Service Failure Mode, and Safety tactic related to
the Homogeneous Redundancy pattern, which are Random
Fault, Content and Timing, and Functional Redundancy,
respectively.

For each role that composes the Homogeneous
Redundancy pattern, there is one rule representing the
role and its execution channel, and one rule describing to
which other roles its output flows are directed. For this
example, consider the UML model called SourceModel as
the original model where the Homogeneous Redundancy
pattern is to be applied, and another UML model called
TargetModel as the model that already contains elements
representing every role of the Homogeneous Redundancy
pattern. The rule representing the role Input Sensor (so
called Primary Input Sensor) associated with the Primary
Actuation Channel is:

rule Primary Input Sensor of Homogeneous Redundancy:

SourceModel:UML ∪ ((Primary Input Sensor ∈ null) ∈ Homogeneous

Redundancy pattern: Safety UML Profile)

This Pattern Descriptive Rule is read as: The architectural
UML model SourceModel is modified by the insertion of an
UML element that represents the role Primary Input Sensor,
which is tagged with Tag Name = ExecutionChannel,
and Tag Value = null, and composes the safety pattern
Homogeneous Redundancy. It is worth highlighting that the

234Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



Figure 6. Safety UML Profile with the Roles of the Homogeneous Redundancy pattern.

Figure 7. Homogeneous Redundancy pattern modeled with instances of stereotypes defined in the Safety UML Profile.

tag ExecutionChannel has a value null because it is not
part of any Execution channel.

The following Pattern Descriptive Rule is related to the
Primary Input Processing, and is read as: The architectural
UML model SourceModel is modified by the insertion
of an UML element that represents the role Primary
Input Processing, which is tagged with Tag Name =
ExecutionChannel, and Tag Value = Primary Actuation
Channel, and composes the safety pattern Homogeneous
Redundancy.

rule Primary Input Processing of Homogeneous Redundancy:

SourceModel:UML ∪ ((Primary Input processing ∈ Primary Actuation

Channel) ∈ Homogeneous Redundancy pattern: Safety UML Profile)

The rules for the others roles that are part of the Primary
and Secondary Actuation channel, as well as the Secondary
Input Sensor and both actuators, follow the same con-
struction principle. For instance, the rules representing the
Secondary Data Validation role and the Secondary Actuator
are as follows:

rule Secondary Data Validation of Homogeneous Redundancy:

SourceModel:UML ∪ ((Secondary Data Validation ∈ Secondary Actuation

Channel) ∈ Homogeneous Redundancy pattern: Safety UML Profile)

This Pattern Descriptive Rule is read as: The architectural
UML model SourceModel is modified by the insertion of
an UML element that represents the role Secondary
Data Validation, which is tagged with Tag Name =
ExecutionChannel, and Tag Value = Secondary Actuation
Channel, and composes the safety pattern Homogeneous
Redundancy.

rule Secondary Actuator of Homogeneous Redundancy:

SourceModel:UML ∪ ((Secondary Actuator ∈ null) ∈ Homogeneous

Redundancy pattern: Safety UML Profile)

The Pattern Descriptive Rule above, which describe the
Secondary Actuator of Homogeneous Redundancy pattern,
is read as: The architectural UML model SourceModel is
modified by the insertion of an UML element that repre-
sents the role Primary Actuator, which is tagged with Tag
Name = ExecutionChannel, and Tag Value = null, and
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composes the safety pattern Homogeneous Redundancy. As
with the Primary Input Sensor peviously mentioned, the tag
ExecutionChannel has the value null because it is not part
of any Execution channel.

For describing the rules that represent the connections of
the roles of the Primary and Secondary Actuation Channel,
as well as the Input Sensors and Actuators, consider
the SourceModelWithRoles as the original source model
(SourceModel) modified by the addition of representatives
for every role of the Homogeneous Redundancy pattern (or,
using our notation, SourceModelWithRoles = (SourceModel ∪ (

∑
Roles ∈

Homogeneous pattern: Safety UML Profile))).

The following Pattern Descriptive Rule represents the
connections originated in the Primary Input Sensor that
connects it with the Primary Input Processing, and is read
as: The architectural model containing all the roles that
compose the safety pattern Homogeneous Redundancy is
modified by the insertion of the connections that have
origin in the element that represents the role Primary Input
Sensor, and that link it with the element that represents the
role Primary Input Processing, which, in turn, is part of
the Primary Execution Channel.

rule Connections of the Primary Input Sensor of Homog. Redundancy Pattern:

SourceModelWithRoles ∪ (Connections Primary Input Sensor: Primary Input

Processing (Primary Actuation Channel)

The rule representing the connections originated in the
Primary Input Processing is:

rule Connections of the Primary Input Processing of Homog. Redundancy

Pattern:

SourceModelWithRoles ∪ (Connections Primary Input Processing: Primary

Data Transformation (Primary Actuation Channel); Primary Data Validation

(Primary Actuation Channel))

This rule is read as: The architectural model containing
all the roles that compose the safety pattern Homogeneous
Redundancy is modified by the insertion of the connections
that have their origin in the element that represents the role
Primary Input Processing (part of the primary execution
channel), and that link it with the elements that represent
the role Primary Data Transformation and the role Primary
Data Validation, which are both part of the Primary Execu-
tion Channel.

The rule that represents the connections originated in the
Primary Data Validation is:

rule Connections of the Primary Data Validation of Homog. Redundancy

Pattern:

SourceModelWithRoles ∪ (Connections Primary Data Validation: Secondary

Data Validation (Secondary Actuation Channel))

This rule should be read as: The architectural model
containing all the roles that compose the safety pattern
Homogeneous Redundancy is modified by the insertion of
the connections that have their origin in the element that
represents the role Primary Data Validation (part of the
primary execution channel), and that link it with the element
that represents the role Secondary Data Validation, which,
in turn, is part of the Secondary Execution Channel.

As our approach requires two rules per role that compose
a safety pattern (one rule describing the role itself and its
execution channel, and another one describing the connec-
tions originated in the role), the complete representation
of the Homogeneous Redundancy pattern consists of the
model shown in Figure 7, and additional twenty eight Pattern
Descriptive Rules. Therefore, due to space limitation it is
not possible to show all the rules. However, as already
mentioned, they look similar to the ones previously shown,
with the appropriate changes of the connected roles instances
and the actuation channel they are part of.

It is important to emphasize that the rules described
in this work are not enough to ensure the application of
a safety pattern in an architectural model. Actually, our
Pattern Descriptive rules are to Model Transformation rules
as algorithms are to Imperative languages. It means that they
are language independent and, when considered together
with the information available in the graphical model (for
instance Figure 7), offer the basis for constructing model
transformation rules in languages like TRL or ATL [27],
which will ensure the automatic application of safety pat-
terns in architectural models of safety critical systems, by
means of model transformation mechanisms.

VI. CONCLUSION AND FUTURE WORKS

This work was motivated by the lack of ways to represent
safety patterns in a way that engineers can reason on
the safety patterns composition in terms of the functional
entities that comprise them, and on the safety patterns
constraints that should be considered when applying them
in architectural models. To fill this gap, we have proposed
a safety pattern representation approach that consists of the
joint use of: (i) a graphical representation of safety pattern
using elements defined in a UML profile called Safety UML
Profile; and (ii) a set of pattern descriptive rules that describe
each role participation in the safety patterns, its execution
channel, and the connections of each role.

Being able to express safety patterns with elements of
a UML profile and pattern descriptive rules in a unified
fashion is the first step in our attempt to perform safety
pattern applications in architectural models of safety-critical
systems by means of Model Transformation mechanisms.
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