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Abstract— The most widely used methods and tools for 

estimating the cost of software development require that the 

functional size of the program to be developed be measured, 

either in “traditional” Function Points or in COSMIC 

Function Points. The latter were proposed to solve some 

shortcomings of the former, including not being well suited for 

representing the functionality of real-time and embedded 

software. However, little evidence exists to support the claim 

that COSMIC Function Points are better suited than 

traditional Function Points for the measurement of real-time 

and embedded applications. Our goal is to compare how well 

the two methods can be used in functional measurement of 

real-time and embedded systems. We applied both 

measurement methods to a number of situations that occur 

quite often in real-time and embedded software. Our results 

seem to indicate that, overall, COSMIC Function Points are 

better suited than traditional Function Points for measuring 

characteristic features of real-time and embedded systems. 

Our results also provide practitioners with useful indications 

about the pros and cons of functional size measurement 

methods when confronted with specific features of real-time 

and embedded software. 

Keywords- Functional Size Measurement; Function Point 

Analysis; COSMIC Function Points; Real-time software; 

Embedded software 

I.  INTRODUCTION 

Several methods have been proposed to estimate the 
development effort of a software product, given the 
characteristics of the product itself and its development 
process. Software size plays a special role in effort 
estimation, as it is the main input used by the vast majority 
of effort estimation models. Accordingly, measures of 
functional size are used in early effort estimation models, 
since other measures –like Lines of Code– are not available 
in the early development phases. Functional measures 
quantify the functional size of a software application, as 
defined in the requirements specification documents. 

The available functional sizing methods are evolutions of 
the Function Points Analysis (FPA), originally proposed by 
Allan Albrecht [1]. The International Function Points User 
Group (IFPUG) maintains the definition of the method and 
publishes and regularly updates the official Function Point 
(FP) counting manual [2][3]. Effort estimation methods have 
been defined, and tools supporting them have been 
developed, which require the size in FP as the main input.  

FP are generally not considered well suited for measuring 
the functional size of embedded applications. The reported 
motivation is that FP –conceived by Albrecht when the 
programs to be sized were mostly Electronic Data Processing 
applications– capture well the functional sizes of data storage 
and data movement operations, but are ill-suited for 
representing the complexity of control and elaboration that 
are typical of embedded and real-time software. 

The COSMIC method was defined to overcome some 
limitations of FPA. The COSMIC method [4] redefines 
FPA’s basic principles of functional size measurement in a 
way that applies equally well to traditional “business” 
application and other applications, including the real-time 
and embedded ones. Specifically, the COSMIC method 
counts the data movements (entries, exits, reads and writes) 
that involve data groups (corresponding approximately to 
FPA’s logic files) in each functional process (corresponding 
to FPA’s elementary processes). The result is a functional 
size measure called COSMIC Function Points (CFP). 

Even though it is traditionally considered not well suited 
for real-time and embedded applications, FPA can be applied 
to embedded software via a careful interpretation of FP 
counting rules [5]. Moreover, it is known that many real-time 
projects have actually been measured using FPA. On the 
contrary, there is little analytic evidence of successful 
applications of the COSMIC method to real-time and 
embedded applications. This paper aims at providing some 
evidence about the suitability of FPA and the COSMIC 
method to measure real-time embedded software. 

Both FPA and COSMIC methods require the 
representation of user requirements according to a method-
specific model of software (e.g., the FP model includes logic 
files and elementary processes, while the COSMIC model 
includes functional processes and data movements). 
Measurement is then based on counting the elements of these 
models according to given rules. To measure RT and 
embedded software, it is of critical importance that 
representative models can be correctly derived from the user 
requirements. To test this ability, we consider a set of typical 
and representative –though necessarily incomplete– features 
of real-time embedded software and apply FPA and 
COSMIC to each of them. The comparison of the two 
methods provides useful indications to the developers that 
have to choose a functional size measurement method. 

The paper is organized as follows: Section II illustrates 
the attractiveness of the COSMIC method from the 
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management point of view. Section III presents a set of 
modeling and measurement problems that occur frequently 
in real-time and embedded software developments. In 
Section IV, FPA and COSMIC methods are applied to the 
cases illustrated in Section III. Section V accounts for related 
work, while Section VI draws some conclusions and outlines 
future work. 

Throughout the paper, we refer exclusively to Unadjusted 
Function Points (UFP) for FPA, because UFP are more 
commonly used than adjusted Function Points and because 
UFP are recognized as an ISO standard, while FP are not. 

II. SIZING AND ESTIMATION OF REAL–TIME EMBEDDED 

SOFTWARE: THE MANAGER’S POINT OF VIEW 

Both FPA and COSMIC methods aim at measuring the 
size of Functional User Requirements (FUR). However, 
there are a few reasons that suggest that the COSMIC 
method may be preferable. First, CFP are defined in a simple 
and sound way, while the definition of FP has been widely 
criticized, e.g., because the weighting mechanism make 
unclear whether FP are a measure of size or effort [6], or 
because the inherent subjectivity of FPA leads even certified 
measurers to measure different sizes for the same application 
[7][8]. Finally, the COSMIC method, which does not require 
a thorough analysis of data and allows for analyzing 
transactions at coarser granularity level, is somewhat faster 
and less expensive than FPA. 

So, managers have a few reasons to prefer the COSMIC 
method over FPA. However, evidence concerning the 
suitability of the COSMIC method for measuring real-time 
software is still missing. This paper aims at filling this gap. 

III. CASE STUDIES FOR FUNCTIONAL SIZE 

MEASUREMENT OF REAL-TIME EMBEDDED SOFTWARE 

Here, we illustrate a set of typical features of real-time 
and embedded software that are difficult to represent by 
means of the models that underlie the definition of functional 
size measurement methods. All the proposed cases are 
derived from the first author’s experience gained in 
measuring seven avionics applications in a large European 
company. So, the proposed set of cases is of empirical origin: 
during the measurement, the cases presented here emerged as 
those particularly challenging for functional size 
measurement. Most examples are illustrated by means of 
sequence diagrams, according to the measurement-oriented 
modeling methodology proposed in [9] and used in [10]. It is 
assumed that the reader is familiar with FPA and COSMIC 
concepts and terminology and with UML. 

A. Embedded processes having multiple purposes 

In embedded software, several processes often include 
both updating some data and producing some result. 
Consider for instance a process that initializes and tests a 
piece of hardware (Fig. 1): both the initialization and the test 
are necessary. Actually, the initialization and test of several 
hardware devices are performed by means of a single 
command: you send the initialization command and get the 
resulting state back, so that you can check that the device is 
working correctly. 

 

: Controller

init(params)

sd Set-up

Record(DeviceState)

Init_result

: State

DeviceState

Eval(Init_result)

: Device

set_up

 
Figure 1.  Inizialization of devices: the “main purpose” is not evident. 

B. Transactions defined at very low level 

Requirements often concern very low level operations, 
thus making it difficult to identify functions that match the 
definition of Base Functional Components. 

1) Memory vs. data 
In embedded software, the use of RAM as a whole 

introduces new requirements. For example, a piece of 
software embedded on board of a military airplane should 
clear the whole RAM under given circumstances, e.g., if the 
airplane crashes in an enemy zone (because the information 
stored in memory must not be made available to enemies). 
This requirement (Fig. 2) is peculiar in that it is about the 
whole RAM, not the user-relevant data. 

 

: System

Clear()

: RAM

sd RAM_clear

Clear()

 
Figure 2.  RAM clearing process. 

 

: System

Output(data)

: Device space 
in RAM

sd Memory_mapped_I/O

Write(data)

 
Figure 3.  Memory-mapped I/O. 

2) Memory mapped I/O 
In embedded systems, updating a variable and sending 

data to a device can be extremely similar operations. For 
instance, when I/O is memory-mapped, both mentioned 
operations write registers or RAM locations (Fig. 3). 

3) Processes that do not terminate properly 
In embedded software, it is often required that a function 

terminates by jumping to a given location. This situation is 
illustrated in Fig. 4: the initialization function terminates by 
executing the set-up function (described in Fig. 10). 

: Controller : State

init()

: Unit1

sd Init

Set(InitState)

Power_up()

: Unit2

init()

Set-up
ref

: Device1 : Devicen

 
Figure 4.  A function that ends with a jump to another function. 

C. Taking into account the devices 

In traditional software applications, functions are usually 
invoked by the user and end either by updating some internal 
data, or by outputting some information. In embedded 
applications, the situation can be very different. Often it is 
some hardware device (not a user) that acts as both the cause 
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that determines the execution of the function and the 
destination of the produced data or signals. 

1) Considering the role of the Operating System in I/O  
Let us consider the following requirements for an I/O 

functionality (described in Fig. 5): “upon request by the 
controller, data are retrieved from an I/O channel, according 
to the criteria stored in the I/O channel table. When all the 
data have been read, they are suitably converted and sent 
back to the controller.” It is often the case that the I/O 
operation has to be carried out with the help of the Operating 
System and the requirements can be implemented by means 
of two functions, illustrated in Fig. 6 and Fig. 7. The first 
function (Fig. 6) is invoked by the controller and prepares an 
I/O request for the OS and a subsequent system call. The 
second function (Fig. 7) is triggered by the interrupt from the 
I/O device and involves reading the data from the channel, 
elaborating them, and sending them back to the controller. 
The execution of this “function” is done partly by the OS (by 
a driver that will have to be implemented as a part of the 
application development) and partly in the section of the 
application devoted to I/O. 

 

: Controller
: I/O 

component
: I/O Channel 

Table
: I/O Channel

Read(ch_ID) Get_channel_data
(ch_ID)

channel_data

Get_Byte()loop

Convert_data()
data

Byte

sd Direct_read

 

Figure 5.  Process featuring direct access to I/O channels. 

If the development also includes the construction of a 
driver for the considered I/O device, it seems that taking into 
account the size of the corresponding code will contribute to 
produce a more accurate effort estimate. In other words, it 
seems reasonable to count two functions, corresponding to 
the “elementary processes” described in Fig. 6 and Fig. 7. 

2) Multi cycle operations 
In real-time systems, it is not unusual that a function is 

too long to fit into one execution cycle. In such cases, it is 
rather common to split the function into two (or more) pieces 
that are executed in consecutive execution cycles. Here are 
two typical examples: 

− The function transfers data via a buffer. The data to be 
transferred do not fit in the buffer. The transfer is split 
into n cycles: in each cycle 1/n of the data are copied 
into the buffer. 

− The function, triggered by the tick, takes a time longer 
than the cycle duration (i.e., the time between two 
consecutive ticks) to execute. Thus, the transfer is split 
into multiple consecutive cycles. 

 

: Controller
: I/O 

component
: I/O Channel 

Table
: OS

Read(ch_ID)

Get_channel_data(ch_ID)

channel_data

: I/O space 
in RAM

Sys call

sd Read_req_SO

Write(I/O_request)

 

Figure 6.  Process Access to I/O channels via the O.S. 

 

: I/O 
channel

: I/O 
component

: OS

ready_intr

: I/O space 
in RAM

: Driver

Read()

: Controller

write(Byte)

data

get_Byte()

Byte

loop

Read()

data

Return from write syscall

sd SO_reads

Convert_data()

 

Figure 7.  The O.S. handles the I/O. 

An example is given in Fig. 8: an output operation is split 
over two consecutive clock cycles. In the first cycle the 
application outputs the data from Data_1 and sets the State to 
represent that there is a pending output operation; in the 
following cycle, the State indicates that the output operation 
has to be completed, thus data are read from Data_2 and sent 
to the output device. 

: Controller : State

read()

: Data_1

sd Out_init

write(data)

Output()
: Device

data
: Clock

tick

set(out_2)

: Controller

: State

read()

: Data_2

sd Out_end

write(data)

: Device

data

: Clock

tick

set(out_finished)

opt [state==out_2]

 

Figure 8.  Output: first and second (final) cycle. 

These cases are often described in the requirements, since 
they deal with the real-time behavior of the application, 
which is typically explicitly accounted for in the 
requirements specification. 

However, requirements specifications could not state 
explicitly that the function should be split, i.e., requirements 
could just describe the whole operation as in Fig. 9.  

D. Long processes 

In embedded software, functions are often “service 
routines” that perform rather long tasks; e.g., the 
requirements specify that “the connected devices are tested, 
and the result (a ‘pass’ value or the set of diagnostics) is sent 
to the controller, which stores it for later use.” Fig. 10 
illustrates the situation with 4 different device types.  
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: Controller : Data_2

read()

: Data_1

sd Output

write(data1)

output()

: Device

data1

read()

data2

write(data2)

 
Figure 9.  Output, not split. 

 

: Controller : State : Device2

poll()

: Device1

sd Set-up

: Device4: Device3

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

 
Figure 10.  A long transaction. 

E. Unusual data 

Embedded applications often include constant data 
structures (e.g., data mapping tables or bit masks) that 
require a non-negligible design effort, which we would like 
to take into account. An example is shown in Fig. 5: for each 
request to read an I/O channel, the I/O component reads from 
the channel table how many bytes must be read from the 
channel and how they should be interpreted. The channel 
table is a read-only structure that describes how to manage 
the I/O channels. 

F. Complex elaborations 

In real-time and embedded applications, some operations 
can be complex. Consider for instance the generic flight 
control operations described in Fig. 11. It should not be 
surprising that the computation of the flight control data can 
be quite complex. 

IV. APPLYING FPA AND COSMIC TO REAL-TIME 

EMBEDDED SOFTWARE 

This section illustrates the application of FPA and 
COSMIC methods to the cases described in Section III. 

A. Embedded processes having multiple purposes 

According to the IFPUG counting rules [2][3], the size of 
a function varies according to its type (external input, output 
or query). The type is determined by the “main purpose” of 
the function, according to the requirements. However, it may 
be difficult to decide what the main purpose is, since both the 
external input and the external output can update internal 
data and report a result, as in our case. In conclusion, 
measures based on FPA have some degree of subjectivity 
that can be hardly avoided. 

 

: Clock : SensorManager
: Sensor

State
: FlightControl

Get_state()

state

Read()

: NavigData

data

sd Periodic_sensor_read

Put(control_data)

tick

Compute(state, data)

control_data

 
Figure 11.  Sensor-driven flight control. 

The problem described above does not apply to COSMIC 
measurement, since all processes are treated in the same 
way, regardless of their purpose. 

B. Transactions defined at very low level 

1) Memory vs. data 
According to the principles of FPA, in a case like the one 

described in Section III.B.1) one should count the memory 
clearing function as an external input. In that case, since 
every External Input (EI) manages an Internal Logic File 
(ILF), we should consider the RAM an ILF. On the one 
hand, counting the RAM as an ILF does not appear correct 
with respect to the rules, since logic data files should 
represent a homogeneous set of related data (which RAM is 
not), on the other hand, not considering the RAM as an ILF 
is an inconsistency, as all EI have to deal with an ILF. 

There is a similar problem with the COSMIC method, as 
the process writes in the RAM: accordingly, we should 
consider a write data movement. However, this implies that 
the RAM is classified as a data group, which does not appear 
perfectly coherent with the COSMIC rules. 

2) Memory mapped I/O 
When I/O is memory-mapped, an output operation can be 

modeled as an External Output (EO) but also as an EI since 
the output is obtained by writing registers or RAM locations 
(see Fig. 3). The choice affects the resulting measure, since 
EI and EO have different weights. With the COSMIC 
method, you still can model the operation as a Write or an 
Exit data movement, but the choice does not affect the final 
measure, since every data movement contributes exactly one 
CFP. 

3) Processes that do not finish properly 
According to FPA, a transaction function has to be self-

contained and leave the application being counted in a 
consistent state. In embedded software, it is often required 
that a function terminates by jumping to a given location 
(Fig. 4). In this case, the transaction is not self-contained and 
does not leave the program in a consistent state. FPA does 
not suggest how to take into consideration this type of 
functions. Just ignoring them would not be a good idea, since 
it takes some effort to implement these functions; hence we 
want them to contribute to the functional size of the 
application. Actually, there is no other way of dealing with 
these cases than just ignoring the constraints imposed by the 
IFPUG and counting the functions, considering their 
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behavior down to the final jump. The same problem occurs 
when the COSMIC method is used, since functional 
processes are defined as FPA transactions, in essence. 

C. Taking into account the devices 

1) Considering the role of the Operating System in I/O 
With both FPA and COSMIC methods, the measurement 

of the process represented in Fig. 5 is quite straightforward. 
The problem here occurs when the development must also 
include the construction of a driver for the considered I/O 
device, since taking into account the size of the 
corresponding code will contribute to produce a more 
accurate effort estimate. In other words, it seems reasonable 
to count two functions, described in Fig. 6 and Fig. 7. 

With FPA, this requires a deviation from the FPA 
counting practice, since FPA does not take into account the 
existence of different “layers”: with FPA you can only 
measure requirements at the single abstraction level 
corresponding to the user’s point of view, and the user is not 
aware of the OS and what happens in the OS. 

With the COSMIC method, it is possible to explicitly 
model and measure the layers that compose the software 
application. The sum of the sizes of the layers is generally 
greater than the size of the whole application corresponding 
to the point of view of the user (who is not aware of the 
existence of layers). So, the measure of layers is exactly what 
is needed to take into account the size of the OS parts that 
are being developed.  

2) Multi cycle operations 
The cases described in Section III.C.2) suggest that the 

value of a functional size measure can depend on how 
requirements are written. Let us consider the case when 
requirements specifications do not state explicitly that the 
function should be split (Fig. 9): if Data_1 and Data_2 
account for 10 DET each, the transaction is a high 
complexity EO (having 3 FTR and 21 DET), whose size is 7 
FP. When requirements specifications prescribe that the 
function be split (Fig. 8) we have two average complexity 
EO (3 FTR and around 12 DET each), whose size is 10 FP in 
total. When requirements specifications do not state 
explicitly that the function should be split, the COSMIC 
method identifies one functional process sized 5 CFP, since 
it involves 5 data movements (the Entry, the Reads of 
Data_1 and Data_2, and the corresponding Exits). When 
requirements specifications prescribe that the function be 
split, according to the COSMIC rules we have two functional 
processes, one involving 5 data movements (the Entry that 
triggers the operation, the Read of Data_1, the Entry of the 
clock tick, the Exit to the device, the Write of the state), and 
one involving 4 data movements (the Entry of the tick, the 
Read of Data_2, the Exit to the device, the Write of the 
state); the total size is thus 9 CFP. 

In conclusion, both methods provide measures of size 
that depend on how requirements are written. This is a 
characteristic of the methods that has to be taken into 
account, as it affects the resulting measures. 

D. Long processes 

A well known problem with Function Points is the so-
called “cut-off” effect: a function cannot contribute more 
than 7 FP to the functional size, regardless how many DETs 
it moves and how many FTRs it involves. This is a relevant 
problem, especially in embedded software, where functions 
are often “service routines” that perform rather long tasks, 
like in the example illustrated in Section III.D and Fig. 10. 

Fig. 10 illustrates the situation with 4 different device 
types. According to the IFPUG counting rules, this is a single 
transaction. If the device states contain on average 5 (or 
more) parameters, then the transaction is a complex one. The 
problem here is that if we had 5 or more different types of 
devices, the number of FP would not increase with the 
number of devices: according to FPA, we would have just 
one complex EI. This is a problem, because in practice the 
development effort increases with the number of device 
types, since each device type provides different status data, 
which need to be interpreted in a specific way. 

FPA hides from the estimation methods how much a 
function is bigger (thus more expensive to build) than 
another that classifies as complex. The COSMIC method, on 
the contrary, does not suffer from the cut-off effect. In a case 
like the one in Section III.D and Fig. 10, the size in CFP 
takes into account all the data movement, whose number is 
proportional to the number of devices. 

E. Unusual data 

According to FPA, data functions are either internal data 
“maintained” (i.e., modified) by the application, or external 
data (maintained outside the application). Constant data are 
treated as “decoding data” and explicitly excluded from the 
counting [2]. However, it seems that the authors of the 
IFPUG manual had in mind simple “zero effort” constants 
when they wrote the rules concerning the constant data. 

To account for the fact that a constant data structure will 
require some design effort, it is necessary to deviate from the 
IFPUG rules, and count a “constant ILF”: for instance, in the 
example illustrated in Fig. 6, one should count an ILF for the 
channel table; consistently, a FTR for each access to the 
table should be considered. 

The COSMIC method does not count data directly; that 
is, no fraction of the size measures accounts for data. On the 
contrary, data movements are counted without considering 
whether the data being moved are constant or not. In 
conclusion, this case does not pose any additional difficulty 
to the application of the COSMIC method. 

F. Complex elaborations 

Both FPA and COSMIC methods base the measurement 
of size on the number of processes and the amount of data 
handled. For instance, the process described in Fig. 11 is 
considered as an EO (with a maximum size of 7 FP) or a 
functional process accounting for 4 CFP (as it involves 4 
data movements). None of the two methods considers the 
complexity of the computations performed: the fact that the 
“Compute” operation performed in the process is simple or 
complex does not change the size of the process. 
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This is clearly a shortcoming of the two methods, since 
the development effort is very likely proportional to the 
complexity of the functions to be implemented. 

V. RELATED WORK 

There is a fairly large body of literature aimed at 
extending the scope of functional size measurement to real-
time software. Mark II Function Points [11][12] refine and 
extend the traditional function point transaction model and 
environmental factors. Asset-R [13] extends the applicability 
of FP to real-time systems by considering issues like 
concurrency, synchronization, and reuse. It also accounts for 
architectural, language expansion, and technology factors to 
generate the size estimate. Application Features [14] aim at 
the early estimation of the size of application in the process 
control domain. Counting practices for highly constrained 
systems [15] address issues such as boundary identification 
and internal processing. Also the IFPUG published a Case 
Study on how to apply FPA to real-time software [16]. 

A common characteristic of the methods mentioned 
above is that none of them is widely used in practice. A 
partial exception is represented by Mark II Function Points 
[11], which were also standardized [12]. So, the popularity of 
FPA and COSMIC suggested that their suitability to deal 
with software has to be evaluated. 

VI. CONCLUSIONS 

The results of our analysis show (see Table I) that several 
cases can be measured with the COSMIC method by just 
applying the measurement rules given in the manual [4], 
while Function Point Analysis often requires “bending” the 
rules to account for the considered cases. Also the resulting 
measures are easily affected by the measurement choices 
made in FPA, while there are just a few cases (namely, 
processes terminating with a jump, multi-cycle operations 
and complex elaborations) that can affect the measures in 
CFP.  

TABLE I.  COMPARISON OF FSM METHODS 

Case 
FPA COSMIC 

Rules Meas. Rules Meas. 

Multiple purpose processes � � � � 

Memory data � � � � 

Memory mapped I/O � � � � 

Processes terminating with jump � � � � 

Clock � � � � 

OS involved in I/O � � � � 

Multi cycle operations � �
a
 � �

a
 

Long processes � � � � 

Unusual data � � � � 

Complex elaborations �b � � �b 

a
 The measures depend on how requirements are written. 

b Elaboration complexity is just not accounted for by any rule. 

In conclusion, the original claims that the COSMIC 
method is more suitable than FPA for measuring real-time 
and embedded applications seem justified. 

In any case, it must be noted that neither FPA nor the 
COSMIC method account for the complexity of the required 
elaboration. This may be a problem in the real-time 
embedded context, since some processes can be really very 
complex and require a relevant amount of development 
effort. Future work involves assessing measures that 
represent not only the functional size of Real-Time 
applications as done by FPA and COSMIC methods, but can 
represent also the complexity of the required elaboration. 
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