
Measuring the Functional Size of Real-Time and Embedded Software:

a Comparison of Function Point Analysis and COSMIC

Luigi Lavazza and Sandro Morasca

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza; sandro.morasca}@uninsubria.it

Abstract— The most widely used methods and tools for

estimating the cost of software development require that the

functional size of the program to be developed be measured,

either in “traditional” Function Points or in COSMIC

Function Points. The latter were proposed to solve some

shortcomings of the former, including not being well suited for

representing the functionality of real-time and embedded

software. However, little evidence exists to support the claim

that COSMIC Function Points are better suited than

traditional Function Points for the measurement of real-time

and embedded applications. Our goal is to compare how well

the two methods can be used in functional measurement of

real-time and embedded systems. We applied both

measurement methods to a number of situations that occur

quite often in real-time and embedded software. Our results

seem to indicate that, overall, COSMIC Function Points are

better suited than traditional Function Points for measuring

characteristic features of real-time and embedded systems.

Our results also provide practitioners with useful indications

about the pros and cons of functional size measurement

methods when confronted with specific features of real-time

and embedded software.

Keywords- Functional Size Measurement; Function Point

Analysis; COSMIC Function Points; Real-time software;

Embedded software

I. INTRODUCTION

Several methods have been proposed to estimate the
development effort of a software product, given the
characteristics of the product itself and its development
process. Software size plays a special role in effort
estimation, as it is the main input used by the vast majority
of effort estimation models. Accordingly, measures of
functional size are used in early effort estimation models,
since other measures –like Lines of Code– are not available
in the early development phases. Functional measures
quantify the functional size of a software application, as
defined in the requirements specification documents.

The available functional sizing methods are evolutions of
the Function Points Analysis (FPA), originally proposed by
Allan Albrecht [1]. The International Function Points User
Group (IFPUG) maintains the definition of the method and
publishes and regularly updates the official Function Point
(FP) counting manual [2][3]. Effort estimation methods have
been defined, and tools supporting them have been
developed, which require the size in FP as the main input.

FP are generally not considered well suited for measuring
the functional size of embedded applications. The reported
motivation is that FP –conceived by Albrecht when the
programs to be sized were mostly Electronic Data Processing
applications– capture well the functional sizes of data storage
and data movement operations, but are ill-suited for
representing the complexity of control and elaboration that
are typical of embedded and real-time software.

The COSMIC method was defined to overcome some
limitations of FPA. The COSMIC method [4] redefines
FPA’s basic principles of functional size measurement in a
way that applies equally well to traditional “business”
application and other applications, including the real-time
and embedded ones. Specifically, the COSMIC method
counts the data movements (entries, exits, reads and writes)
that involve data groups (corresponding approximately to
FPA’s logic files) in each functional process (corresponding
to FPA’s elementary processes). The result is a functional
size measure called COSMIC Function Points (CFP).

Even though it is traditionally considered not well suited
for real-time and embedded applications, FPA can be applied
to embedded software via a careful interpretation of FP
counting rules [5]. Moreover, it is known that many real-time
projects have actually been measured using FPA. On the
contrary, there is little analytic evidence of successful
applications of the COSMIC method to real-time and
embedded applications. This paper aims at providing some
evidence about the suitability of FPA and the COSMIC
method to measure real-time embedded software.

Both FPA and COSMIC methods require the
representation of user requirements according to a method-
specific model of software (e.g., the FP model includes logic
files and elementary processes, while the COSMIC model
includes functional processes and data movements).
Measurement is then based on counting the elements of these
models according to given rules. To measure RT and
embedded software, it is of critical importance that
representative models can be correctly derived from the user
requirements. To test this ability, we consider a set of typical
and representative –though necessarily incomplete– features
of real-time embedded software and apply FPA and
COSMIC to each of them. The comparison of the two
methods provides useful indications to the developers that
have to choose a functional size measurement method.

The paper is organized as follows: Section II illustrates
the attractiveness of the COSMIC method from the

465Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

management point of view. Section III presents a set of
modeling and measurement problems that occur frequently
in real-time and embedded software developments. In
Section IV, FPA and COSMIC methods are applied to the
cases illustrated in Section III. Section V accounts for related
work, while Section VI draws some conclusions and outlines
future work.

Throughout the paper, we refer exclusively to Unadjusted
Function Points (UFP) for FPA, because UFP are more
commonly used than adjusted Function Points and because
UFP are recognized as an ISO standard, while FP are not.

II. SIZING AND ESTIMATION OF REAL–TIME EMBEDDED

SOFTWARE: THE MANAGER’S POINT OF VIEW

Both FPA and COSMIC methods aim at measuring the
size of Functional User Requirements (FUR). However,
there are a few reasons that suggest that the COSMIC
method may be preferable. First, CFP are defined in a simple
and sound way, while the definition of FP has been widely
criticized, e.g., because the weighting mechanism make
unclear whether FP are a measure of size or effort [6], or
because the inherent subjectivity of FPA leads even certified
measurers to measure different sizes for the same application
[7][8]. Finally, the COSMIC method, which does not require
a thorough analysis of data and allows for analyzing
transactions at coarser granularity level, is somewhat faster
and less expensive than FPA.

So, managers have a few reasons to prefer the COSMIC
method over FPA. However, evidence concerning the
suitability of the COSMIC method for measuring real-time
software is still missing. This paper aims at filling this gap.

III. CASE STUDIES FOR FUNCTIONAL SIZE

MEASUREMENT OF REAL-TIME EMBEDDED SOFTWARE

Here, we illustrate a set of typical features of real-time
and embedded software that are difficult to represent by
means of the models that underlie the definition of functional
size measurement methods. All the proposed cases are
derived from the first author’s experience gained in
measuring seven avionics applications in a large European
company. So, the proposed set of cases is of empirical origin:
during the measurement, the cases presented here emerged as
those particularly challenging for functional size
measurement. Most examples are illustrated by means of
sequence diagrams, according to the measurement-oriented
modeling methodology proposed in [9] and used in [10]. It is
assumed that the reader is familiar with FPA and COSMIC
concepts and terminology and with UML.

A. Embedded processes having multiple purposes

In embedded software, several processes often include
both updating some data and producing some result.
Consider for instance a process that initializes and tests a
piece of hardware (Fig. 1): both the initialization and the test
are necessary. Actually, the initialization and test of several
hardware devices are performed by means of a single
command: you send the initialization command and get the
resulting state back, so that you can check that the device is
working correctly.

: Controller

init(params)

sd Set-up

Record(DeviceState)

Init_result

: State

DeviceState

Eval(Init_result)

: Device

set_up

Figure 1. Inizialization of devices: the “main purpose” is not evident.

B. Transactions defined at very low level

Requirements often concern very low level operations,
thus making it difficult to identify functions that match the
definition of Base Functional Components.

1) Memory vs. data
In embedded software, the use of RAM as a whole

introduces new requirements. For example, a piece of
software embedded on board of a military airplane should
clear the whole RAM under given circumstances, e.g., if the
airplane crashes in an enemy zone (because the information
stored in memory must not be made available to enemies).
This requirement (Fig. 2) is peculiar in that it is about the
whole RAM, not the user-relevant data.

: System

Clear()

: RAM

sd RAM_clear

Clear()

Figure 2. RAM clearing process.

: System

Output(data)

: Device space
in RAM

sd Memory_mapped_I/O

Write(data)

Figure 3. Memory-mapped I/O.

2) Memory mapped I/O
In embedded systems, updating a variable and sending

data to a device can be extremely similar operations. For
instance, when I/O is memory-mapped, both mentioned
operations write registers or RAM locations (Fig. 3).

3) Processes that do not terminate properly
In embedded software, it is often required that a function

terminates by jumping to a given location. This situation is
illustrated in Fig. 4: the initialization function terminates by
executing the set-up function (described in Fig. 10).

: Controller : State

init()

: Unit1

sd Init

Set(InitState)

Power_up()

: Unit2

init()

Set-up
ref

: Device1 : Devicen

Figure 4. A function that ends with a jump to another function.

C. Taking into account the devices

In traditional software applications, functions are usually
invoked by the user and end either by updating some internal
data, or by outputting some information. In embedded
applications, the situation can be very different. Often it is
some hardware device (not a user) that acts as both the cause

466Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

that determines the execution of the function and the
destination of the produced data or signals.

1) Considering the role of the Operating System in I/O
Let us consider the following requirements for an I/O

functionality (described in Fig. 5): “upon request by the
controller, data are retrieved from an I/O channel, according
to the criteria stored in the I/O channel table. When all the
data have been read, they are suitably converted and sent
back to the controller.” It is often the case that the I/O
operation has to be carried out with the help of the Operating
System and the requirements can be implemented by means
of two functions, illustrated in Fig. 6 and Fig. 7. The first
function (Fig. 6) is invoked by the controller and prepares an
I/O request for the OS and a subsequent system call. The
second function (Fig. 7) is triggered by the interrupt from the
I/O device and involves reading the data from the channel,
elaborating them, and sending them back to the controller.
The execution of this “function” is done partly by the OS (by
a driver that will have to be implemented as a part of the
application development) and partly in the section of the
application devoted to I/O.

: Controller
: I/O

component
: I/O Channel

Table
: I/O Channel

Read(ch_ID) Get_channel_data
(ch_ID)

channel_data

Get_Byte()loop

Convert_data()
data

Byte

sd Direct_read

Figure 5. Process featuring direct access to I/O channels.

If the development also includes the construction of a
driver for the considered I/O device, it seems that taking into
account the size of the corresponding code will contribute to
produce a more accurate effort estimate. In other words, it
seems reasonable to count two functions, corresponding to
the “elementary processes” described in Fig. 6 and Fig. 7.

2) Multi cycle operations
In real-time systems, it is not unusual that a function is

too long to fit into one execution cycle. In such cases, it is
rather common to split the function into two (or more) pieces
that are executed in consecutive execution cycles. Here are
two typical examples:

− The function transfers data via a buffer. The data to be
transferred do not fit in the buffer. The transfer is split
into n cycles: in each cycle 1/n of the data are copied
into the buffer.

− The function, triggered by the tick, takes a time longer
than the cycle duration (i.e., the time between two
consecutive ticks) to execute. Thus, the transfer is split
into multiple consecutive cycles.

: Controller
: I/O

component
: I/O Channel

Table
: OS

Read(ch_ID)

Get_channel_data(ch_ID)

channel_data

: I/O space
in RAM

Sys call

sd Read_req_SO

Write(I/O_request)

Figure 6. Process Access to I/O channels via the O.S.

: I/O
channel

: I/O
component

: OS

ready_intr

: I/O space
in RAM

: Driver

Read()

: Controller

write(Byte)

data

get_Byte()

Byte

loop

Read()

data

Return from write syscall

sd SO_reads

Convert_data()

Figure 7. The O.S. handles the I/O.

An example is given in Fig. 8: an output operation is split
over two consecutive clock cycles. In the first cycle the
application outputs the data from Data_1 and sets the State to
represent that there is a pending output operation; in the
following cycle, the State indicates that the output operation
has to be completed, thus data are read from Data_2 and sent
to the output device.

: Controller : State

read()

: Data_1

sd Out_init

write(data)

Output()
: Device

data
: Clock

tick

set(out_2)

: Controller

: State

read()

: Data_2

sd Out_end

write(data)

: Device

data

: Clock

tick

set(out_finished)

opt [state==out_2]

Figure 8. Output: first and second (final) cycle.

These cases are often described in the requirements, since
they deal with the real-time behavior of the application,
which is typically explicitly accounted for in the
requirements specification.

However, requirements specifications could not state
explicitly that the function should be split, i.e., requirements
could just describe the whole operation as in Fig. 9.

D. Long processes

In embedded software, functions are often “service
routines” that perform rather long tasks; e.g., the
requirements specify that “the connected devices are tested,
and the result (a ‘pass’ value or the set of diagnostics) is sent
to the controller, which stores it for later use.” Fig. 10
illustrates the situation with 4 different device types.

467Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

: Controller : Data_2

read()

: Data_1

sd Output

write(data1)

output()

: Device

data1

read()

data2

write(data2)

Figure 9. Output, not split.

: Controller : State : Device2

poll()

: Device1

sd Set-up

: Device4: Device3

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

Figure 10. A long transaction.

E. Unusual data

Embedded applications often include constant data
structures (e.g., data mapping tables or bit masks) that
require a non-negligible design effort, which we would like
to take into account. An example is shown in Fig. 5: for each
request to read an I/O channel, the I/O component reads from
the channel table how many bytes must be read from the
channel and how they should be interpreted. The channel
table is a read-only structure that describes how to manage
the I/O channels.

F. Complex elaborations

In real-time and embedded applications, some operations
can be complex. Consider for instance the generic flight
control operations described in Fig. 11. It should not be
surprising that the computation of the flight control data can
be quite complex.

IV. APPLYING FPA AND COSMIC TO REAL-TIME

EMBEDDED SOFTWARE

This section illustrates the application of FPA and
COSMIC methods to the cases described in Section III.

A. Embedded processes having multiple purposes

According to the IFPUG counting rules [2][3], the size of
a function varies according to its type (external input, output
or query). The type is determined by the “main purpose” of
the function, according to the requirements. However, it may
be difficult to decide what the main purpose is, since both the
external input and the external output can update internal
data and report a result, as in our case. In conclusion,
measures based on FPA have some degree of subjectivity
that can be hardly avoided.

: Clock : SensorManager
: Sensor

State
: FlightControl

Get_state()

state

Read()

: NavigData

data

sd Periodic_sensor_read

Put(control_data)

tick

Compute(state, data)

control_data

Figure 11. Sensor-driven flight control.

The problem described above does not apply to COSMIC
measurement, since all processes are treated in the same
way, regardless of their purpose.

B. Transactions defined at very low level

1) Memory vs. data
According to the principles of FPA, in a case like the one

described in Section III.B.1) one should count the memory
clearing function as an external input. In that case, since
every External Input (EI) manages an Internal Logic File
(ILF), we should consider the RAM an ILF. On the one
hand, counting the RAM as an ILF does not appear correct
with respect to the rules, since logic data files should
represent a homogeneous set of related data (which RAM is
not), on the other hand, not considering the RAM as an ILF
is an inconsistency, as all EI have to deal with an ILF.

There is a similar problem with the COSMIC method, as
the process writes in the RAM: accordingly, we should
consider a write data movement. However, this implies that
the RAM is classified as a data group, which does not appear
perfectly coherent with the COSMIC rules.

2) Memory mapped I/O
When I/O is memory-mapped, an output operation can be

modeled as an External Output (EO) but also as an EI since
the output is obtained by writing registers or RAM locations
(see Fig. 3). The choice affects the resulting measure, since
EI and EO have different weights. With the COSMIC
method, you still can model the operation as a Write or an
Exit data movement, but the choice does not affect the final
measure, since every data movement contributes exactly one
CFP.

3) Processes that do not finish properly
According to FPA, a transaction function has to be self-

contained and leave the application being counted in a
consistent state. In embedded software, it is often required
that a function terminates by jumping to a given location
(Fig. 4). In this case, the transaction is not self-contained and
does not leave the program in a consistent state. FPA does
not suggest how to take into consideration this type of
functions. Just ignoring them would not be a good idea, since
it takes some effort to implement these functions; hence we
want them to contribute to the functional size of the
application. Actually, there is no other way of dealing with
these cases than just ignoring the constraints imposed by the
IFPUG and counting the functions, considering their

468Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

behavior down to the final jump. The same problem occurs
when the COSMIC method is used, since functional
processes are defined as FPA transactions, in essence.

C. Taking into account the devices

1) Considering the role of the Operating System in I/O
With both FPA and COSMIC methods, the measurement

of the process represented in Fig. 5 is quite straightforward.
The problem here occurs when the development must also
include the construction of a driver for the considered I/O
device, since taking into account the size of the
corresponding code will contribute to produce a more
accurate effort estimate. In other words, it seems reasonable
to count two functions, described in Fig. 6 and Fig. 7.

With FPA, this requires a deviation from the FPA
counting practice, since FPA does not take into account the
existence of different “layers”: with FPA you can only
measure requirements at the single abstraction level
corresponding to the user’s point of view, and the user is not
aware of the OS and what happens in the OS.

With the COSMIC method, it is possible to explicitly
model and measure the layers that compose the software
application. The sum of the sizes of the layers is generally
greater than the size of the whole application corresponding
to the point of view of the user (who is not aware of the
existence of layers). So, the measure of layers is exactly what
is needed to take into account the size of the OS parts that
are being developed.

2) Multi cycle operations
The cases described in Section III.C.2) suggest that the

value of a functional size measure can depend on how
requirements are written. Let us consider the case when
requirements specifications do not state explicitly that the
function should be split (Fig. 9): if Data_1 and Data_2
account for 10 DET each, the transaction is a high
complexity EO (having 3 FTR and 21 DET), whose size is 7
FP. When requirements specifications prescribe that the
function be split (Fig. 8) we have two average complexity
EO (3 FTR and around 12 DET each), whose size is 10 FP in
total. When requirements specifications do not state
explicitly that the function should be split, the COSMIC
method identifies one functional process sized 5 CFP, since
it involves 5 data movements (the Entry, the Reads of
Data_1 and Data_2, and the corresponding Exits). When
requirements specifications prescribe that the function be
split, according to the COSMIC rules we have two functional
processes, one involving 5 data movements (the Entry that
triggers the operation, the Read of Data_1, the Entry of the
clock tick, the Exit to the device, the Write of the state), and
one involving 4 data movements (the Entry of the tick, the
Read of Data_2, the Exit to the device, the Write of the
state); the total size is thus 9 CFP.

In conclusion, both methods provide measures of size
that depend on how requirements are written. This is a
characteristic of the methods that has to be taken into
account, as it affects the resulting measures.

D. Long processes

A well known problem with Function Points is the so-
called “cut-off” effect: a function cannot contribute more
than 7 FP to the functional size, regardless how many DETs
it moves and how many FTRs it involves. This is a relevant
problem, especially in embedded software, where functions
are often “service routines” that perform rather long tasks,
like in the example illustrated in Section III.D and Fig. 10.

Fig. 10 illustrates the situation with 4 different device
types. According to the IFPUG counting rules, this is a single
transaction. If the device states contain on average 5 (or
more) parameters, then the transaction is a complex one. The
problem here is that if we had 5 or more different types of
devices, the number of FP would not increase with the
number of devices: according to FPA, we would have just
one complex EI. This is a problem, because in practice the
development effort increases with the number of device
types, since each device type provides different status data,
which need to be interpreted in a specific way.

FPA hides from the estimation methods how much a
function is bigger (thus more expensive to build) than
another that classifies as complex. The COSMIC method, on
the contrary, does not suffer from the cut-off effect. In a case
like the one in Section III.D and Fig. 10, the size in CFP
takes into account all the data movement, whose number is
proportional to the number of devices.

E. Unusual data

According to FPA, data functions are either internal data
“maintained” (i.e., modified) by the application, or external
data (maintained outside the application). Constant data are
treated as “decoding data” and explicitly excluded from the
counting [2]. However, it seems that the authors of the
IFPUG manual had in mind simple “zero effort” constants
when they wrote the rules concerning the constant data.

To account for the fact that a constant data structure will
require some design effort, it is necessary to deviate from the
IFPUG rules, and count a “constant ILF”: for instance, in the
example illustrated in Fig. 6, one should count an ILF for the
channel table; consistently, a FTR for each access to the
table should be considered.

The COSMIC method does not count data directly; that
is, no fraction of the size measures accounts for data. On the
contrary, data movements are counted without considering
whether the data being moved are constant or not. In
conclusion, this case does not pose any additional difficulty
to the application of the COSMIC method.

F. Complex elaborations

Both FPA and COSMIC methods base the measurement
of size on the number of processes and the amount of data
handled. For instance, the process described in Fig. 11 is
considered as an EO (with a maximum size of 7 FP) or a
functional process accounting for 4 CFP (as it involves 4
data movements). None of the two methods considers the
complexity of the computations performed: the fact that the
“Compute” operation performed in the process is simple or
complex does not change the size of the process.

469Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

This is clearly a shortcoming of the two methods, since
the development effort is very likely proportional to the
complexity of the functions to be implemented.

V. RELATED WORK

There is a fairly large body of literature aimed at
extending the scope of functional size measurement to real-
time software. Mark II Function Points [11][12] refine and
extend the traditional function point transaction model and
environmental factors. Asset-R [13] extends the applicability
of FP to real-time systems by considering issues like
concurrency, synchronization, and reuse. It also accounts for
architectural, language expansion, and technology factors to
generate the size estimate. Application Features [14] aim at
the early estimation of the size of application in the process
control domain. Counting practices for highly constrained
systems [15] address issues such as boundary identification
and internal processing. Also the IFPUG published a Case
Study on how to apply FPA to real-time software [16].

A common characteristic of the methods mentioned
above is that none of them is widely used in practice. A
partial exception is represented by Mark II Function Points
[11], which were also standardized [12]. So, the popularity of
FPA and COSMIC suggested that their suitability to deal
with software has to be evaluated.

VI. CONCLUSIONS

The results of our analysis show (see Table I) that several
cases can be measured with the COSMIC method by just
applying the measurement rules given in the manual [4],
while Function Point Analysis often requires “bending” the
rules to account for the considered cases. Also the resulting
measures are easily affected by the measurement choices
made in FPA, while there are just a few cases (namely,
processes terminating with a jump, multi-cycle operations
and complex elaborations) that can affect the measures in
CFP.

TABLE I. COMPARISON OF FSM METHODS

Case
FPA COSMIC

Rules Meas. Rules Meas.

Multiple purpose processes � � � �

Memory data � � � �

Memory mapped I/O � � � �

Processes terminating with jump � � � �

Clock � � � �

OS involved in I/O � � � �

Multi cycle operations � �
a
 � �

a

Long processes � � � �

Unusual data � � � �

Complex elaborations �b � � �b

a
 The measures depend on how requirements are written.

b Elaboration complexity is just not accounted for by any rule.

In conclusion, the original claims that the COSMIC
method is more suitable than FPA for measuring real-time
and embedded applications seem justified.

In any case, it must be noted that neither FPA nor the
COSMIC method account for the complexity of the required
elaboration. This may be a problem in the real-time
embedded context, since some processes can be really very
complex and require a relevant amount of development
effort. Future work involves assessing measures that
represent not only the functional size of Real-Time
applications as done by FPA and COSMIC methods, but can
represent also the complexity of the required elaboration.

REFERENCES

[1] A.J. Albrecht, Measuring Application Development
Productivity, Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[2] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[4] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual, May 2009.

[5] L. Lavazza and C. Garavaglia, “Using Function Points to
Measure and Estimate Real-Time and Embedded Software:
Experiences and Guidelines”, ESEM 2009, Lake Buena Vista,
FL, USA, October 15-16, 2009, IEEE, pp. 100-110.

[6] A. Abran and P.N. Robillard “Function points: a study of their
measurement processes and scale transformations”, Journal of
Systems and Software, vol.25,n.2, Elsevier, 1994, pp.171-184.

[7] C. Kemerer, “Reliability of Function Points Measurement: a
Field Experiment,” Comm. ACM, Vol. 36, No. 2, 1993, pp.
85-97.

[8] J.R. Jeffery, G.C. Low, and M.A Barnes, “Comparison of
Function Point Counting Techniques,” IEEE Trans. Software
Eng., Vol. 19, No. 5, 1993, pp. 529-532.

[9] L. Lavazza, V. del Bianco, and C. Garavaglia, “Model-based
Functional Size Measurement”, 2nd Int. Symp. on Empirical
Software Engineering and Measurement – ESEM 2008,
Kaiserslautern, Germany. October 9-10, 2008, pp. 100-109.

[10] L. Lavazza and V. del Bianco, “A Case Study in COSMIC
Functional Size Measurement: the Rice Cooker Revisited”,
IWSM 2009, Amsterdam, November 2009, pp. 101-121.

[11] C.R. Symons, “Function Point Analysis: Difficulties and
Improvements”, IEEE Transactions on Software Engineering,
Vol. 14, No. 1, January, 1988, pp. 2-11.

[12] ISO/IEC 20968: 2002, Software engineering Mk II Function
Point Analysis. Counting Practices Manual, International
Standardization Organization, ISO, Genève, 2002.

[13] D. J. Reifer, “Asset-R: A Function Point Sizing Tool for
Scientific and Real-Time Systems”, Journal of Systems and
Software, Vol. 11, No. 3, March 1990, pp. 159-171.

[14] T. Mukhopadhyay and S. Kekre, “Software Effort Models for
Early Estimation of Process Control Applications”, IEEE
Transactions on Software Engineering, Vol. 18, No. 10,
October 1992, pp. 915-924.

[15] European Function Point Users Group, Function Point
Counting Practices for Highly Constrained Systems, 1993.

[16] IFPUG, Case Study 4: Counts Function Points for a Traffic
Control System with Real Time Components, International
Function Point Users Group – IFPUG.

470Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

