
Towards Automatic Performance Modelling Using the GENERICA Component Model

Nabila Salmi
MOVEP Laboratory, USTHB

Algiers, Algeria,
LISTIC Laboratory, Université de Savoie

Annecy le Vieux, France
Email: nsalmi@usthb.dz

Malika Ioualalen
MOVEP laboratory
USTHB University

Algiers, Algeria
Email: mioualalen@usthb.dz

Mehdi Sliem
MOVEP laboratory
USTHB University
Algiers, Algeria,

Email: msliem@usthb.dz

Abstract—Software designers are often interested in predicting
performances of their designed applications, especially for
component-based software design where high quality is targeted.
In this context, several technics have been proposed. However,
none of these approaches has gained widespread industrial
use, and automatic tools supporting component-based systems
analysis are needed. In this objective, we propose, in this paper,
a novel general component model, called GENERICA, enabling
the description of component-based systems unifying software
and hardware components, as well as their deployment and
runtime environments and performance characteristics. The aim
of this new model is to help designers in deriving automatically
performance models, allowing thus automatic qualitative and
quantitative analysis of component-based applications, basing
on architecture descriptions and component behaviours. The
Architecture Description Language (ADL) of GENERICA
combines software and hardware components, and allows to
describe component-based configurations with performance
annotations. Targeted generated performance models consist of
Stochastic Petri Nets (SPN) and Stochastic Well-formed Nets
(SWN).

Keywords-Component-Based Systems; software component;
hardware component; performance annotations; performance
modelling.

I. INTRODUCTION

Component-based design of systems is more and more ap-
plied for building modern complex hardware and software
systems. In this approach, precompiled elementary compo-
nents, with explicitly defined provided and required interfaces,
are being assembled together [1]. Such systems are known
as Component-Based Systems (CBS). The main goals are
to improve software quality and to reach reduced cost and
easy maintaining and upgrade. Several academic and industrial
component models have been developed, such as Fractal [2],
EJB [3], CCM [4], AADL [5], Palladio [6], Koala [7], etc.

Very often, designers are interested in predicting perfor-
mances of their designed systems (such as response times,
throughput, etc.), to avoid performance problems after imple-
mentation, which can lead to re-designing substantial costs. It
would be helpful if the designer can automatically perform an
"a priori" analysis of his/her systems. This requires to generate
automatic component modelling. As component performance
depends not only on implementation, but also on the context
the component is deployed in, it would be beneficial if we can
get deployment and runtime environment information directly
from the system architecture description or from some other
component specification tools, to automatically build a perfor-
mance model for a system. Indeed, we need two information

categories: on one side, the runtime environment nature (e.g.,
hardware components, middleware components, etc.); on the
other side, information about context performance (e.g., pro-
cessor rate, memory space, number of component threads, etc.).
Despite the numerous proposed component models, only few
of them offer such information or some related specifications,
such as Palladio [6] and Procom [8].

On this behalf, we attempt, in this work, to provide a
component model with necessary information enabling auto-
matic component performance modelling; we propose a general
component model with its Architecture Description Language
(ADL) allowing to describe component properties, as well as
deployment and runtime environment and performance charac-
teristics. These specifications are used to derive from architec-
ture descriptions and component behaviours an automatic map-
ping into performance models, without additional modelling.
So, we describe here the GENERICA model, developed for
this aim. Targeted generated performance models are Stochastic
Petri Nets (SPN) and Stochastic Well-formed Nets (SWN) [9],
which are well-known for their expressiveness and existing per-
formance analysis methods and tools, such as GreatSPN [10].

The paper is organized as follows. Section II discusses re-
lated work. Then, Section III presents main requirements of a
general component model. We detail, in Section IV, our pro-
posal, the GENERICA component model. Corresponding gen-
erated performance models are given in Section V. Section VI
introduces the GenTools prototype that we developed to support
compilation of architecture descriptions of Generic systems and
model generation, and illustrates component modelling with an
application example. Section VII concludes the paper.

II. RELATED WORK

Over the last decades, several component models have been
proposed, They have been applied to a large spectrum of
application domains. Several classifications and surveys have
been also achieved, attempting to identify key features of com-
ponent software approaches [11][12][13][14][15]. According
to the classification done by Crnkovic et al. [12], two kinds
of component models are distinguished: general-purpose and
specialized models. General-purpose models have similar so-
lution patterns, whereas specialized ones have specific domain
characteristics Hence, many component characteristics are not
always included in existing component model, and no complete
or generic component model gathers all component features,
except UML/MARTE [16], which is a quite generic model
capturing a large number of systems, even if it is hardly used
because of its complexity.

Besides, providing deployment, performance and runtime
properties in a component model is uncommon. These prop-

510Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

erties are extra-functional and their specification is still not
widespread. In this context, resource usage and some other
performance properties have been modelled by few models
such as component models are Palladio, SaveCCM, ProCom,
Pin and CompoNETs, as given in some surveys [12][13].

The Palladio component model (PCM) [6] is a domain-
specific component model, designed to enable early perfor-
mance predictions for component-based business software ar-
chitectures. For that purpose, deployment environment and
resource allocation to components are specified using a proper
domain-specific modelling language. Then, PCM models are
created using an integrated modelling environment, called
PCM-bench, and performance metrics are derived from these
models using analytical techniques and simulation.

SaveCCM [17] is also a domain-specific component model
designed for embedded control automative applications, tar-
geting to provide predictable vehicular systems. It considers
resource usage and analysability of the dependability and real-
time properties. Component behaviour modelling is done using
timed automata extended with tasks. Analysis is then performed
at design time using a model checker.

Procom [8] is a component model for control-intensive dis-
tributed embedded systems. An extra-functional component
behaviour is described in a dense time state-based hierarchical
modelling language. This behaviour consists namely in timing,
resource consumption, component allocations, etc. Pin [18] is a
simple component technology, used also in Prediction-Enabled
Component Technologies (PECT). It supports prediction of
average latency in assemblies and in stochastic tasks, and for-
mal verification of temporal safety and liveness. Finally, Com-
poNETs [19] is a general-purpose component model, based on
CCM, where, additionally, the internal behaviour of a software
component and intercomponent communication are specified
by Petri Nets. A mapping from the constructs of the component
models to Petri Nets is defined.

From these model descriptions, we deduce that some com-
ponent models are domain-specific, missing genericity, and
others support some behavioural or performance specifications,
requiring sometimes deployers or experts to provide such in-
formation on the designed application. We want to provide de-
signers with tools allowing them to perform "a-priori" analysis
of their systems or applications, basing on automatic generated
performance models and without requiring an expert interven-
tion. To do so, the component dimension (which deals with
general component and assembly properties) and the perfor-
mance behavioural dimension should be gathered in the same
model, to enable automatic component performance modelling
and analysis at design time. However, no model includes at the
same time the two kinds of properties (component and perfor-
mance), and if such model exists, often an expert performs this
modelling task for performance analysis of designed systems.

Hence, we introduce in this paper a general component
model, the GENERICA model, which fares better along the two
dimensions, inspired from two models: the Fractal model [2]
and the AADL model [5]. These two models comprise many
generic features, as well as UML/MARTE, which make them
interesting to use, however they lack performance character-
istics. Our component model is a combination of common
component/assembly features, runtime environment and per-
formance features: It includes genericity features of Fractal,
and hardware component features from AADL, but also allows
designers to describe runtime and performance characteristics,

as attributes of software and hardware components. Thus,
specific software and hardware systems, such as embedded
systems, can be modelled using GENERICA. Moreover, the
specification of all these features with performance annotations
is useful to derive directly from architecture descriptions and
component behaviours an automatic mapping into performance
models, without additional effort modelling, and hence useful
to conduct an automatic a priori qualitative and performance
analysis of designed systems.

III. REQUIREMENTS FOR A GENERAL COMPONENT MODEL

As defined by Crnkovic et al. [12], a component model
defines standards for properties that individual components
must satisfy, and methods for composing components. Com-
ponent properties are commonly known as being functional
properties and extra-functional specifications (like quality of
service attributes). These properties are exposed by means of in-
terfaces, whereas composing components includes mechanisms
for component interaction. These mechanisms are mainly bind-
ings defining connections between interfaces. Besides, modern
applications generally run in a multi-layered environment. An
application is deployed on an application server, which, in turn,
runs on some virtual machine (e.g., Java virtual machine, .NET,
etc.). The virtual machine works on an operating system (OS),
which utilizes some hardware resources. Such configurations
highlight several factors, which may influence performances of
an application and particularly performances of a component-
based application:
• Number of execution flows (threads) of software components,
• Processing rates of hardware components,
• Processing rates of operating systems and middleware under
which the application is running,
• Amount of space memory required during execution,
• Amount of necessary resources allocated to component, and
• Parallel applications running under the same operating sys-
tem.

Consequently, we identify the following main elements that
should be allowed by a general component model:
• Software components, which may be primitive or composite,
and whose exposed interfaces may be of any kind (service
invocation interface or event-based interface),
• Component bindings, being synchronous (invocation service)
or asynchronous (event-based) connections.
• Hardware components composing the deployment and run-
time environment, and
• Deployment and performance component features (service
rates, used memory, required resources, threads, etc.).

These requirements have led to the GENERICA model,
which gathers all these characteristics.

IV. THE GENERICA COMPONENT MODEL

Our model is defined around common component concepts
that are components, interfaces and interactions. To be generic,
we allow the definition of software components, hardware com-
ponents and system configurations describing a component-
based application deployed on a running environment (as it is
shown in Figure 1). Finally, performance annotations are added
to describe performance properties. To describe component
architectures following our model, we defined the GENERICA
ADL, based on a textual XML syntax.

511Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Fig. 2: GENERICA Metamodel

512Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Fig. 1: Software and hardware categories

A. Software components
As in other component models, a software component is

made of a content and a set of access points, called interfaces,
used for interaction with its environment. The content is either
composite, composed of a finite number of other components,
allowing components to be nested at an arbitrary level, or be
primitive (source code) at the lowest level.

An interface can be a functional interface describing com-
ponent functionalities, or a control interface for non functional
properties such as monitoring and control over execution. To
be as generic as possible, two sorts of functional interfaces are
defined in GENERICA:
• Service invocation interfaces enabling synchronous commu-
nications. Two kinds of interfaces are used: a client interface
requesting a service, and a server interface providing the ser-
vice.
• Event based interfaces, resulting in asynchronous communi-
cations. In this case, an event source interface generates events
and an event sink interface receives event notifications. The
reception of a notification causes the acknowledgment of the
reception and execution of a specified handler.

To communicate, components are connected by relating their
corresponding interfaces through a binding.

Other characteristics can be described by GENERICA: gen-
eralization, component inheritance, connectors, sharing, etc.

B. Hardware components
The interest in adding hardware components to our model is

to allow descriptions of the runtime environment and hardware
systems as well. These descriptions enable to do a detailed
performance modelling, to be used for qualitative and quanti-
tative system analysis while considering the running platform
influences. Four kinds of hardware components are defined in
GENERICA:
• Processor: models a processor associated to a minimal OS.
• Memory: represents a storage device.
• Bus: acts for all kind of networks or bus communication.
• Device: defines peripheral or resource elements whose inter-
nal structure is ignored. Hardware components interact through
bus components, instead of using interfaces.

C. Threads
Software components are linked to hardware components by

defining component running states being executed on hardware
elements. These running states are represented by threads. To
describe that in our ADL, one or several threads are first asso-
ciated to software components; then, these threads are linked to

hardware components. At least one thread must be associated to
a component application. The main role of thread description is
to allow multithreading definition in the generated performance
models, so that to enable computation of multithreading impact
and performances on the analyzed system.

D. System configurations
A GENERICA system configuration consists of a software

application mapped to a hardware platform. The mapping is
made by describing a semantic connection (or association)
between component threads (defined for the software) and hard-
ware components. Consequently, three parts form the system
configuration (see the example below):
• A "software" part, where are described software components,
• A "hardware" part, defining hardware components, and
• An "association" part relating component threads to hardware
components.
If the designer wants to describe only a software application, it
is possible to omit the hardware part description.

E. Data flows
Sometimes, when invoking a component service, the called

component invokes itself a service from another component,
which in turn may call another service, etc. So, data cross
several components until executing the first requested service.
This case corresponds to a data flow, defined as data routing
across the system architecture or dependencies between several
requests being service invocations or events notifications. For
instance, receiving an event notification on a sink interface of
a given component may cause service invocation to another
component. Data flows are useful to build a complete detailed
knowledge about the studied system, which helps in generating
a correct modelling. So, it is important to highlight data flows
in an architecture description of a system. For that purpose,
GENERICA allows to describe data flows as a dependency
between a server interface and a client or source interface of
the same component, or between a sink interface and a client or
source interface.

F. Performance annotations
One of the main contributions of GENERICA is the def-

inition of performance annotations, which will enable later
to map components into formal performance models, namely
Stochastic Petri Net (SPN) and Stochastic Well-formed Net
(SWN) models. For this purpose, we need to specify some
information:
• To assess multithreading impact, the number of threads of
components and the system configuration is necessary.
• To evaluate service or event processing performances (such as
response times or throughput), we need to know the processing
rate as well as code size or an estimated execution time of a
service or event processing.
• When interest is given to storage size, we need the storage
capacity or speed, the data bus speed and dataflow size.

So, we distinguish the following annotations appearing as
attributes added to corresponding elements:
• Four annotations for hardware components: data bus speed,
processing rate, storage capacity and processor scheduling
strategy. Note that this information is useful for assessing
software components running even on the same or heterogenous
systems with different processor families for instance.
• Four annotations for software components: estimated number

513Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

of thread instructions, estimated execution time of a service
method, dataflow size, and request arrival rate.

All described core concepts of the GENERICA component
model are gathered in its metamodel shown in Figure 2.

V. MODELLING WITH SPN/SWN
From the main characteristics of the GENERICA model, we

derive a generic approach for automatic model generation of
GENERICA systems, inspired from previous work [20]. The
proposed modelling is based on the Stochastic Petri Net (SPN)
and Stochastic Well-Formed Petri Net (SWN) models; the SWN
model being a high level (coloured) model of Petri Nets with
probabilistic extensions for performance analysis [9]. These
formalisms are state based models, well known for being able
to model complex systems with concurrency and conflicts, and
widely used for qualitative and performance analysis. In partic-
ular, the SWN model is well suited for behavioral symmetries
of system’s entities.

Let be a GENERICA system defined through an ADL de-
scription and a set of Java classes corresponding to primi-
tive components. To generate a model for this system, we
first model each primitive component. For this purpose, as a
GENERICA component may be made of a local behaviour
(set of internal actions) and a set of interfaces, we defined
basic SPN/SWN models for interfaces and internal component
behaviour. Using these basic models, each primitive compo-
nent is modelled. Finally, we generate the GENERICA system
global model, using previously generated SPN/SWN models.
This global model highlights components and component com-
munication, and hence, bottlenecks can be detected within this
model. More details can be found in [20].

VI. ILLUSTRATION

A first tool helping in building an GENERICA architecture
description has been developed: the GENERICA toolbox.

A. The GENERICA tool prototype
The GENERICA component model ADL has been im-

plemented into a Java prototype GenTools, using the Java
language. This prototype provides an editor for introducing
an ADL system description, a compiler to check syntactical
and semantical errors and an SPN/SWN model generator for
primitive components and for the whole application. To do a
qualitative or/and performance analysis of generated models for
a given application, we need to use existing SPN/SWN analysis
tools such as the GreatSPN tool [10]. It would be interesting
to have such analysis automated after model generation. This is
one of our future work. The user interface of the GENERICA
toolbox is depicted in Figure 3, showing an application example
with its generated model.

B. Running example
To illustrate the description of a component-based applica-

tion using the GENERICA model, we use a typical industrial
application (Figure 4), the stock quoter system, which is an
extended version of an application presented in [21]. This
application is a system managing a stock information database,
chosen mainly for its components exposing, at the same time,
service invocation and event-based interfaces. When the val-
ues of particular stocks change, a StockDistributor component
sends an event message that contains the stock name to two
StockBroker components. If the first StockBroker component

is interested in the stock, it can obtain more information about
it, by invoking a service operation offered by an Executor
component. This latter processes the received request, generates
data and invokes itself a service request from a persistence
server component to save its results. Besides, if the second
StockBroker component is interested in the stock, it processes
locally the event. Figure 4 shows the interactions between the
different components.

Fig. 5: Part of the GENERICA ADL of the application example

Figure 5 shows a part of the architecture description of the
application using the GENERICA ADL.

The generated SPN global model is depicted on the user
interface of Figure 3.

514Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

VII. CONCLUSION AND FUTURE WORK

This paper presented the GENERICA component model, a
new general model, which deals with two dimensions: the com-
ponent dimension describing general component and assembly
characteristics, and the performance behavioural dimension
related to deployment, runtime environment and performance
properties. An ADL language has been also proposed for
GENERICA, as well as a corresponding performance mod-
elling approach based on SPN and SWN models. The long-
term objective of introducing such a general component model,
is to enable automatic performance component modelling and
hence automatic a priori qualitative and performance analysis
of component based systems. Even if introduction of a generic
component model may lead to a complex specification, we
think of its usefulness for several design fields such as em-
bedded systems. This component model has been implemented
into a Java toolbox prototype, the GenTools toolbox, supporting
compilation of ADL descriptions and model generation. The
tool has been experimented on several GENERICA applica-
tions.

However, still more research work is required in several di-
rections, such as integrating the GENERICA toolbox in a global
modelling and analysis tool, starting from the ADL description
and automatic modelling, and resulting in performance compu-
tations, given specification of performance indexes of interest.
We also target to use the automated modelling of primitive
components in a compositional analysis step, based on compo-
nents models, to have time and memory savings during models
analysis. This can be done thanks to our previous work [20],
which defined a structured performance analysis method for
analysing a CBS in an efficient way allowing, to reduce compu-
tation times and memory usage (basing on primitive component
models rather than the global net). Finally, we are working on
modelling reconfiguration features of GENERICA CBSs and
verification of their behaviours.

REFERENCES

[1] C. Szyperski, Component software, 2002, vol. 2nd Edition.
[2] E. Bruneton, T. Coupaye, and J. Stefani, “The fractal component model,

version 2.0-3,” http://fractal.ow2.org/specification/ (October 2013), Tech.
Rep., Feb 2004.

[3] Sun Microsystems, “EJB 3.0 specification,” http://www.oracle.com/
technetwork/java/index.html, Jul 2007.

[4] Object Management Group, “CORBA component model specification.
version 4.0,” http://www.omg.org/spec/CCM/4.0/ (October 2013), Apr.
2006.

[5] SAE, “Architecture analysis et design language (aadl),” SAE Standards
AS550, Tech. Rep., November 2004.

[6] S. Becker, H. Koziolek, and R. Reussner, “Model-based Performance
Prediction with the Palladio Component Model,” in WOSP2007. Buenos
Aires, Argentina: ACM Sigsoft, 2007.

[7] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The
Koala component model for consumer electronics software,” IEEE
Computer, vol. 33, no. 3, pp. 78–85, Mar. 2000.

[8] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A
component model for control-intensive distributed embedded systems,”
in CBSE, 2008, pp. 310–317.

[9] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, “Stochastic
well-formed colored nets and symmetric modeling applications,” IEEE
Trans. on Comp., vol. 42, no. 11, pp. 1343–1360, Nov 1993.

[10] Perf. Eval. Group, “GreatSPN home page: http://www.di.unito.it/
∼greatspn,” Torino, Italy, 2002.

[11] H. Aris and S. S. Salim, “State of component models usage: justifying
the need for a component model selection framework,” Int. Arab J. Inf.
Technol., vol. 8, no. 3, pp. 310–317, 2011.

[12] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-
fication framework for software component models,” IEEE Transactions
on Software Engineering, vol. 37, pp. 593–615, 2011.

[13] J. Feljan, L. Lednicki, J. Maras, A. Petricic, and I. Crnkovic, “Classifica-
tion and survey of component models,” Målardalen University, Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-242/2009-1-SE, December
2009.

[14] K.-K. Lau and Z. Wang, “Software component models,” IEEE Trans.
on Software Engineering, vol. 33, no. 10, pp. 709–724, October 2007.

[15] N. Medvidović and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” in IEEE
Trans. On Soft. Eng., vol. 26, no. 1, 2000, pp. 70–93.

[16] S. Taha, A. Radermacher, S. Gérard, and J.-L. Dekeyser, “Marte: Uml-
based hardware design from modelling to simulation,” in FDL, 2007,
pp. 274–279.

[17] M. kerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Håkansson,
A. Möller, P. Pettersson, and M. Tivoli, “The save approach to
component-based development of vehicular systems,” J. Syst. Softw.,
vol. 80, no. 5, pp. 655–667, May 2007.

[18] S. Hissam, Pin Component Technology (V1.0) and Its C Interface, ser.
Technical note. Carnegie Mellon University, 2005.

[19] R. Bastide and E. Barboni, “Component-Based Behavioural Modelling
with High-Level Petri Nets,” in MOCA ’04- Third Workshop on Mod-
elling of Objects, Components and Agents , Aahrus, Denmark , 11/10/04-
13/10/04. DAIMI, October 2004, pp. 37–46.

[20] N. Salmi, P. Moreaux, and M. Ioualalen, “Structured performance
analysis for component based systems,” International Journal of Critical
Computer-Based Systems (IJCCBS)- Part II - Issue 1/2, vol. 3, no. 1,
pp. 96–131, 2012.

[21] D. Schmidt and S. Vinoski, “Object interconnections: The CORBA
component model: Part 2, defining components with the IDL 3.x types,”
C/C++ Users Journal, April 2004.

515Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Fig. 3: User interface of the the GenTools tool

Fig. 4: Application example

516Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

