ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

An Automatic Petri-net Generator for Modeling Multi-agent Systems

Meriem Taibi, Malika Ioualalen, Riad Abdmeziem
LSI - USTHB
Algiers, Algeria
emails: {taibi,ioualalen,abdmeziem} @Isi-usthb.dz

Abstract— A multi-agent system can be studied as a
concurrent, asynchronous, stochastic and distributed computer
system. These characteristics of multi-agent systems make
them also a discrete-event dynamic system; it is, therefore,
important to analyze the behavior of such system to ensure that
it terminates correctly and satisfies other important properties.
Several analytical methodologies have been used to study
multi-agent system, particularly Petri nets. Petri nets have a
well-defined mathematical structure that can be leveraged to
provide formal analysis on discrete-event systems. In this work,
we propose an automatic transformation to model multi-agent
systems using Colored Petri nets.

Keywords-Multi-agent system; Colored Petri net; Modeling; De-
scription language.

I. INTRODUCTION

Multi-agent systems have been widely studied in the past
few decades, where several frameworks have been defined
in order to apply the multi-agent system concept to different
applications in control and optimization of complex systems
[L][2]. An agent is a computer system or computer program
that presents several complex characteristics. A Multi-Agent
System (MAS) [3] consists of a set of agents, interacting to
achieve a common goal. Generally, MAS are known to work
properly in a dynamic large-scale complex environment (open
environment), thanks to several properties like: autonomy,
adaptability, robustness and flexibility. The complexity and
capabilities of a multi-agent system are greater than those
presented in distributed software systems. In both cases, the
study of system properties is becoming more important due to
the fact that we are faced more and more to deal with large
complex dynamic systems.

Tests and simulations have contributed for a long time to
validate such systems. However, these techniques allow to
investigate just a part of the global behavior. By that, they
differ from the formal verification techniques, which ensure
that a property is verified by all possible system executions.

Therefore, the important challenge in this field is the de-
velopment of analytical methods to assess key properties of
such systems. Such methods could be used to impart a pre-
liminary analysis of the multi-agent system, providing design
and operation feedback before the development of expensive
systems. Many models based on Belief — Desire — Intention
(BDI) architecture were proposed in [4] and [JS].

Other works include various attempts to deliver a formal
model from AUML (Agent Unified Modelling Language)
diagrams [6][7]. The advantage of these methods is that most
developers are familiar with the (A)UML and an automatic

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

transformation of their diagrams into formal models and
model-check them, would greatly simplify the software quality
control. The difficulty is that AUML diagrams allow much
more freedom for the designer than formal models and the
automatic translation is not trivial.

Petri nets have a well-defined mathematical structure that
can be leveraged to provide formal analysis on discrete-event
systems. In addition, Petri nets have been successfully used
in several areas for the modeling and analysis of distributed
systems [8].

Several studies have been proposed to model MAS with
Petri nets (PN). In [9], a model was proposed for a promotional
game of viral marketing on the Internet. Specifically, authors
used stochastic Petri nets for modeling a multi-agent wish list.
As well, Gazdare [10] used Colored Petri nets (CPN) as a
formal method to model a transport system with containers,
then, simulate and solve the storage problem. In EL Fallah-
Seghrouchni [11], Boukredera [12] and Khosravifar [13],
authors also proposed to use the CPN formalism to model
interaction protocols.

In this work, we propose an automatic transformation for
modeling multi-agent systems. This automation is based on
two steps: first, the system is described using a language called
MASDL, then, a set of transformation rules are applied to
obtain the CPN models.

This document is organized as follows. Motivations and the
problem statement are presented next. Section III gives an
introduction to MAS. Section IV presents the main aspects
of the language we define to specify MAS. In Section V, we
present our transformation algorithm allowing to model MAS
using CPN. Section VI presents our application, and finally,
Section VII discusses the obtained results and presents future
work.

We assume that the reader is familiar with Colored Petri net
[14].

II. MOTIVATIONS

The Petri nets can be considered as graphic and mathe-
matical tools of modeling and analyzing the discreet system,
particularly the competitive, parallel and non-determinist ones.
In the field of MAS, the previous works of the Petri nets
concentrated on their uses and not on the creation of the
new tools and platforms. The goal of our work is to develop
a platform which generates automatically models for multi-
agent system using CPN. The system in question must be
described in an intermediate language. We find in literature
two classes of specification languages [15][16]. The first allows
the definition of agent and its behavior (e.g., AgentSpeak [17]])

128

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

and the other describes the system environment (e.g., ELMS
[L8]). Therefore, the definition of a new language including
both aspects is necessary. We propose, then, a new language
based on XML. The use of XML has many advantages:

e Universality: The adoption of a simple and powerful
syntax which allows the representation of the most
generic models with hierarchical elements, attributes and
textual content.

o Interoperability: Thanks to their universal syntax, XML
documents are easily transportable and readable between
systems.

e Independence between models and data: We can write
an XML document without resorting ever to a schema.
If we need to validate the document, we can build a
schema afterward.

III. MULTI-AGENT SYSTEMS (MAS)

According to Weiss [19], agents are computational systems
situated in some environment, and are capable of autonomous
action in this environment in order to meet their design
objectives. Agents perceive and interact with each other via
the environment, and they act upon it, so that it reaches a
certain state where their goals are achieved. Consequently, the
MAS environment consists of a set of states S = {s1,s2,...},
where an agent can undertake a set of actions A = {a,as, ...}
and perceive a set of percepts P = {py, p2,...}. Therefore, en-
vironment modelling is an important issue in the development
of multi-agent systems. Although, some multi-agent systems
may be situated in an existing environment, in agent-based
simulations, the environment is necessarily a computational
process too, so modelling multi-agent environments is always
an important issue. For this objective, we present in the next
section Multi-Agent System Description Language, a language
used for the specification of multi-agent environments.

IV. MULTI-AGENT SYSTEM DESCRIPTION LANGUAGE

In this section, we introduce the main aspects of the

language we defined for the specification of the multi-agent
system and its environment. The language is called Multi-
Agent System Description language (MASDL). MASDL is
inspired from the Environment Description Language for Multi
Agent Simulation (ELMS) language [18], which is an XML-
based language that provides the ability to describe multi-
agents.
The syntax and the various components of our language are
given below. The validation of the syntax is done using World
Wide Web Consortium (W3C) scheme which is a grammar
defined in XML formalism.

e MAS general structure: MAS specification contains
the name of the system, a list of agents, a set of
objects (system environment), a list of states (agents
states and objects states) and finally a list of ac-
tions may be performed by agents. The code sample

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

Listing 1| gives the general structure of the system.
Listing 1: MAS description structure

<MAS NAME = ">
<AGENTS_LIST>
<AGENT NAME = ™">
</AGENT>
</AGENTS_LIST>
<OBJECTS_LIST>
<OBJECT NAME = ">
<OBJECT></OBJECTS_LIST>
<STATES_LIST>
<AGENT_STATE_LIST></AGENT_STATE_LIST>

<OBJECT_STATE_LIST></OBJECT_STATE_LIST>

</STATES_LIST>

<ACTIONS_LIST>

<ACTION NAME = "> </ACTION>
</ACTIONS_LIST>
</MAS>

Agent description: This description contains the name
of the agent, a list of its attributes (agent proper-
ties), the current state and list of actions. The fol-
lowing example in [Listing 2| defines an agent named
agentl which has an attribute propl of type typel
with a value vall. The agentl has state_agentl like
initial state and can perform actionl and action2.

Listing 2: Agent description example

<AGENT NAME = “agentl”>

<ATTRIBUTES>
<ATT NAME= ”propl”
TYPE="typel”
VALUE = ”val”/>
</ATTRIBUTES>
<CURRENTSTATE>
<ITEM NAME = ”state_agentl”/>
</CURRENTSTATE>
<ACTIONS>

<ITEM NAME = ”actionl”/>
<ITEM NAME = “action2”/>
</ACTIONS>
</AGENT>

Resources description This concept allows the specifi-
cation of the different objects in the MAS environment
(all the entities in the environment that are not agent).
An object class includes its name, the current state of the
object, its identifier and the available quantity (a negative
amount is used in case where the amount is unlimited).

Listing 3: Example of object description

<OBJECTS_LIST>
<OBJECT NAME = ”Objet1”>

<ATTRIBUTES>
<ATT NAME= ”quantity”
TYPE= "int”
VALUE="100"/>
</ATTRIBUTES>
<CURRENTSTATE>
<ITEM NAME = “state_res”/>
</CURRENTSTATE>
</OBJECT>

</OBJECTS_LIST>

The code sample above, defines a resource
called objectl. This object has an integer attribute rep-

resenting the number of units available in the system
and current state state_res.

129

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2013.

State description The state is defined in the tag
<AGENT_STATE_LIST> when it relates to agents and
in the tag <OBJECT_STATE_LIST> when it concerns
resources. A state is described by its name and an infor-
mal description given by the designer, it corresponds to
the semantics of the state. A state represents a situation
in which an agent or a resource can be, during the

running of the system. In the code exemplifies
definition of two states (one for agent state and the

second for resource one).

Listing 4: Description of states

<STATES_LIST>
<AGENT_STATE_LIST>
<STATE NAME = ”"state_agentl”>
<DESCRIPTION></DESCRIPTION>
</STATE>
</AGENT_STATE_LIST>
<OBJECT_STATE_LIST>
<STATE NAME = ”state_res”>
<DESCRIPTION></DESCRIPTION>
</STATE>
</OBJECT_STATE_LIST>
</STATES_LIST>

Action description The description of the action in-
cludes its name, its content and an informal description.
Content specifies the agents that are involved in the
execution of the action and also the potential resources
(objects) needed. The agents specification includes their
name, input and output states. An action can be executed
by an agent, if it is in the defined input state. These states
represent the preconditions of the action.

Resources can also be instantiated or removed by action.
The specification of resources including their type, input
and output states and the number of units to subtract
(sub_quantity_entry) or to add (add_quantity_exit).

Listing 5: Action description

<ACTIONS_LIST>
<ACTION NAME = “actionl”>
<CONTENT>
<ACTIONS_AGENT>
<ACTION_ITEM NAME= “Ag”
ENTRYSTATE ="statel _Ag”
EXITSTATE="state2_Ag”/>
</ACTIONS_AGENT >
<ACTIONS_OBJECT>
<ACTION_ITEM NAME= "Res”
ENTRYSTATE="statel_Res”
EXITSTATE="state2_Res”
SUB_QUANTITY_ENTRY= 2~
ADD_QUANTITY_EXIT="5"/>
</ACTIONS_OBJECT>
</CONTENT>
<DESCRIPTION>
<!—— Informel Description—>
</DESCRIPTION>
</ACTION>
</ACTIONS_LIST>

In the example above|Listing 5| an action named actionl
is defined and has as a precondition: the agent Ag must
be in the state statel_Ag and the object Res in the state
statel_Res. As a result of the execution of this action,
the agent Ag will be in the output state state2_Ag and
the resource Res in state2_Res state with the production
of three units of this resource.

ISBN: 978-1-61208-304-9

V.

AUTOMATIC MULTI-AGENT MODELING USING CPN

The objective of this section is to give an algorithm allowing
to transform a description of multi-agent system to Colored
Petri net models. The CPN models obtained are written in a
XML based language with a specific syntax which we call
Petri Net Description Language (PNDL).

A. Transformation algorithm

The transformation algorithm [I] allows to generate automat-
ically CPN models of the described system. The important
steps of the algorithm are given in Fig. [I| Based on MASDL
language, the system is defined by a set of states S = {sy,s2,...}
and agent is able to perform a set of actions A = {ay,ay,...}.
The execution of an action causes changes in the environment.

¢ Start

Agents + Resources = Colors

v_)

[States = Plzoes]
v
[Actions=Transitions

l ¥ Transition

Mext transition
[Transforms = Arcs]
[Conditions = Guards]

l Stop

Fig. 1: Schema of the modeling process.

Algorithm assumptions: We assume that our algorithm
has as input and output data the following sets, described
in the Fig. 2] which are calculated from the MASDL
system specification.

Name

Description

AG | Set of agent

RE | Set of resources

SA | Set of agents states

SR Set of resources states

AC | Set of actions

P Set of places

T Set of transitions

Arc | Set of Arcs

C, | Color with the structure < id, state >

G Color with the structure < id,state,quantity >

Fig. 2: Algorithm’s input and output data

The algorithm also uses a set of predefined functions,
the definition of which is as follows:

130

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

o Act:AG — AC: Act(a) allows to give all the
actions which can be made by the agent q,

o Actg:RE — AC: Actg(r) calculates all actions that
affect the resource r,

o Entry_Agent : AG ® AC — SA: Returns the entry
state of one agent to undertake an action

o Entry_object : RE ® AC — SR: Returns the entry
state of one resource to undertake an action states,

o Exit_Agent : AG®AC — SA:Returns the exit state
of one agent after action execution,

o Exit_object : RE®QAC — SR: Returns the exit state
of one resource after action execution,

o Sub_Object : RE @ AC — N: Gives the number of
units to subtract from one resource after action
execution,

o Add_Object : RE®AC — N: Gives the number of
units to add to one resource after action execution,

o Create_Place(): Allow to create places,

o Create_Transition(): Allows to create transitions,

o Create_Arc(): Creates arcs connecting places to
transitions or vice versa.

Algorithm 1 Petri net Generator

P—©
T+—0©
for each sa € SA do
Create_Place(pyq)
P PUpy,
end for
for each sr € SR do
Create_Place(ps,)
P PUp
end for
for each ¢ € Act(a) do
Create_Transition(t,)
T+ TUt,
end for
for each a € AG do
for each c € Act(a) do
sa < Entry_Agent(a,c)
sa' < Exit_Agent(a,c)
Create_arc(pyq,t,) with color function 1/ < a,sa >
Create_arc(tq, psy) With color function 1/ < a,sa’ >
end for
end for
for each r ¢ RE do
for each c € Actg(r) do
sr < Entry_Agent(r,c)
sr' + Exit_Agent(r,c)

Create_arc(pg,t.) with color function
Sub_Object(r,c)/ < r,sr,quantity >
Create_arc(ty, pyy) with color function

Add_Object(r,c)/ < r,sr',quantity >
end for
end for

e Initial marking: the initial state is calculated as:

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

1) If an agent q is initially in the state sa, we put one
token of color < a,sa >¢€ Cj, in the place pg,;

2) If an resource r is initially in the state sr, we put
one token of color < 7,sr,quantity >€ Cy, in the
place py;

B. Output format

We propose an XML-based language for the description of
the models generated by the algorithm. We entitle our language
Petri Net Description Language, which is based on the tags
< PLACES >, < TRANSITIONS > and < ARCS > to describe
the model and on < COLORS > and < TOKENS > to give its
marking. The general structure of the language is presented in

the following

Listing 6: Description of CPN Model

<RDPC NAME = ”RdP_Example”>
<PLACES>
<PLACENAME = ”pl1”/>
</PLACES>
<TRANSITIONS>
<TRANSITIONNAME = ”t17/>
</TRANSITIONS>
<ARCS>
<PRE_ARCS>
<ARC FROM ”pl1” TO ”t1”>
<WEIGHT COLOR = ”cl1” PRE = "17/>
</ARC>
</PRE_ARCS>
<POST_ARCS>
<ARC FROM ”t1” TO ”p1”>
<WEIGHT COLOR = ”cl1” POST = "17/>
</ARC>
</POST_ARCS>

</ARCS>
<COLORS>
<COLOR NAME = “c1”>
<ITEM NAME = ”id” VALUE = "017/>
</COLOR>
</COLORS>
<TOKENS>
<TOKEN COLOR = "cl1” PLACE = ”pl”/>
</TOKENS>
</RDPC>

VI. RUNNING MASDL ENVIRONMENT

The use of XML provides various advantages, wide range
of XML tools are currently available and it can be useful
for the future development. The validation of the description
is done using W3C scheme. For the implementation of our
tool, we chose Java, which allows us to use Java Architecture
for XML Binding (JAXB) and Application Programming
Interface (API) to create XML application data. The global
architecture of our application is shown in Fig. [3]

Our tool allows wusers to introduce environment
specifications from a graphical interface, as shown in
Fig. E} With this interface, users do not need to deal with the
language syntax but just fill the different fields.

Filled fields will be checked and compiled to generate

the corresponding XML file, as shown in Fig. 5} on which
the transformation algorithm will be applied. To generate a

131

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Compiler
schema
lava classes
*
Instance Validation
Instances
Unmarshall
AKML _—
Document

le—
Marshall

Fig. 3: The global architecture

graphical representation of the Petri net model, as shown in
Fig. [6] we use the GraphViz tool [20].

File View About!
By Riad!

Edit MASDL | Form

|<action name ="a7">
<content=

<actions_agent>

<action_item name="fourmi b entrystate="sa6"
exitstate="sa4"/>

<lactions_agent >
Validate

<acfions_object-

<action_item name="paquet’ entrystate="sr3" exitstate="sr1" sub_quantity_entry ="1"
add_quantity_exit ="17>

</actions_object>
<fcontent=
<description>

deposer 13€™abjet au debut du chemin
<Idescription>

I<faction=

<Jactions_list=
|</mas>

< Il

Validation: success

MAS Name: SMA_Fourmis.

Fig. 5: MASDL file exemple

% MASDL Tool

File View About!
By Riad!

Edit_MASDL | Form

<fourmi a>

Post (pr_s13, t_a2/
paquet) =1

Validate

Pre (pr_s13, t_a3/

s [Post (pr_st3, t_a3/
paquet) =1

paquet) =1

Pre (pr_si3, t_a7/
paquet) =1

Form_reset

[

34 MASDL_Tool 11
File View About!
By Riad!
Edit MASDL | Form
Agentname :
Fourmis A
Initial state :
Number of actions :
|
ftem =]
al
-
tem ?
[T
Fig. 4: Tool interface
VII. CONCLUSION AND FUTURE WORKS

In this paper, we introduced the MASDL language, used
for the specification of the agents and their environment. The
language is based on XML and is independent of the agent
runtime platform and implementation language. We defined
also transformation rules to obtain formal models from the
system specification to analyze and verify the described multi-
agent system. We plan in our further work to connect our tool
to another verification tool, as CPN Tool or GreatSPN for the
general properties verification (deadlock, boundedness, etc.).
We will focus mainly on extending our model by introducing
the temporal dimension in order to perform a quantitative
analysis and compute MAS system performances (average
waiting time, average resources available, etc.).

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

uarshalling: success

IPNDL file has been generated

Fig. 6: Petri net generation

REFERENCES
[1] M. Greaves, V. Stavridou-Coleman, and R. Laddaga, “Guest editors’
introduction: Dependable agent systems,” IEEE Intelligent Systems, NJ,
USA, vol. 19, September 2004, pp. 20-23.

S. S. Heragu, R. J. Graves, B.-I. Kim, and A. St Onge, “Intelligent agent
based framework for manufacturing systems control,” Trans. Sys. Man
Cyber. Part A, NJ, USA, vol. 32, no. 5, September 2002, pp. 560-573.

J. Ferber, Les systémes multi-agents vers une intelligence collective.
Inter-Editions, 1995.

H. Mouratidis, M. Kolp, P. Giorgini, and S. Faulkner, “An architectural
description language for secure multi-agent systems,” Web Intelli. and

(2]

(3]

(4]

132

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

(51

(6]

(7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Agent Sys., Amsterdam, The Netherlands, vol. 8, no. 1, January 2010,
pp. 99-122.

M. Dziubinski, “Complexity of multiagent bdi logics with restricted
modal context,” in The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 3, ser. AAMAS °11. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
Taipei, Taiwan, 2011, pp. 1171-1172.

S. Maalal and M. Addou, “A new approach of designing multi-agent
systems,” CoRR, vol. abs/1204.1581, 2012.

L. J. B. Ayed and F. Siala, “Event-b based verification of interaction
properties in multi-agent systems,” JSW, vol. 4, no. 4, 2009, pp. 357-
364.

J. R. Celaya, A. A. Desrochers, and R. J. Graves, “Modeling and
analysis of multi-agent systems using petri nets,” JCP, 2009, pp. 981-
996.

C. Balague, “Multi-agent system in marketink: Modelisation by petri
net,” Ph.D. dissertation, Ecole des Hautes études Commerciales, 2005.

M. K. Gazdare, “Heuristic optimization of distributed problem storage
containers in port,” Ph.D. dissertation, ECOLE CENTRALE DE LILLE,
2008.

A. El Fallah-Seghrouchni, S. Haddad, and H. Mazouzi, “Protocol
engineering for multi-agent interaction,” in International Workshop on
Modeling Autonomous Agents in a Multi-Agent World (MAAMAW),
Valencia, Spain, 1999.

D. Boukredera, S. Aknine, and R. Maamri, “Modeling temporal aspects
of contract net protocol using timed colored petri nets,” in STAIRS,
December 2012, pp. 83-94.

S. Khosravifar, “Modeling multi agent communication activities with
petri nets,” International Journal of Information and Education Tech-
nology, Singapore, vol. 3, no. 3, September 2013, pp. 310-3014.

K. Jensen, Coloured Petri nets: basic concepts, analysis methods and
practical use, vol. 2. London, UK, UK: Springer-Verlag, 1995.

M. M. Dastani, C. M. Jonker, and J. Treur, “A requirement specification
language for configuration dynamics of multi-agent systems,” Interna-
tional Journal of Intelligent Systems., vol. 19, 2004, pp. 277-300.

M.-P. Huget, “Agent uml notation for multiagent system design,” /IEEE
Internet Computing, Piscataway, NJ, USA, vol. 8, no. 4, 2004, pp. 63—
1.

A. S. Rao, “Agentspeak(l): Bdi agents speak out in a logical computable
language,” in Proceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent world : agents breaking away:
agents breaking away, ser. MAAMAW ’96. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1996, pp. 42-55.

F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa, “Elms:
an environment description language for multi-agent simulation,” in
Proceedings of the First international conference on Environments for
Multi-Agent Systems, ser. EAMAS’04. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 91-108.

G. Weiss, Ed., Multiagent systems: a modern approach to distributed
artificial intelligence. Cambridge, MA, USA: MIT Press, 1999.

Graphviz - graph visualization software. http://www..graphviz.org, Re-
trieved: June, 2013.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

133

http://www..graphviz.org

	Introduction
	Motivations
	Multi-agent systems (MAS)
	Multi-Agent System Description Language
	Automatic Multi-Agent Modeling Using CPN
	Transformation algorithm
	Output format

	Running MASDL environment
	Conclusion and future works
	References

