
Service Relationships Management for Maintenance
and Evolution of Service Networks

Aneta Kabzeva, Joachim Götze, Thomas Lottermann, and Paul Müller
Integrated Communication Systems (ICSY), University of Kaiserslautern, Germany

Email: {kabzeva, j goetze, t lotterm09, pmueller}@informatik.uni-kl.de

Abstract—The Service-Oriented Architecture (SOA) paradigm
is broadly accepted for the realization of business capabilities.
Hence, the maintenance and evolution of Service Networks (SN)
as systems comprising multiple service-based applications is
becoming a growing issue. The larger a service inventory grows
and the more often services are reused, the more consequences a
service change or fault can cause on related applications in the
SN. While reducing the adaptation complexity of a single solution,
the realization of business processes as service compositions intro-
duces logical relations defined implicitly between the technically
independent services. To preserve the consistency in the whole SN,
maintenance and evolution processes have to consider all relations
to the changing configuration item. We present a framework for
collection, validation, and representation of service relationship
information. Contributions of the proposed solution include a
semi-automatic approach for relationship identification, a mech-
anism for completeness and consistency validation, and a tailor-
made representation of relations according to stakeholder needs.

Index Terms—service-orientation; service networks; service
relationships; maintenance; evolution

I. INTRODUCTION

Nowadays, Service-Oriented Architecture (SOA) is the main
paradigm applied for the flexible integration of heterogeneous
applications. With the introduction of the core concept of a
service, SOA aligns the development of business processes and
the underlying IT infrastructure. From a business perspective,
the decomposition of business processes into reusable services
allows for easy recognition of relevant software components
in case of changing product requirements and better overview
of IT investments for the introduction of new business capa-
bilities. For software architects, the realization of systems as
service compositions means the definition of loosely coupled
units of logic accessible through a standardized interface
[8]. Thus, fast adaptation to changing business requirements
is achieved through the modification or replacement of the
service representing the relevant business task.

While the adoption of SOA reduces the complexity of
single system adaptation, the structural complexity of a Ser-
vice Network (SN) as a system of service systems [5] is
increasing considerably. Therefore, maintenance (the modifi-
cation of a service-based application for fault correcting or
quality improvement changes of existing configuration items)
and evolution (the introduction of new processes, services,
and policies) are growing research issues [19]. Three main
factors are identified for causing the increased complexity: the
increased number of configuration items that can be considered

for maintenance and evolution, the existence of implicitly
defined dependencies, and the restricted administrative control
on some resources within the landscape.

Increased number of configuration items: the decomposition
of software solutions into a number of services and the def-
inition of the expected documents describing their interfaces,
compositions, and regulations increases the set of items which
need change control [23].

Implicit dependencies across applications: the reusability
of services in different processes speeds up new product
implementations. Yet, it leads to an increasing number of
relations between services in the context of these processes.
Each service reuse generates hidden chains of dependencies
[10]. These dependencies are not explicitly defined [16] and
affect the maintenance and evolution of SNs.

Restricted administrative control: the standardized service
access through uniform interfaces allows easy integration of
third-party services. Such integration introduces configuration
items which are under external administrative control and are
needed for the proper functioning of applications. Changes
conducted by the external providers cannot be controlled and
can cause disruptions of client applications [27].

To exploit the agility provided by SOA, SN operators have
to deal with the resulting complexity and assure consistent
landscape state after maintenance and evolution changes. The
loose coupling property of services provides only technical
independence [26]. The modification of a service can still
affect numerous processes and applications using the service.
In the context of SNs, a change can cause not only functional
but also non-functional faults such as the violation of contract
clauses [33]. Proper propagation of an evolutionary or main-
tenance change through the entire Service Network requires
a rigorous knowledge of the relationships resulting from
service composition and reuse. A relationship between two
entities can be a functional dependency or a non-functional
requirement. The relationship management solution proposed
here provides a means for collecting this knowledge, validating
the completeness and consistency of the collected relationship
information, and presenting it in a tailor-made form suitable
for the analysis needs of both business and IT stakeholders.
Based on predefined patterns and constraints, it calls attention
to missing relationships and inconsistencies of specifications,
yet leaves the correcting actions to human interaction. To
achieve this goal, several steps have to be taken [15]:

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

• Understand the characteristics of services residing on the
different abstraction layers between business and IT, as
well as the possible relationships between them to provide
a basis for a completeness and correctness check of the
collected information.

• Define a common format for relationship representation
allowing a uniform specification of all identified relation-
ship variations, independent from the heterogeneous spec-
ification languages applied in the realization of service-
based applications.

• Design an architecture capable of supporting the col-
lection, validation, and representation of an appropriate
set of relationships relevant for SNs according to their
stakeholder needs.

This paper focuses on the last step and describes an ar-
chitecture, a prototype, and an exemplary case study for a
relationship management framework. The remainder of the
paper is organized as follows: Section 2 gives an overview of
currently existing solutions for relationships management for
SOA. Section 3 identifies the relationship types considered for
the proposed solution. Section 4 explains the proposed frame-
work architecture. A prototypical realization is presented in
Section 5. Section 6 describes the application of the framework
in an exemplary case study. Finally, Section 7 concludes the
paper with a short summary and an outlook on future work.

II. RELATED WORK

The work on relationships in service-based applications
found in the literature differs according to the purpose for
relationship assessment and the considered set of relation-
ships. Regarding the purpose for relationships, existing ap-
proaches separate in two general groups: providing support
for business-specific purposes [3][24] or for IT-specific pur-
poses [1][6][27][33]. The transfer of business requirements
to the executable IT services [3] and automatic process
model creation [24] are the main goals pursued from the
business perspective. Regarding the type of relationships,
these solutions are mainly interested in the mappings between
business capabilities and the IT services responsible for their
execution. The maintenance and evolution scenarios from the
IT perspective include failure detection and impact analysis
[1][2][12], definition of service level agreements for composed
services [20][33], and governance support [6]. These solutions
extract information mainly on the relationships between exe-
cutable services. While providing some detail on relationships
properties and analysis features for the specific scenario, all
these approaches capture a restricted set of relationships types.
The collected relationship information is not applicable for
additional analysis purposes. The solution proposed in this
paper considers these approaches as a basis to identify what
types of relationships should be supported by the framework
and what validation features are needed.

Infrastructures for generic traceability support are offered in
[30][32]. Similar to our solution, the STraS framework [30]
foresees plug-ins to extract data from heterogeneous specifica-
tions of architectural artifacts. However, the actual capturing of

Fig. 1. Considered relationship types example

the relationships is not established. Stakeholders can query the
ontology-based integrated knowledge representation according
to their needs. Contrary to our approach, constraints and
patterns for the validation of the collected relationships are
not considered as part of the solution. The VbTrace approach
[32] operates on an abstract and technology-specific process
specifications. Based on a specified set of views, the View-
based Modeling Framework (VbMF) produces links between
view models and between elements from different view models
instead of between SOA-specific architectural artifacts. From
the captured relationships, the infrastructure allows code re-
generation of the process implementation that should support
changes in the process-driven SOA landscape. Although it con-
siders the abstract business view on a process, this approach,
and the restricted set of links that it generates, fits only a
software developer’s needs.

Realizing the role of knowledge management for the long-
term success of service-based landscapes, several software
vendor solutions for relationship management have emerged
(e.g., IBM’s WebSphere Service Registry and Repository [7],
Software AG’s SOA governance tool CentraCite [31], or
Oracle’s sCrawler SOA dependency tracker [28]). Typically,
these solutions are built on top of a service registry and work
only in combination with the corresponding vendor-specific
software suite.

III. SERVICE RELATIONSHIPS

The adaptability and flexibility of service-based applications
is realized with the introduction of an additional service ab-
straction layer between business and application logic [8][14].
To structure the representation of both types of logic, the
service layer is divided into several layers [8]. While there
is a common understanding that the service layer comprises
different types of services, there is no clear view what these
types are. Service classification and how the different types
relate to each other is normally dependent on the stakeholders’
background [22]. However, independent from the number

202Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

of abstraction layers defined for the realization of a SN,
the aligned modification of the configuration items lying on
these layers is what grants the success of a SOA and at the
same time complicates its maintenance and evolution. Five
maintenance and evolution challenges are identified according
to the structure of SNs and addressed in the proposed solution:
two address the impact estimation on business and IT change,
two support the recognition of critical and wasted resources,
and one regards the redundancy of services.

Business requirement change management: agile adaptation
to changing requirements is the main reason for initiating a
service-based application. A changing requirement has to be
transferred to the execution services and will initiate changing
processes on the IT side. Since business processes compose a
set of business tasks, a change request for a single business
task will directly trigger a change of a restricted set of services
responsible for its execution. Yet, the proper functioning of
services executing adjacent business tasks - which can also be
part of multiple business processes composing the modified
task - can also be indirectly affected.

Service change management: service quality improvement
or fault correction are possible triggers for service changes
coming from the IT side. Even if the service interface remains
the same, a service change can have implications on the non-
functional properties of the supported business capabilities.
Because of the reuse of services, there can be an n to m
relationship between services and tasks [30]. Multiple business
tasks, and consequently business processes, can be affected.

Detection of critical services: the maintenance process is not
only responsible for the execution of modifications on change
requests, but also for ensuring a high quality application
environment. A service is provided for consumption to an
undefined set of consumers. Its usage after deployment is
unpredictable for the provider. Without information on the
connectivity of a service within the entire SN, it is impossible
to recognize which services are crucial for the business.

Detection of wasted resources: similar to the previous
challenge, service consumption is also impossible to estimate
for unused services without keeping information on their
connectivity. An unused service wastes storage resources or
even monetary resources in the case of a third-party service.
Integrating data from usage accounting can provide informa-
tion about the significance of the resource waste [11].

Service redundancy prevention: a service is redundant if
there is already another service offering the same function-
ality with the same quality for the same business capability.
Services and processes are procured or provided by different
stakeholders shaping the SN. A system architect cannot know
all available services unless there is an explicit documentation
on how the available services relate to business tasks.

To support these challenges, the proposed solution allows
the extraction and explicit documentation of the relationships
described below. Fig. 1 provides an example illustrating their
occurrences. This figure depicts a manually created relation-
ship model of an existing SOA-based stock trading application,
which will later be considered as an exemplary case study.

Task-to-task: This relationship type represents links within
the business process layer. A relationship between tasks dis-
plays the control flow (control relationship) or data flow
(producer-consumer relationship) within an application. This
information is explicitly available in business process descrip-
tions and automatically extractable for relationships within a
single process. A complete task-to-task relationship model for
a task requires reviewing all the processes comprising the
task, which is a time consuming activity without an automated
relationship management solution. Task-to-task relationship
information can be used to automatically map relationships
between services on the executable services layers, which
result in the process context and are not explicitly visible
for software architects. Thus, support for service change
management and the estimation of the connectivity of a service
within the SN will be indirectly provided.

Task-to-service-operation: To be reusable, an executable
service is usually entity-centric, defining a set of operations
on a single business entity. A task within a business process
defines a piece of functionality. Thus, a business task is usually
executed by a single or multiple operations provided by one
or more services. Providing explicit information on task-to-
service operation mappings supports both business require-
ments change management and service change management.
Because of the fine granularity of the relationship not only to
a service but to its specific operation, responsible stakeholders
will be able to better estimate if all related services or tasks
will be affected by a change request. Furthermore, for the
definition of new business processes composing an existing
service task, the corresponding service can be automatically
detected and prevent unwanted service redundancies. Yet, the
collection of these relationships has to happen manually on
the initial service selection from the software architect.

Service-operation-to-service-operation: Links within and
across the executable services layers are displayed by these
relationships. Service-operation-to-service-operation relation-
ships can be captured in two ways. Relationships that are
automatically collected from process services or composed
service specifications residing on higher abstraction layers
indicate functional dependencies (task-subtask relationships)
across layers. Relationships that are automatically calculated
from the combination on the previous two types of relation-
ships inherit the type of the initial task-to-task relation (e.g.,
producer-consumer in Fig. 1). Both types support traceability
for change management and representation of the service
integration within the SN.

Business-process-to-service: Finally, if the logic modeled
within a business process is controlled by an executable
process service, a process-to-service implementation relation
has to be explicitly captured for change management support.

IV. SERVICE RELATIONSHIP MANAGEMENT FRAMEWORK

A. Requirements

To provide a framework for relationship management in
SNs, several requirements have to be taken into account. First
of all, the set of configuration items and their relationships

203Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

have to be dynamically adjustable to the target landscape.
Depending on the maturity of the SOA adoption within an
organization [9], only a subset of the layers pictured in Fig. 1
may be present. A restricted set of service layers will result
in a smaller set of possible relationships. The framework
should not require a specific set of configuration items and
relationships to be available, but adjust to the available infras-
tructure and its rules and constraints. Thus, an organization can
adjust the completeness and correctness validations performed
according to its infrastructural policies.

This leads to the second requirement: the relationship man-
agement solution should be applicable for both existing and
newly forming SNs. To achieve this requirement, the solution
should operate on available documentation without the need
for modification.

Another requirement on the framework is to capture both
direct and indirect (hidden) relationships between the configu-
ration items of a SN. While direct dependencies can be easily
extracted, either manually during design or automatically from
process descriptions indirect dependencies, resulting from
hierarchical service compositions and reuse in multiple pro-
cesses, can be discovered only by tracing multiple descriptions,
originating at different times from different stakeholders.

In highly mature SNs with repeated and augmented service
compositions [9], the collection of all existing relationships
can be a long running process. The more often a service
participates in compositions, the higher the number of its
relationships to other services will be. The more compositions
in a service-based landscape exist, the higher the probability of
hidden relationships. Therefore, once calculated, relationships
models should be cached and re-evaluated only on modifica-
tions. This grants both the freshness of the model and better
performance.

The relationship models acquired with the framework
should be usable for different maintenance and evolution
issues like change management or architecture quality anal-
ysis. Change analysis can be triggered from a modification
request on a single service. A relationship model of interest,
in this case, should visualize all configuration items within
the infrastructure that could be influenced by the service
modification. For an architecture quality analysis, the software
architect can be interested in the topology of the whole
infrastructure to identify business-critical services. Depending
on the purpose of a stakeholder, the content of a relationship
model view will differ. A view-based representation of the
collected relationship information should be prepared from the
framework to improve the usability of the models for different
stakeholder groups.

B. Architecture

The architecture proposed here for relationship management
in SNs comprises three horizontal layers (see Fig. 2): a
relationship collector layer responsible for extracting rela-
tionship information from configuration item descriptions, a
relationship profiler, which calculates additional relationships
based on multiple inputs from the relationship collector, and

a relationship presenter layer, which prepares the relationship
information for stakeholder-specific extraction and visualiza-
tion. A vertical layer, relationship constraints and patterns,
supports the three horizontal layer activities through the defi-
nition of patterns and constraints specific for the structure of
service-based application landscapes. The whole architecture
is positioned on top of the service-based application infras-
tructure to be captured. It works on the basis of existing
items’ descriptions without requiring any specific language or
additional tagging in the specifications, thus addressing the
first two requirements on the desired solution.

The collector layer processes raw data from configuration
item descriptions and transforms it into an uniform specifi-
cation of the configuration item and its direct relationships
according to the item-specific relationship patterns provided
from the vertical layer. To support an extensible set of con-
figuration item types, the collector layer has an extensible,
modular structure. For each type of configuration item, a
specialized collector module is provided that knows what type
of information to search its documentation for. All recorded
dependencies are presented as first-class entities in the uniform
specification format and are passed for further processing to
the relationships profiler layer. To be able to understand differ-
ent modeling notations, like BPMN (Business Process Model
and Notation) [25] or EPC (Event-driven Process Chain) [29]
for business process descriptions, a set of patterns mapping the
notation-specific structures to the unified information model
should be provided to the collector.

The objectives of the profiler layer are the calculation of
indirect relationships and the validation for completeness and
inconsistencies. While a relationship collector processes one
item description at a time, a relationship profiler combines
the information from multiple descriptions. Compared to the
relationship collectors, which have to be language-specific,
a relationship profiler works on a unified set of data and is
thus language-independent. Again, following the extensible
approach advanced by the previous layer, an item-specific
profiler determines how to search for relevant description files
for a calculation. The completeness and consistency checks
are done against item-specific constraints, defined in the ver-
tical architectural layer on the basis of possible relationships.
The completeness of the collected data is dependent on the
content provided in the underlying item specifications, e.g.,
all services invoked in a composed service are captured as
part of the landscape model. To allow for completion of
mandatory information, the collection layer has to notify the
responsible stakeholder and request for missing inputs, e.g.,
initial task-to-service operation record. In case of inconsis-
tency, the framework only notifies the responsible stakeholder.
The goal of the framework is to capture the structure of
an application landscape and not its correction, which is
in itself a complex issue usually requiring human interac-
tion. To map the landscape architecture as it is, inconsistent
relationships have to be kept within the model until their
correction through the modification of the related configuration
items. The modification will trigger a re-calculation of the

204Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Fig. 2. Architecture of the relationship management framework

relationships in the profiler, which will update the relationship
model. The calculated relationship profiles are finally saved
for stakeholder-based representation and reasoning.

The topmost presenter layer handles the preparation of the
calculated relationship models for representation, according
to the analysis-specific content requirements of a stakeholder.
An automatic selection of the desired subset of relationships
and configuration items needs predefined rules. Based on
their role [9] in the operation of the service-based landscape,
stakeholders can choose what part of a calculated relationship
profile should be shown. Thereby, they should be able to
restrict the visibility of configuration items as well as the type
of relationships between them. The extraction of model views
reduces the complexity of the model and improves its read-
ability for stakeholders by presenting information according
to their domain expertise.

V. REALIZATION

The prototypical implementation of the framework uses the
Service Component Architecture (SCA) programming model
with its Apache Tuscany implementation [18] to support the
development of a flexible service-based framework. The dis-
tribution of the prototype components on the three horizontal
abstraction layers is depicted in Fig. 2.

The collector layer comprises a Collector and a set of
Definition Modules. The collector provides an entry point for
new configuration item descriptions to the framework. It acts
as a central definition hub, which forwards provided definitions
or configuration items deletion requests to the responsible defi-
nition modules, based on the description’s type. The definition
modules have the task to parse definitions of configuration
items and monitor the deletion of already collected ones. The
Parser within a definition module translates the language-
specific description of a configuration item into a generic data
structure which is used within the framework and marks it with

a unique ID for the landscape. It also extracts notation-specific
dependencies when available (e.g., task-to-task dependencies).
The prototype provides definition modules for WSDL (Web
Services Description Language) [4], BPEL (Business Process
Execution Language) [21], BPMN, and EPC. The Deletion
Monitor is polled every time an artifact shall be removed.
When a deletion request arrives, the monitor either grants the
request or throws an exception, depending on the relationship
information found in the landscape model. Since only the
collector is known to external design tools, it is possible to
transparently integrate new definition modules for new types
of configuration items for the stakeholder. No new skills or
client adaptations are required in order to use the framework.

Newly captured configuration items, now represented in
the generic data structure, are forwarded to the Coordinator.
The coordinator is the central controlling unit. It forwards
the configuration items to relevant detection modules for
relationship profile calculation and validation. Then it sends
the new information (relationships and configuration items)
to the query and storage engine, and notifies the presentation
components about the changes.

The functionality of the profiler layer is implemented as a
set of Detection Modules responsible for calculating implicit
relationships. Each detection module consists of a Calcu-
lator and a Validator. A calculator implements a detection
algorithm for an implicit relationship type. The validation is
performed in terms of completeness (whenever a component or
information is missing which is needed to extract mandatory
information) and consistency (whenever a potential problem
embedded within the application landscape is discovered based
on contradicting relationships). Each validation issue generates
a ticket with a priority tag to designate the importance of
its processing. The current prototype gives higher priority
to consistency issues. To implement the collection of the
relationships specified in section three, the prototype provides
three detection modules: a mapping detection module, which
collects and validates task-to-service operation and process-
to-service relationships, an inter-service dependency detection
module, which calculates and validates service-operation-to-
service-operation relationships, and a service classification
detection module capable of classifying and validating an exe-
cutable service automatically. Through a concept of pluggable
detection modules, the insertion of new relationship types is
achieved by simply binding a new module to the coordinator.

The Query and Storage Engine provides an interface to the
data storage containing the captured relationship models. The
prototype saves the data in a DOM tree, which is managed
via JDOM [13], allowing XPath processing.

The presenter layer consists of two types of clients: the
Model View Extractor, which provides a graphical representa-
tion of the collected relationships model (cf. Fig. 3) and the
Designer, which allows the stakeholders to contribute to the
collection process. The model view extractor tool allows stake-
holders to create model views based on XPath expressions and
displays only a specific part of the model as a graph. The
generated graphs are automatically updated whenever their

205Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Fig. 3. Automatically generated relationships model of the stock trade application

content is affected by modifications in the architecture. The
designer is a tool for manual interaction with the framework
for inserting, changing, and deleting configuration items in
the application landscape. In addition, it interacts with the
detection modules in order to solve the validation issues
recognized by the framework. Thus, the designer tool allows
the framework to extract dependencies which require manual
interaction as well as solve potential problems discovered
within the landscape during validation.

VI. EXEMPLARY CASE STUDY

The proposed framework was applied to collect, validate
and represent the relationships in the service network case
from Fig. 1. The prototype was used to assess and validate the
structure of the SN during an exemplary creation of the stock
trader application. The goal was to observe the framework’s
behavior under conditions like missing or incomplete docu-
mentation and false service classification. For this purpose,
application creation was simulated with the following steps:

1) A business analyst defines a BPMN business process
description for the StockTrader Process.

2) A software developer defines three WSDL descriptions
of the services responsible for the implementation of
the process specified in step 1 - StockQuote Service,
Workflow Service, and StockTrade Service.

3) A software architect defines the executable BPEL pro-
cess specification for the StockTrader Process.

4) A BPEL specification of the StockTrade Service is
imported in the network.

5) The service descriptions for the Authentication Service
and the StockAccount Service composed by the Stock-
Trade Service are added to the network.

The result from the first step was a business process com-
prising three tasks with two explicit task-to-task relationships
between them. Additionally, for each of the three tasks a
notification concerning the missing implementation of the
tasks discovered within the process description was generated.

After the second step three basic services were added to
the model with no relations. Three additional notifications of
unused services were received. The stakeholder was advised to
free unnecessarily used resources or provide, via the Designer
tool, the mapping of which business task is implemented by
which service operation. The notifications were addressed by
providing the implementation relations between the three tasks
and services via the Designer.

The analysis of the BPEL description from step 3 resulted
in adding a process service with three task-subtask and two
producer-consumer relations to the model graph.

The re-validation of the model in step 4 after inserting
a BPEL description for the basic StockTrade Service led
to a classification inconsistency. Also, two unknown service
descriptions referenced in the BPEL specification were re-
ported and asked for their insertion. The analysis of the
BPEL specification resulted in the automatic relocation of the
StockTrade Service to the composition service layer.

Addressing the requests for the service descriptions for the
Authentication Service and the StockAccount Service in step 5
generated the two task-subtask relations from the StockTrade
Service to its composite services. The resulting relations model
(see Fig. 3) was automatically drawn by the framework and
represents all relations from the manual assessment in Fig. 1.
It shows the connectivity of the StockQuote Service (colored
in red) within the network.

206Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

VII. CONCLUSION AND FUTURE WORK

Understanding and explicitly modeling relationships in SNs
is an essential prerequisite for controlled maintenance and
evolution. This paper proposed an architecture for capturing
and validating explicit and implicit service relationships. The
approach considers that the different configuration items in
a Service Network are specified in existing heterogeneous
description languages and applies a language-independent re-
lationship specification model to store the connectivity within
the landscape. Implicitly defined dependencies resulting from
service composition and reuse are captured in an explicit
way, providing information on the relationship type. Applying
predefined rules for relationship obligation and consistency
violation, the proposed solution considers validation of the
captured landscape model for completeness and consistency.
For every validation issue, tickets for stakeholder interaction
are generated and motivate the enhancement of the landscape
infrastructure. Finally, respecting multiple stakeholder roles
from the business and IT domain in a SN, and their different
analysis needs on the service-oriented infrastructure at place,
a view-based representation of the captured information has
been considered as part of the presented framework. The ap-
plication of our solution in an exemplary case study providing
typical descriptions for service-based applications shows that
all relationships identified as helpful for both business ana-
lysts and software architects for the decision making process
during change management are captured automatically by the
framework by complete landscape documentation. Incomplete
documentation is discovered by the framework and reported
to the relevant stakeholders.

Next steps to further improve the relationship management
approach include testing of the framework capabilities and
extending the validation range. Evaluations against the SAP
R/3 [17] processes should assess the behavior of the prototype
in a more complex service-based landscape with hundreds of
processes and services. The EPC definition module necessary
for this purpose is already implemented and integrated within
the prototype. To increase the validation range, an exhaustive
set of relationship patterns and constraints based on the
architectural peculiarities of service-based infrastructures will
be elaborated and integrated in the solution.

REFERENCES

[1] S. Basu, F. Casati, and F. Daniel, ”Toward Web Service Dependency
Discovery for SOA Management,” IEEE International Conference on
Services Computing (SCC 2008), Honolulu, 2008, pp. 422-428.

[2] L. Bodenstaff, A. Wombacher, M. Reichert, and R. Wieringa, ”MaDe4IC:
An Abstract Method for Managing Model Dependencies in Inter-
Organizational Cooperations,” Service Oriented Computing and Appli-
cations, vol. 4, no. 3, 2010, pp. 203-228.

[3] S. Buchwald, T. Bauer, and M. Reichert, ”Bridging the Gap Between
Business Process Models and Service Composition Specifications,” Ser-
vice Life Cycle Tools and Technologies: Methods, Trends and Advances,
2011, pp. 124-153.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web
services description language (WSDL) 1.1, W3C submission, 2001.

[5] O. Danylevych, D. Karastoyanova, and F. Leymann, ”Service networks
modelling: An SOA & BPM standpoint,” Journal of Universal Computer
Science, 2010, pp. 1668-1693.

[6] P. Derler and R. Weinreich, ”Models and tools for SOA governance,”
Lecture Notes in Computer Science, vol.4473. Springer Verlag, Berlin,
Heidelberg, 2007, pp. 112-126.

[7] C. Dudley, L. Rieu, M. Smithson, T. Verma, and B. Braswell, WebSphere
Service Registry and Repository Handbook, IBM Redbooks, 2007.

[8] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and
Design, Prentice Hall, 2005.

[9] T. Erl, S.G. Bennett, C. Gee, R. Laid, A.T. Manes, R. Schneider, L.
Shuster, A. Tost, and C. Venable, SOA Governance, Prentice Hall, 2011.

[10] S. Frischbier, A. Buchmann,and D. Pütz, ”FIT for SOA? Introducing
the F.I.T.-Metric to Optimize the Availability of Service Oriented Archi-
tectures,” Second International Conference on Complex Systems Design
and Management (CSDM 2011), Paris, France, 2011, pp. 93-104.

[11] J. Götze, T. Fleuren, B. Reuther, and P. Müller, ”Extensible and scalable
usage accounting in service-oriented infrastructures based on a generic
usage record format,” 6th International Workshop on Enhanced Web
Service Technologies, ACM, 2011, pp. 16-24.

[12] M.A. Hirzalla, A. Zisman, and J. Cleland-Huang, ”Using Traceability
to Support SOA Impact Analysis,” IEEE World Congress on Services,
Washington, DC, 2011, pp. 145-152.

[13] J. Hunter and B. McLaughlin, JDOM, http://jdom.org/, 2012.
[14] N.M. Josuttis, SOA in Practice, O’Reilly, 2007.
[15] A. Kabzeva and P. Müller, ”Toward Generic Dependency Management

for Evolution Support of Inter-Domain Service-Oriented Applications,”
European Conference on Service-Oriented and Cloud Computing (ES-
OCC 2012) PhD Symposium, Bertinoro, Italy, 2012, pp.35-40.

[16] A. Keller and G. Kar, ”Determining service dependencies in distributed
systems,” IEEE International Conference on Communications (ICC 2001),
Helsinki, Finland, 2001, pp. 2084-2088.

[17] G. Keller and T. Teufel, SAP R/3 Process Oriented Implementation,
Addison-Wesley Longman Publishing Co., Boston, MA, USA, 1998.

[18] S. Laws, M. Combellack, R. Feng, and H. Mahbod, Tuscany SCA in
Action, Manning Publications Co., 2011.

[19] G.A. Lewis and D.B. Smith, ”Service-oriented architecture and its im-
plications for software maintenance and evolution,” Frontiers of Software
Maintenance (FoSM 2008), Washington, DC, 2008, pp. 1-10.

[20] A. Ludwig and B. Franczyk, ”COSMAAn Approach for Managing SLAs
in Composite Services,” ICSOC 2008, Springer-Verlag Berlin Heidelberg,
2008 (LNCS 5364), pp. 626-632.

[21] OASIS, Web Services Business Process Execution Language Ver-
sion 2.0. OASIS Standard, 2007.

[22] P. Offermann, C. Schröpfer, O. Holschke, and M. Schönherr, ”SOA: The
IT-Architecture behind Service-Orientation,” Workshop MDD, SOA and
IT-Management, Oldenburg, Germany, 2007, pp. 1-11.

[23] Office of Governance Commerce (OGC), ITIL v3: Information Technol-
ogy Infrastructure Library Version 3, volume 1-5. London: The Stationary
Office, 2007.

[24] A.M. Omer and A. Schill, ”A Framework for Dependency Based Auto-
matic Service Composition,” Business Process Management Workshops
(BPM 2008), Milano, Italy, 2008, pp. 535-541.

[25] OMG, Business Process Model and Notation (BPMN) Version 2.0, OMG
Specification, 2011.

[26] M.P. Papazoglou, ”Service-Oriented Computing: Concepts, Characteris-
tics and Directions,” 4th International Conference on Web Information
Systems Engineering (WISE 2003), Rome, Italy, 2003, pp. 3-12.

[27] L. Pasquale, J. Laredo, H. Ludwig, K. Bhattacharya, and B. Wassermann,
”Distributed cross-domain configuration management,” Service-Oriented
Computing, Springer, pp. 622-636.

[28] S. Phukan, sCrawler: SOA Dependency Tracker, Oracle Technology
Network, 2009.

[29] A.W. Scheer, O. Thomas, and O. Adam, ”Process modeling using event-
driven process chains,” Process-Aware Information Systems: Bridging
People and Software through Process Technology, 2005, pp. 119-145.

[30] S. Seedorf, K. Nordheimer, and S. Krug, ”STraS: A Framework for
Semantic Traceability in Enterprise-wide SOA Life-cycle Management,”
13th Enterprise Distributed Object Computing Conference Workshops,
2009, pp. 212-219.

[31] Software AG, CentraSite Governance Edition, User’s Guide 7.1, 2011.
[32] H. Tran, U. Zdun, and S. Dustdar, ”VbTrace: Using View-based and

Model-driven Development to Support Traceability in Process-driven
SOAs,” Software and System Modeling, vol. 10, no. 1, 2009, pp. 529.

[33] M. Winkler, T. Springer, E.D. Trigos, and A. Schill, ”Analysing de-
pendencies in service compositions,” Service-Oriented Computing IC-
SOC/ServiceWave 2009 Workshops, Springer, pp. 123-133.

207Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

