ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

A Pattern-based Approach towards Expressive
Specifications for Property Concepts

Geert Delanote, Jeroen Boydens and Eric Steegmans
KU Leuven, Dept. of Computer Science
Leuven, Belgium
{geert.delanote, jeroen.boydens, eric.steegmans} @cs.kuleuven.be

Abstract—In Object-Oriented programming, a significant
effort has been made in recent years to increase the expressiveness
of programming constructs for the production of code. Developers
can implement more functionality in less lines, and with more
compile-time guarantees. We have not seen such a similar
evolution in the design and specification of code. Support for
code specification remains a feature that is rarely integrated
in the language itself (e.g., Eiffel), and is too often migrated
to ad hoc language additions (e.g., annotations). The lack
of such first-class, language-integrated support leads to (1)
developers who are forced to write ad-hoc code specifications in
a non-standardized manner, often ex-post and time-permitting,
and (2) to situations in which other developers, who reuse that
code, are tempted to read the code itself (if available) rather
than the specification, in order to understand what the code
actually does. In this paper, we take an evolutionary approach to
language-integrated specification constructs, with the ambition
to enhance the overall expressiveness of specifications in object-
oriented languages. We start from existing best practices and
propose improvements through specification patterns that not
only enhance the expressiveness of specifications, but also aid
developers in specifying their code through concrete “structures”
in order to avoid ad-hoc, non-standardized specifications. Finally,
we also propose language constructs that help aim to increase
the level of abstraction, by shielding developers from boilerplate
specification as much as possible.

Keywords—Pattern; Specification; Property; Language Construct.

I. INTRODUCTION

Object oriented programming languages use classes as
abstract data types [1][9]. A class is a blueprint for a collection
of objects with identical characteristics and behavior. Encap-
sulation hides the technical details of the data fields used in
the implementation to describe those characteristics. Generally,
several requirements have to be enforced for those characteris-
tics. Examples of such requirements are: the balance of a bank
account must not exceed the credit limit, a single transaction
must not change the balance with more than €1000 and the
holder of a bank account must be adult. Programming language
constructs lack expressiveness to describe those requirements
in an integrated way.

In this paper, we present a pattern to implement charac-
teristics with their requirements in Java. We identify different
kinds of requirements and show how they are implemented
by the pattern. The pattern is only worked out for properties
in this paper. However, with some adaptations to meet the
specific needs, the pattern can also be used for (bidirectional)
associations. We will show how the pattern improves the

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

quality of the code. Finally, we will also show a new language
construct that can replace the pattern.

This paper is structured as follows. Section II defines the
quality objectives we want to improve. Section III presents
some general programming principles to improve the quality.
The different kind of requirements related to the development
of properties are described in Section IV. Section V shows
how the different requirements are developed in the pattern
and how the pattern improves the quality of the code. In the
last paragraph, a Language Construct that improves the ex-
pressiveness of a programming language is presented. Section
VI presents related work. We conclude in Section VII with a
view on future research roadmap.

II. OBIJECTIVES

Object-Oriented languages were initially built to increase
the quality of software applications [6]. Software quality is a
combination of several factors [1]. Using software patterns is
an important way to increase the quality of software systems
[2]. We believe that more expressive language concepts can
help to further improve the quality of software systems.
Therefore, we believe that, as a second step, patterns should
be transformed as much as possible into language concepts
to avoid known drawbacks from patterns like implementation
overhead (boiler plate code) and reusability (the programmer
is forced to implement the pattern over and over again) [5].
Software quality factors break down in external and internal
factors. In this paper, we mainly focus on the internal factors:
factors perceptible for programmers. In the end, only external
factors count, but the internal factors make it possible to obtain
them [1]. We have centered the specification and development
of our pattern along the following quality factors.

O1 - Correctness. Software must perform its task as de-
fined by the specification. The pattern defines specific methods
to work out the different aspects of the implementation of a
characteristic forcing the developer to think about each aspect
in isolation.

02 - Extendibility. Software must be adaptable to future
changes of the specification. These changes can be in space
(through adding a subclass that redefines some aspects) or
in time (changes to specification in the future). The pattern
provides the necessary hook methods to be able to change the
specification easily. The pattern also guides the developer to
specify and implement each aspect only once.

03 - Testability. Testing the correctness of software must
be as easy as possible. Different aspects of the implementation

249

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

of a characteristic are worked out in separate methods. The
methods are designed in such a way that they can be tested in
isolation.

04 - Understandability. A programmer must understand
as easy as possible the source code of a software system.
Dividing a big problem into smaller problems is a well-known
strategy to make a problem easier to understand. The pattern
separates the code, the developer has to write, from boilerplate
code to make the code more readable.

OS5 - Reusability. Software should be usable in different
applications. Extendibility already mentions the provided hook
methods to change the specification easily. These methods
make it also easy to reuse the software in a (slightly) adapted
form in another application.

06 - Expressiveness. The ease for a developer to write

software. By forcing the developer to implement the different
methods, the pattern also guides the developer through the
different aspects of implementing the characteristic. This way
the developer can think more on what must be implement
instead of on how he can accomplish it.
We raise the ambition level for each of these objectives when
compared to the current state of the practice (throughout this
paper, we will refer to these objectives using their codes). Our
language concept, resulting from this pattern, also meets these
objectives.

III. PRINCIPLES AND NOTATION

In this paper, we will follow the principles and notations
introduced in the book Object Oriented Programming with
Java [9]. The book presents three different paradigms to
deal with exceptional circumstances: nominal, defensive and
total programming. Nominal programming uses preconditions
to prohibit method invocations under exceptional conditions.
Defensive programming uses exceptions to signal that methods
have been invoked under exceptional conditions. Total pro-
gramming turns exceptional conditions into normal conditions.
We have chosen to work out the examples in this paper in
a defensive way. Transformation to the other paradigms is
straightforward.

P1 - Inspector-mutator principle. An important principle
is that we make a clear distinction between inspectors and
mutators. Inspectors return information about the state of some
objects. Mutators change the state of some objects. We try to
avoid methods that combine both aspects: inspectors should
not change the observable state of one or more objects and
mutators should not return a result. We further distinguish
between basic queries and derived queries. A basic query
returns part of the state of an object. The state of an object is
determined by the set of all basic queries. The result of derived
queries and the effect of mutators is directly or indirectly
specified in terms of basic queries. This principle improves
the quality factors described in objectives 02, O3, 04, 06.

P2 - Steady versus Raw state. We distinguish between a
steady state and a raw state for objects. An object in steady
state satisfies all its invariants. An object in raw state is not
guaranteed to satisfy all its invariants. Unless explicitly stated
otherwise all objects must be in the steady state upon entry
to and exit from a method. The general principle in defining

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

methods is to assume that all objects are in the steady state.
However, in some specific situations we want to use methods
that involve objects that are in raw state. A typical example of
such a situation is construction. While not yet in a steady state
we sometimes want to use other methods during the initializing
process. This principle acts as a contract between the developer
and user of a method and by doing so helps to improve quality
factors O1, O3, 04, 06.

P3 - Liskov Substition Principle. Changes to the defi-
nition of inherited methods must obey the Liskov Substition
Principle [3]. Broadly speaking, the principle states that it must
always be possible to substitute an object of a superclass by
an object of its subclasses. Next to changes to the signature of
inherited method, changes to the specification can be made if
the superclass does not provide a deterministic specification of
the result. Non-determinism plays a crucial role in our pattern.
This principle supports all objectives O1-O6.

P4 - Complete business logica. All business rules should
be worked out in specification and implementation. For enforc-
ing business rules we never rely on the underlying persistence
level. Integrity constraints, non-null constraints, foreign keys,
etc., can be enforced by a database, but should (also) always be
enforced by the application. This principle improves objectives
01, 03, 04, 05.

Notation. In Java, the contract of a class is worked out in
documentation comments, which can be processed by javadoc
[15]. Tags structure the different pieces of the specification in
the documentation. The specification of a class is described
both formally and informally. The informal specification is
written in natural language, while Java boolean expressions are
used to write the formal specification. Writing the specification
formally improves the objectives O1, O3, O4. The following
tags are used in the code snippets throughout this paper:

- @basic: denotes a basic query

- @effect: specifies the semantics of a mutator in terms of
another mutator

- @invar: denotes a class invariant

- @post: specifies a postcondition of a mutator

- @raw: denotes an object in a possible raw state

- @return: specifies the result of a derived query

- @throws: specifies the exception that must be thrown when
the specified assertion evaluates to true

IV. REQUIREMENTS

Business rules can be generally described using three types
of requirements: (1) Value Requirements, (2) State Require-
ments and (3) Transition Requirements.

Value Requirements. (VR) These requirements are used
to specify the most basic kind of business rules in that they
restrict the range of values that a characteristic, property or
association, can have. Meeting its value requirements is a
necessary condition for an object to be in a steady state (P2). A
value requirement never takes into account other characteristics
of the class at stake. For properties a value requirement
restricts the set of values offered by its type further. A value
requirement is for instance used to enforce that the credit
limit of a bank account always needs to be below 0. For
associations a value requirement restricts the multiplicity of

250

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

an association. The requirement that a bank card always needs
to be linked with a bank account is a value requirement (this
type of requirement is also know as existential dependency).
Considering generalization/specialization, a redefinition that
restricts the kind of objects a specialization can be linked
with is a also a value requirement. The requirement that
current accounts and savings-accounts, specializations of bank
account, have the right specialization of bank cards attached
to it is enforced with a value requirement.

State Requirements. (SR) Mostly, business rules restrict
possible values for a characteristic when considered in com-
bination with values from other characteristics. State require-
ments are by nature symmetric. A state requirement involving
characteristics « and [is always a state requirement for
both characteristics. Meeting its state requirements is the other
necessary condition for an object to be in a steady state (P2).
The union of all value requirements and state requirements
describe all the invariants of a class. The business rule stating
that the balance of a bank account must never be below the
credit limit is specified by a state requirement.

Transition Requirements. (TR) These very specific re-
quirements specify the business rules that restrict the evolution
of values of characteristics. It’s perfectly possible that a (new)
value for a characteristic meets all value and state requirements
but is not acceptable because of the current state of the object.
The business rule imposed by a bank limiting the amount of
money that can be withdrawn from a bank account is transition
requirement. Although 1.000 euro is a correct balance, it’s not
an acceptable balance after a withdraw operation when the
current balance is 10.000 euro and the withdraw limit is 5.000
euro.

In the remainder of this paper, we will show how our
pattern implements the value, state and transition requirements.
We will prove how distinguishing between these kinds of
requirements together with the pattern with its specific methods
meets the targeted objectives. We will also discuss how Java
(and other object-oriented programming languages) can be
extended with new language concepts to capture value, state
and transition requirements.

V. PROPERTIES

In this section, we build the pattern for properties, step
by step. These steps already give a good indication of what
an iteration of the development process can consist of. It is
possible to elaborate the different requirements independent
of each other (O1, O3, 04, O6). Typically a pattern contains
boilerplate code, we will highlight those parts in the code
listings. The code editor should generate this code (O1, 06).
In Eclipse [17], custom templates can be defined to generate
skeletons of methods. Due to space limitations we omit the
informal specifications. Steegmans illustrates in [9] how infor-
mal specifications should be added.

The example used throughout the next paragraphs describes
a class of bank accounts. Each bank account has two character-
istics, namely a balance and a credit limit. Both characteristics
are decimal values and the balance must never be less than
the credit limit. The amount of money that can be deposited
or withdrawn in a single transaction must be restricted to
1000. To explain the pattern in the context of inheritance,

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

we introduce a class of junior bank accounts, a subclass of
bank accounts. The balance and credit limit of junior bank
accounts are restricted to integer values. At the level of the
subclass, two new characteristics are introduced: each junior
bank account has an integer value as upper limit and a blocked
state (boolean). While the credit limit can no longer be less
than -1.000, the upper limit must at least be 1.000 and must not
exceed 10.000. The upper limit is an immutable characteristic.
Of course, the balance is not allowed to exceed the upper limit.

Representation. Each observable characteristic is part of
the state of an object and is revealed by a basic query. The
basic query can be compared with the getter from Enterprise
JavaBeans (EJB) [10], [16]. The return type of the basic query
reveals the chosen type for the characteristic. The characteristic
can internally be stored using one or more instance variables
with the same or different types. The implementation of the
basic query has to perform necessary transformations between
stored and observable information. Like EJB, we introduce also
a setter to change the characteristic to a given value. The basic
query and this setter are the only two methods that are allowed
to access the instance variables that represent the characteristic.
By consequence, we limit the optional transformations between
internal representation and observed value of a characteristic
to these methods (O1 - O6). When clients of a class are not
allowed to change the value of a characteristic directly and
need to manipulate the characteristic through more complex
mutators, the latter mutators must be implemented in terms
of this setter. When there exists a default value for the
characteristic then that value is always explicit added to the
declaration, even if that value is the default value of the type
of the internal representation. Thus, absence of a default value
in the declaration means this characteristic must always be
initialized during construction (O4). Figure 1 illustrates the
internal representation with default value, basic query and
setter for the characteristic balance. As the stored and observed
values are equal the implementation of both methods is trivial.
The basic query is annotated @Raw because we also want to
be able to observe the state of the property balance when the
object is not in a steady state.

private BigDecimal balance=BigDecimal .ZERO;

1

2

3 /kx

4 % Return the balance of this bank account
5 x/

6 @Basic @Raw

7 public BigDecimal getBalance (){

8 return balance;

9}

10

11 /%%

12 % Set the given balance as the balance of
13 % this bank account

14 % @post new.getBalance() == balance

15 «/

16 public void setBalance(BigDecimal balance){
17 this . balance = balance;

18 }

Fig. 1: Representation of the property balance

Value Requirements. For each property, a Boolean in-
spector is introduced to validate the value requirements. This
inspector is the only place where these requirements are
specified and implemented (Ol - O6). Because the result
of this inspector is by definition independent of the state

251

O 00O\ W B W —

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

/% %

* @return if ((creditLimit==null) ||

* (creditLimit.signum() >= 0))
* then result == false

*/

public static boolean isProperValueForCreditLimit (
BigDecimal creditLimit){

return (creditLimit != null) &&
(creditLimit.signum () < 0);
}
/% %
* @post new. getCreditLimit() == creditLimit
* @throws IllegalArgumentException
* lisProperValueForCreditLimit(creditLimit)
*/

setCreditLimit(BigDecimal creditLimit)
throws IllegalArgumentException{
isProperValueForCreditLimit(creditLimit))

public void

if (!
throw new IllegalArgumentException ();
this . creditLimit = creditLimit;

}
Fig. 2: Value Requirement of the property credit limit

of the object, the inspector is a class method (static in
Java). By convention, the name of the inspector checking the
VR for a property « is isProperValueFora (T «) (04,
06). According to P4, all business rules must be enforced
in the application. Calling the setter with an actual argument
that violates the VR is an exceptional situation and must
be signaled. The setter is adapted accordingly. Figure 2 il-
lustrates the inspector and setter for the characteristic credit
limit. The specification of the inspector is worked out in
a non-deterministic way. It specifies only which values are
certainly not acceptable as value for the credit limit of a bank
account. Notice however that the signature of the inspector
isProperValueForCreditLimit () implies that only
true or false can be returned as result. This way subclasses
can decide to further restrict possible values or to explicitly
confirm what values are always acceptable (02, OS5).

State Requirements. A state requirement describes a
constraint that restricts acceptable value combinations of char-
acteristics. Each SR is described by a Boolean inspector.
This inspector is again the only place to specify and im-
plement the SR at stake (Ol - O6). The inspector has an
argument for each characteristic involved in the SR. Thus, this
inspector is also a class method. Obviously, the value from
each involved characteristic must meet the VR to have an
acceptable combination of values. By convention, the name
of a SR involving properties « and § is isProperaf (T1
a, T2) (04, 06). Each characteristic can be involved in
multiple SR. We will illustrate in the paragraph about transition
requirements how these inspectors are integrated in the setter.
Figure 3 illustrates the SR between the properties balance
and credit limit. The specification of this inspector is also
non-deterministic; it is, however, also possible to close the
specification and make it deterministic.

Invariant. The invariants for a class are described by the
union of all VRs and SRs. We say that a characteristic o
meets its invariants if it meets the VR and all the SRs it is
involved in. For each characteristic v, we introduce a Boolean
inspector to check whether a given value meets its invariants

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

—_
OOV N AW N =

—_ -
N =

—_—
Wk W

O 00 N O\ kW =

[\l SR SEE S E S S e e e e e e e
N A WD = O O 0 3 it A WD — O

NI
~N

/% %

x @return if (!isProperValueForBalance(balance))
* then result == false

x @return if (!lisProperValueForCreditLimit(

* creditLimit))

* then result == false

* @return if (creditLimit.compareTo(balance)>0)
* then result == false

*/

public static boolean isProperBalanceCreditLimit(

BigDecimal balance, BigDecimal creditLimit){
return isProperValueForBalance (balance) &&

isProperValueForCreditLimit(creditLimit) &&
(creditLimit.compareTo(balance) <= 0);

}

Fig. 3: State Requirement between balance and credit limit

with respect to the current state of the object. By convention,
the name of this inspector is canHaveAsa (T «). As this
method is the sum of the VR for a and all SRs where « is
involved in, this method can be generated as a whole (O1, O4,
06). With respect to the property «, the object is in a steady
state if the current registered value for o meets its invariants.
The inspector hasPropera () specifies the invariant for a.
This method can also be generated (O1, O4, O6). Figure

/% %

* @invar hasProperBalance ()

*/
public class BankAccount {
VEE:

* @return result==canHaveAsBalance(getBalance ())
*/
@Raw
public final boolean hasProperBalance (){

return canHaveAsBalance (getBalance ());
}
/% %

* @return if (!isProperValueForBalance(balance))
* then result == false

* @return if (!lisProperBalanceCreditLimit(

* balance, getCreditLimit()))
* then result == false

*/
@Raw
public boolean canHaveAsBalance (BigDecimal balance){

return isProperValueForBalance(balance) &&

isProperBalanceCreditLimit (
balance , getCreditLimit());

}
}

Fig. 4: Invariant from the property balance

4 illustrates these methods for the property balance. The
inspector canHaveAsBalance is non-deterministic to allow
new SRs in future subclasses (02, O5). If new SRs are
undesired the developer of this class can declare the inspector

252

O 0NN W N =

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

final and make the specification deterministic. The inspector
specifying the SR between balance and credit limit will be used
in both the invariant inspector for balance and credit limit.
By writing each SR in its own inspector, we avoid the need
to duplicate that specification and implementation (O1 - O6).
Both inspectors are annotated @Raw. Indeed, even when an
object does not meet its invariants we want to be able to check
if a given value meets its invariants.

Transition Requirements. A new value for a property
must at least always meet the requirements described by
the invariant. But often specific requirements restrict possible
transitions when we take into account the current value of
that property. The Boolean inspector canHaveAsNewa (T
a) checks whether the given « is an acceptable new value with
respect to the current state of the object (02, O3, 04, OS5, 06).
First of all, the new value must meet its invariants. The extra
TRs are added on top of them. The setter uses this inspector
as guard for new values. Figure 5 illustrates this inspector and

/* *

* @return if (!/canHaveAsBalance(balance)

* then result == false

* @return let BigDecimal difference =

* getBalance (). subtract(balance). abs() in
* result == difference.

* compareTo (MAX_DELTA)<=0
*/

public boolean canHaveAsNewBalance (
BigDecimal balance){

return canHaveAsBalance(balance) &&
(getBalance (). subtract(balance). abs ().
compareTo (MAX_DELTA) <=0);
}
/% *

* @post new. getBalance () balance

* @throws IllegalArgumentException

* !canHaveAsNewBalance (balance)
*/
public void setBalance (BigDecimal balance)
throws IllegalArgumentException{
if (!canHaveAsNewBalance(balance))

throw new IllegalArgumentException ();
this . balance = balance;

}

Fig. 5: Transition requirement of the property balance

the adapted setter. Often a public setter will not be desired,
mutators like withdraw and deposit are preferred above
setBalance. It suffices to change the access modifier to
protected (private doesn’t allow subclasses to define
custom mutators) and custom mutators can easily be specified
in terms of this setter.

Construction. Construction is an event with very specific
semantics. After the complete construction process an object
must be in a steady state. Because that is also the first state
of the object we don’t have the compare the initial value of
a characteristic with its previous value (there isn’t one). Even
when there is value assigned in the declaration to the instance
variable, we don’t consider that value as a ‘previous’ value. An
immediate consequence is that we can’t use the setter in the

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

00 N AN LN R W N =

=)

10

11
12
13

O 0 N O R W =

e e e
AN N R WD = O

constructor. Because we still want to restrict the manipulating
of the instance variable(s) to a single method we need to
introduce a more basic setter: registera (T «) (01, O2).
Figure 6 illustrates the basic setter for the property balance.
Because this setter will be used in the constructor only the VR

/% %

* @post new.getBalance () balance
* @throws IllegalArgumentException
* lisProperValueForBalance (balance)
*/
@Raw
protected void registerBalance (
BigDecimal balance)
throws IllegalArgumentException{
if (!isProperValueForBalance(balance))
throw new IllegalArgumentException ();
this .balance = balance;

}
Fig. 6: Basic setter for the property balance

is checked in this setter. This setter is also necessary when
we want to introduce a complex mutator that manipulates two
via SRs related properties. The developer will have to build a
custom transition checker for that mutator but that is a rather
trivial task as all building blocks are available. Indeed, each
VR and SR is specified in its own inspector (O1, 02, O5, O6).

A steady state after construction means that all VRs and
SRs must be met. Unfortunately, we can not use the inspector
canHaveAsa (T «) because this inspector assumes all other
properties 3, -,... already have their value. As there is no
order in the different assertions of the specification, using
them is impossible. So, we are forced to repeat the invariant

VEE
x @effect registerBalance(balance)
* @effect registerCreditLimit(limit)
* @throws IllegalArgumentException
* lisProperBalanceCreditLimit(balance,
* creditLimit)
*/
public BankAccount(
BigDecimal balance ,BigDecimal creditLimit)

throws IllegalArgumentException{
if (!isProperBalanceCreditLimit(balance,
creditLimit))
throw new IllegalArgumentException ();
registerBalance (balance);
registerCreditLimit(creditLimit);

Fig. 7: Construction of a bank account

conditions in the specification of the constructor. Fortunately,
we can describe the semantics of the constructor in terms of
other mutators, more in particular the basic setter, through
the @effect-tag. This way we reduce the complexity of the
specification and implementation (O1, O4, 06). So we only

253

1
2
3
4
5
6
7
8
9

11

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

need to list all SRs in the @t hrows-clause. Figure 7 illustrates
the constructor for the class of bank accounts.

Inheritance. On the one hand, a subclass can specialize a
superclass. The subclass can adjust the semantics of inherited
features. The Liskov Substitution Principle (LSP) [3] acts as a
guideline to describe allowed adjustments. On the other hand
a subclass can extend the superclass with new features. We
will illustrate how the pattern copes with specialization and
extension. A subclass may want to redefine the VR of a prop-
erty. This means we need to be able to override the inspector
checking the VR. Because the inspectors checking the VR are
class methods and Java does not allow to override static
methods the way a VR is implemented in the pattern needs
to be adapted. Clearly, these inspectors need to be instance
methods but on the other hand they have class semantics as
their result is defined independent of the state of the object.
Therefore, we move these methods to a static inner class. This
static inner class implements the Singleton Pattern [2]: the
object of the static inner class represents the outer class. The
marker interface [4] ClassObject designates the static inner
class. Figure 8 illustrates the inner class for the class of bank

public class BankAccount {
public static class COBankAccount
implements ClassObject{
private static COBankAccount instance;
protected COBankAccount(){}
public static COBankAccount getInstance (){
if (instance == null)
instance = new COBankAccount();
return instance;
}
public boolean isProperValueForBalance (...)
{3
public boolean isProperValueForCreditLimit (...)
{3
public boolean isProperBalanceCreditLimit (...)
{..-}
}
}

Fig. 8: ClassObject inner class for the class BankAccount

accounts. The methods with class semantics can be moved
without modification to the inner class. The specification and
implementation of the instance inspectors using these methods
can easily access them through the singleton object. A first
advantage of moving the inspectors with class semantics into
an inner class is that although they are instance methods can
easily be identified as methods with class semantics (O4).
A second advantage is that they make it impossible for the
developer to use the state of the object erroneously (06). A
third advantage is that it is still possible to test these methods
without needing an instance of the outer class (O3). If class B
is a subclass of A, then the inner class of B must be a subclass
of the inner class of A to be able to override methods from
the inner class of A. Figure 9 illustrates the redefinition of the

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

(o e Y R N T S

17
18
19

20
21

public class JuniorBankAccount
extends BankAccount{

public static class COJuniorBankAccount

extends COBankAccount{

/* *
*x @return if (!super.isProperValueForBalance (

balance))

* then result == false

* @return if (balance.scale()!=0)
* then result == false

*/

@Override

public boolean isProperValueForBalance (
BigDecimal balance){
if (!super.isProperValueForBalance (balance))
return false ;

return balance.scale ()

}
}
}
Fig. 9: Redefinition of the VR of the property balance

inspector checking the VR for the property balance. An extra
constraint is added on top of the constraints defined in the class
of bank accounts. The application, now, has two versions of the
inspector checking the VR. The pattern must always use the
right version. More in particular, the inspector must be invoked
against the right ‘class object’. Dynamic binding ensures using
the right version of an instance method. Therefore, an instance
method is introduced to retrieve the right ‘class object’. Figure
10 illustrates how the right VR inspector is invoked through
‘dynamic binding’. Adding new properties to the subclass is

public class BankAccount {
public COBankAccount getClassObject(){
return COBankAccount. getInstance ();

}

public boolean canHaveAsBalance (
BigDecimal balance){

return getClassObject ().
isProperValueForBalance (balance) &&
getClassObject ().
isProperBalanceCreditLimit(balance ,
getCreditLimit ());
}
}
public class JuniorBankAccount extends ... {
@Override

public COJuniorBankAccount getClassObject(){
return COJuniorBankAccount. getlnstance ();

Fig. 10: ‘Dynamic binding’ of a ‘class method’

now straightforward. If a SR involves a property « from the
superclass, the inspector canHaveAsa (T «) needs to be
redefined at the level of the subclass. Figure 11 illustrates how
the new SR between the properties balance and upper limit
is added to the inspector checking the invariant constraints for
balance. Lines 5-6 and 13-14 can be generated (O1). Figures 9

254

NelNeREN e Y R R O N

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

and 11 prove that redefinitions are easily developed (O2 - OS5).
VRs, SRs and TRs can independent of each other be redefined.

public class JuniorBankAccount extends ...{
/% *

*x @return if (!super.canHaveAsBalance(balance))

then result == false;

if (!isProperBalanceUpperLimit(balance,
getUpperLimit()))

result == false

@return

* ¥ %

* then
*/

@Raw @Override

public boolean canHaveAsBalance(BigDecimal balance){
if (!super.canHaveAsBalance(balance))

return false;

return getClassObject ().isProperBalanceUpperLimit(

balance , getUpperLimit());

i

Fig. 11: A SR involving the balance and the upper limit

Pattern skeleton. To summarize, Figure 12 shows a skele-
ton from the pattern for a property without specification.
Given this generated code (O1, O6) the developer has only
to (1) complete the inspector checking the VR (2) add an
inspector for each SR in the inner class and extend the
canHaveAsa to invoke the introduced inspector (3) complete
the inspector checking the TR.

Language Construct. Figure 12 proves that an inherent
problem with patterns is that it generates quite some boilerplate
code. The need for patterns signals a lack of expressiveness of
programming languages. Therefore, we present an extension
to increase that expression power. Figures 13 and 14 illustrate
how the example is completely worked out with a new lan-
guage construct Property.

/

*

this bank account

!I= null
compareTo(creditLimit) >= 0
subtract (new. balance).
compareTo(MAX_DELTA) <= 0

The balance of
@Value balance
@State balance.
@Trans balance.

abs ().

* ¥ ¥ ¥ ¥ ¥

*/
Property BigDecimal balance isRelatedWith

creditLimit ;

/% %

* The credit limit of this bank account

* @Value creditLimit null

* @Value creditLimit.signum() < 0

*/

Property BigDecimal creditLimit isRelatedWith
balance ;

!=

Fig. 13: The class of bank accounts

The importance of specification is upgraded, by making it an
integral part of the construct. The specification describes the
different kinds of requirements. They act as guards to validate
values in an update operation. Three new tags are introduced
to specify the semantics of a property, one for each kind
of requirement we identified in section IV. The assertions
used in the specification are Boolean expressions. (1) Each
VR is preceded with a @Value-tag. A VR may be split over

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

O 00O W W —

public class Foo {

public Foo(T a) throws IllegalArgumentException{
registera(a);

private T «;

@Basic @Raw
public T geta(){
return o;

}

@Raw
protected void registera(T «a)
throws IllegalArgumentException{
if (!getClassObject().isProperValueFora(a))
throw new IllegalArgumentException ();
this.a = «o;

}

@Raw
public boolean canHaveAsa(T «){
if (!getClassObject().isProperValueFora(a))
return false;
}

public boolean canHaveAsNewa(T «){
if (!canHaveAsa(a))
return false;
}

@Raw
public final boolean hasPropera(){
return canHaveAsa(geta());

}

public void seta(T «)

throws IllegalArgumentException{
if (!canHaveAsNewa(a))

throw new IllegalArgumentException ();
registera(a);

}

public COFoo getClassObject(){
return COFoo();

}

public static class COFoo
implements ClassObject{
private static COFoo instance;

protected COFoo(){}

public static COFoo getInstance (){
if (instance == null)
instance = new COFoo();
return instance;

}

public boolean isProperValueFora(T a){
return ...;
}

Fig. 12: The pattern for a property «

255

O 00O\ W —

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

multiple tags. (2) Each SR is preceded by a @State-tag.
Each property can be involved in an unlimited number of
SRs. (3) Finally, a TR is preceded by a @Trans-tag. A SR
is always symmetric, which means it applies equal to all
properties involved. Despite of this symmetry, the specification
doesn’t need to be duplicated. Relations between properties
need to be mentioned explicitly. The characteristics a property
is related with are added to a list following the keyword
isRelatedWith in the signature of the property. This
implies that the specification of the semantics of a property
can be spread over multiple properties. We don’t consider this
as a drawback though because to understand a requirement
involving two properties, one has to understand the semantics
of both properties anyway. This list also identifies clearly
on which properties changes to the specification can have
an impact on. By avoiding the duplication we fully support
Parnas’ principle [8] saying that each fact must be worked out
in one, and only one, place. The specification is by definition
non-deterministic. The semantics of an assertion I' in a VR,
SR or TR is:

if ' (I')
then result == false
else result == Undefined

Thus, when the assertion I' evaluates to false, the submitted
value not acceptable. On the other hand, when the assertion

VEE:

* The balance of this junior bank account

* @Value balance. scale() == 0

* @Trans !isBlocked

*/

@Override

Property BigDecimal balance isRelatedWith

creditLimit ,upperLimit ,isBlocked;

/% %

* The credit limit of this junior bank account

* @Value creditLimit.

* compareTo(new BigDecimal(—1000)) >= 0

* @Value creditLimit. scale() == 0

*/

@Override

Property BigDecimal creditLimit isRelatedWith
balance ;

VEE:

* The blocked state of this

*/

Property boolean isBlocked isRelatedWith
balance;

VEE:

* The upper limit of this bank account

* @Value upperLimit >= 1000

* @Value upperLimit <= 10000

* @State balance.compareTo(

* new BigDecimal(upperLimit))<=0

*/

@Immutable

Property int upperLimit isRelatedWith
balance ;

Fig. 14: The class of junior bank accounts

evaluates to true the value may be acceptable. The semantics
of the VRs of credit limit in Figure 13 is that non-effective

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

positive or zero decimal numbers are certainly not a good
value for a credit limit. Negative values can be good values.
Subclasses are allowed to further specify the open part.
The requirements specified in a subclass are added to the
requirements specified in the superclass. The VR of the
credit limit in the class of junior bank accounts for instance
now specifies that only strictly negative integer numbers are
acceptable values.

Evaluation. Up to now, the pattern has only been
applied to academic problems. These experiments show
that about 70% of the code for defining properties is
boilerplate code. As an example the full definition of class
of bank accounts counts 360 lines of Java code. About
250 of these lines are boilerplate code. The typical Java
programmer is not tempted to write all these lines in original
definitions of classes. In particular, he will not be eager to
encapsulate the different kind of requirements in Boolean
inspectors such as isProperValueForBalance (),
canHaveAsBalance (), canHaveAsNewBalance (),
etc. This either leads to duplicate code because the same
requirement is repeated over and over again in different parts
of the class definition, or it compromises adaptability in time
and space. We therefore believe that more advanced language
constructs are needed to introduce properties in classes. We
still need to experiment with this pattern in the scope of
industrial software systems. We expect the same results with
respect to the mere definition of properties in such large
systems. The pattern gives the programmer the opportunity to
focus more on the business at stake.

VI. RELATED WORK

The central idea of Model Driven Architecture (MDA) [11],
[12] is to automate transformations between models. To enable
this transformations the specification should be defined in a
formal way. MDA uses Design by Contract (DBC) [13] to
specify the semantics of models formally. DBC was developed
by Bertrand Meyer as part of the Eiffel programming language
[1], [18]. DBC is based amongst others on Hoare-logic [7] that
already introduced concepts like preconditions and postcon-
ditions. Other object-oriented languages with native support
for DBC are for instance Sather [20], Nice [19] and Spec#
[21]. Commonly used languages like Java, C++ [14] and C#
[22] have no support for DBC. However, several third-party
tools have been developed for those languages. Tools for java
are for example: Contract4] [23], JContractor [24]. The Java
Modeling Language [25] is a behavioral interface specification
language that can be used to specify the behavior of Java
modules. B AMN [26] and UML-RSDS [27] present similar
concepts. In UML-RSDS correct operations can be synthesized
from invariants (VR and SR constraints in this paper) in many
cases. In B, a TR can be expressed as an abstract pre-post
specification which is correctly refined by a more concrete
operation that ensures the TR constraints.

VII. CONCLUSION AND FUTURE WORK

In Object-Oriented programming, a significant effort has
been made in recent years to increase the expressiveness of
programming constructs for the production of code. However,
we have not seen such a similar evolution in the design and

256

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

specification of code. Developers are often forced to write ad-
hoc code specifications in a non-standardized manner. In this
paper, we therefore took an evolutionary approach to language-
integrated specification constructs. We started from existing
specification constructs (@pre, @post, ...) with the ambition to
enhance the overall expressiveness of specifications in object-
oriented languages.

We have identified three types of requirements that can
occur in program specifications: Value Requirements (VR),
State Requirements (SR), and Transition Requirements (TR).
Value Requirements are used to specify the most basic kind
of business rules in that they restrict the range of values that
a characteristic, property or association, can have. A state
requirement describes a constraint that restricts acceptable
value combinations of (a set of) properties. Transition Re-
quirements, then, specify the business rules that restrict the
evolution of property values.

Besides that, we feel that also need to help developers in
correctly using these constructs. Therefore, we have introduced
a “boilerplate pattern” that showcases the inspector methods
required for validating the VR, SR and TR in a specification.
But a pattern is, according to us, not sufficient as a solution,
because (1) it involves too much boilerplate code and (2) there
remains a risk of incorrectly implementing (a part of) the
pattern, which would still lead to ill-defined specifications.

Therefore, we have integrated a Specification Language
extension in Java. By means of the @value, @state and @trans
tags, developers can better capture the Specification of their
code, while outsourcing all technicalities to a code generator.
We have also introduced the isRelatedWith construct in order
to further minimize the risk of duplicate specifications. As
an additional benefit, the formal specifications are compile-
time checked, since they are injected in the Java code in the
background, before compilation.

We recognize that this is the first step in our roadmap to
develop a fully integrated, expressive Specification language,
and would like to conclude by giving the reader a view
of our upcoming research, which has two important future
directions. Next to our Specification-to-Code generator, we
also want to build a detailed formalization of the Specification
language, in order to identify opportunities to further enhance
the expressiveness of the concepts. A second direction is
to further increase the expressiveness and action radius of
the concepts. For instance, we are currently working to add
determinism to our Specification constructs, for which a
prototype definition is currently available, but too preliminary
for this paper. Another example is that we are defining
more finegrained rules on when properties may be added or
removed to the isRelatedWith-list. These rules are currently
still based on informal guidelines.

Acknowledgements We especially thank Sven De Labey for
his advice. We thank the anonymous reviewers for their
insightful comments. This research is funded by the the Fund
for Scientic Research (FWO) in Flanders.

REFERENCES

[1] B. Meyer, Object-oriented software construction, second edition ed.,
Prentice Hall, 1997.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

(2]

(31

(4]
(51

(6]

(71

(8]

(91
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]
[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

E. Gamma, and R. Helm, and R. Johnson, and J. Vlissides, Design pat-
terns: elements of reusable object-oriented software, Addison-Wesley
Longman Publishing Co., Inc., 1995.

B. H. Liskov and J. M. Wing, A behavioral notion of subtyping, ACM
Trans. Program. Lang. Syst. 0164-0925 (1994), pp. 1811-1841.

J. Bloch, Effective java, Java Series, Pearson Education, 2008.

J. Bosch, Design patterns as language constructs, Journal of Object-
Oriented Programming 11 (1998), pp. 18-32.

M. Feathers, Working effectively with legacy code, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2004.

C. A. R. Hoare, An axiomatic basis for computer programming,
Communications of the ACM 12 (1969), no. 10, pp. 576-580.

D. L. Parnas, On the criteria to be used in decomposing systems into
modules, Commun. ACM 15 (1972), no. 12, pp. 1053-1058.

E. Steegmans, Object oriented programming with java, Acco, 2011.

A.L. Rubinger and B. Burke, Enterprise javabeans 3.1, O’Reilly Media,
2010.

D. Frankel, Model driven architecture: Applying mda to enterprise
computing, OMG Press, Wiley, 2003.

A. G. Kleppe, and J. Warmer, and W. Bast, Mda explained: The model
driven architecture: Practice and promise, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

R. Mitchell, and J. McKim, and B. Meyer, Design by contract, by
example, Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2002.

S. B. Lippman, and J. Lajoie, and B. E. Moo, C++ primer, 5th edition
ed., Addison-Wesley Professional, 2012.

Javadoc Tool Home Page, http://java.sun.com, retrieved: 08, 2013

Enterprise JavaBeans Technology, http://java.sun.com, retrieved: 08,
2013

Eclipse project, http://www.eclipse.org, retrieved: 08, 2013
Eiffel Software, http://www.eiffel.com/, retrieved: 08, 2013

The Nice Programming Language, http://nice.sourceforge.net, retrieved:
08, 2013

Sather, http://wwwl.icsi.berkeley.edu/ sather, retrieved: 08, 2013
Microsoft Research Spec#, http://research.microsoft.com/en-
us/projects/specsharp, retrieved: 08, 2013

C# Programming Guide, http://msdn.microsoft.com/en-
us/library/vstudio/67ef8sbd.aspx, retrieved: 08, 2013

Contractd], http://www.polyglotprogramming.com/contract4j, retrieved:
08, 2013

M. Karaorman, and U. Holzle, and J. Bruno, jcontractor: A reflective
Jjava library to support design by contract, Tech. report, Santa Barbara,
CA, USA, 1999.

G. T. Leavens and Y. Cheon, Design by Contract with JML,
http://www.eecs.ucf.edu/ leavens/JML//jmldbc.pdf, retrieved: 08, 2013
J.-R. Abrial, The B-book - assigning programs to meanings, Cambridge
University Press, 2005.

K. Lano and S. K. Rahimi, Synthesis of Software from Logical Con-
straints, ICSOFT, 2012, pp. 355-358.

257

