ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

A Model-Driven Approach to the Development of
Heterogeneous Software Product Lines

Thomas Buchmann and Felix Schwégerl
University of Bayreuth
Chair of Applied Computer Science I
Bayreuth, Germany
{thomas.buchmann, felix.schwaegerl} @uni-bayreuth.de

Abstract—Software product line engineering is dedicated to
planned reuse of software components based upon a common
platform, from which single products may be derived. The
common platform consists of different types of artefacts like
requirements, specifications, architecture definitions, source code,
and so forth. Only recently, research projects have been started
dealing with model-driven development of software product
lines. So far, the resulting tools can only handle one type of
artefact at the same time. In this paper, requirements, concepts
and limitations of tool support for heterogeneous model-driven
software product line engineering are discussed. As a proof of
concept, an extension to the toolchain FAMILE is presented,
which supports mapping of features to different types of artefacts
in heterogeneous model-driven software projects at the same time.

Keywords—software product lines; model-driven development;
negative variability; feature models; heterogeneity.

I. INTRODUCTION

Software Product Line Engineering (SPLE) [1][2] deals
with the systematic development of products belonging to a
common system family. Rather than developing each instance
of a product line from scratch, reusable software artefacts
are created such that each product may be composed from a
collection of reusable artefacts — the platform. Commonalities
and differences among different products may be captured
in a feature model [3], whereas feature configurations de-
scribe the characteristics of particular products by selecting
or deselecting the respective features. Typical SPLE processes
distinguish between domain engineering, which deals with the
establishment of the platform as well as the feature model,
and application engineering, which is concerned with the
derivation of particular products out of the product line by
exploiting and binding the variability provided by the platform.

Two distinct approaches exist to realize variability in SPLE:
In approaches based upon positive variability, product-specific
artefacts are built around a common core [4][5]. Composition
techniques are used to derive products. In approaches based on
negative variability, a superimposition of all variants is created
— a multi-variant domain model. The derivation of products
is achieved by removing all fragments of artefacts implement-
ing features which are not contained in the specific feature
configuration [6][7]. The toolchain “Features and Mappings
in Lucid Evolution” (FAMILE) [8][9], which is used in this
paper, belongs to the latter category.

Model-driven Software Engineering (MDSE) [10] puts
strong emphasis on the development of high-level models

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

rather than on the source code. Models are not considered as
documentation or as informal guidelines how to program the
actual system. In contrast, models have a well-defined syntax
and semantics. Moreover, MDSE aims at the development of
executable models. The Eclipse Modeling Framework (EMF)
[11] has been established as an extensible platform for the
development of MDSE applications. It is based on the Ecore
metamodel which is compatible with the OMG Meta Object
Facility (MOF) specification [12]. Ideally, software engineers
operate only on the level of models such that there is no need
to inspect or edit the actual source code, which is generated
from the models automatically. However, practical experiences
have shown that language-specific adaptations to the generated
source code are frequently necessary. In EMF, for instance,
only structure is modeled by means of class diagrams, whereas
behavior is described by modifications to the generated source
code.

In the past, several approaches have been taken in combin-
ing SPLE and MDSE to get the best out of both worlds. Both
software engineering techniques consider models as primary
artefacts: Feature models [3] are used in SPLE to capture
the commonalities and differences of a product line, whereas
Unified Modeling Language (UML) models [13] or domain-
specific models are used in MDSE to describe the software sys-
tem at a higher level of abstraction. The resulting integrating
discipline, Model-Driven Software Product Line Engineering
(MDPLE), operates at a higher level of abstraction. The
upcoming MDPLE approach has been successfully applied in
several case studies, including MOD2-SCM [14], a model-
driven product line for software configuration systems.

In this paper, requirements, concepts and limitations of tool
support for heterogeneous product lines are discussed. Here,
the term ‘heterogeneity’ means that (a) artefacts are distributed
over multiple resources, (b) the underlying data format of
artefacts may differ (e.g., text files or XMI files), (c) in the case
of models, the metamodel may vary, and (d) variability among
different resources may be expressed by a shared variability
model that uses a common variability mechanism. Based upon
these assumptions, several conceptual extensions to MDPLE
frameworks are developed, which are implemented in the form
of extensions to the toolchain FAMILE as a proof of concept.

The paper is structured as follows: After clarifying the
contribution (Section II), the state of the art of homogeneous
SPLE tools is outlined in Section IV. Section III discusses re-
lated work, before a brief introduction of the running example
is given in Section V. Section VI explains the new concepts

300

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

introduced for the support of heterogeneous product lines. In
Section VII, the example is revisited in order to demonstrate
the heterogeneous extension to the MDPLE toolchain FAMILE
on a product line for graphs, which has been modeled us-
ing Eclipse Modeling Technology (EMF and the Graphical
Modeling Framework (GMF) [15]). Both the toolchain and
the running example project may be retrieved via an Eclipse
update site (http://btnlx4.inf.uni-bayreuth.de/famile2/update).
Section VIII concludes the paper.

II. CHALLENGES AND CONTRIBUTION

Heterogeneous software projects consist of a variety of
interconnected resources of different types. Different repre-
sentations may be used for requirements engineering, analysis
and design. The generated source code is typically expressed
in a general purpose language, e.g., Java, and extended with
language-specific — mostly behavioral — components. Further-
more, a software project contains a set of configuration files
such as build scripts, which are typically represented in plain
text or XML format. In order to adequately handle variability
of the overall software project, all these different artefacts need
to be subject to variability management.

In its current state, fool support for model-driven product
line engineering does not adequately address heterogeneous
software projects (see Section III). In particular, the following
new challenges arise for SPLE tools:

(a) They should ensure the consistency of cross-resource
links between different artefacts.

(b) The level of abstraction needs to be variable, i.e., the
tool should be able to operate both at the modeling
and at the source code level.

(c) Different artefacts are based on different formalisms,
e.g., metamodels or language grammars. In the special
case of models, supporting a mixture of different
metamodels requires adequate tool support.

(d) All artefacts must be handled by a uniform variability
mechanism (e.g., a common feature model) in order
to allow for product configuration in a single step.

In this paper, an approach to heterogeneous SPL develop-
ment is presented, which advances the state of the art by the
following conceptual contributions:

(a) Multi-resource artefacts Heterogeneous projects
consist of inter-related models created for different
development tasks such as requirements engineering
or testing. The referential integrity among these inter-
related models is maintained during product deriva-
tion.

(b) Heterogeneous artefact types The approach pre-
sented here can handle product lines composed from
different kinds of artefacts. Technically, an abstraction
from different resource types is conducted by repre-
senting them as EMF models.

(c) Variable metamodels In the special case of models,
the approach presented here does not assume a spe-
cific metamodel but allows an arbitrary mixture of

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

models which may be instances of any Ecore-based
metamodel(s).

(d) Common variability mechanism In the original ver-
sion of FAMILE, the variability mechanism of feature
models has been applied to single-resource EMF mod-
els. The presented approach allows for an extension
of the product space to almost arbitrary resources. All
artefacts are managed by a unique feature model.

These conceptual contributions will be demonstrated by the
example of a proof-of-concept implementation that provides
an extension to the FAMILE toolchain [8][9]. The extended
version of FAMILE can deal with plain text files, XML files,
Java source code files, arbitrary EMF models, and further types
of resources. This way, variability within complete Eclipse
projects may be managed. Internally, all artefacts, even plain
text and XML files, are represented as EMF models. In
Section VI, tool support is discussed in detail.

III. RELATED WORK

Many different tools and approaches have been published
in the last few years, which address (model-driven) software
product line development. Due to space restrictions, the focus
of this comparison lies on support for heterogeneous soft-
ware projects, using the definition of heterogeneity given in
the introduction. Other comparisons of FAMILE and related
approaches can be found in [8] and [9].

The tool fmp2rsm [16] combines FeaturePlugin [17] with
IBM’s Rational Software Modeler (RSM), a UML-based mod-
eling tool. The connection of features and domain model
elements is realized by embedding the mapping information
into the domain model using stereotypes (each feature is
represented by its own stereotype), which requires manual
extensions to the domain model. While fmp2rsm is limited
to the support of RSM models, the approach presented in this
paper provides a greater flexibility since the only restriction is
that the domain model needs to be Ecore based. Furthermore,
the extensions presented in this paper allow to use several
domain metamodels within one software product line project.

FeatureMapper [6] is a tool that allows for the mapping
of features to Ecore based domain models. Like FAMILE, it
follows a very general approach permitting arbitrary Ecore
models as domain models. FeatureMapper only allows to
map a single (self-contained) domain model, while the work
presented in this paper allows to use FAMILE also for software
product lines whose multi-variant domain model is composed
of artefacts distributed over different resources. Furthermore,
the artefacts may be instances of different metamodels.

VML* [4] is a family of languages for variability man-
agement in software product lines. It addresses the ability to
explicitly express the relationship between feature models and
other artefacts of the product line. It can handle any domain
model as long as a corresponding VML language exists for
it. VML* supports both positive and negative variability as
well as any combination thereof, since every action is a small
transformation on the core model. As a consequence, the order
in which model transformations are executed during product
derivation becomes important. So far, VML* is designed to
work with text files, provided that a corresponding VML

301

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

language exists for it (i.e., a grammar has to be specified).
Theoretically, VML languages could be written that work with
XMI serializations of the respective models in the example
presented in this paper, whereas FAMILE provides generic
support for model-driven software development based on
Ecore compliant models. In other words, VML* and FAMILE
provide similar support for heterogeneous projects, but they
operate on different ’technological spaces®. As a consequence,
the example provided in Section VII cannot be realized with
VML#* easily. In fact, significant effort would be required to
create VML languages for the different models involved in the
graph product line example as presented here.

MATA [5] is another language which also allows to develop
model-driven product lines with UML. It is based on positive
variability, which means that, around a common core specified
in UML, variant models described in the MATA language are
composed to a product specific UML model. Graph transfor-
mations based on AGG [18] are used to compose the common
core with the single MATA specifications. While MATA is
limited to UML, the approach presented in this paper provides
support for any Ecore based model and furthermore allows
the combination of different domain metamodels within one
product line project.

CIDE [7] is a tool for source-code based approaches. It
provides a product specific view on the source code, where
all source code fragments which are not part of the chosen
configuration are omitted. The approach is similar to #ifdef-
preprocessors known from the C programming language [19].
The difference is that it abstracts from plain text files and
works on the abstract syntax tree of the target language instead.
In its current state, CIDE provides support for a wide range of
different programming languages. Unfortunately, it cannot be
used for model-driven development. In contrast, FAMILE pro-
vides full-fledged support for model-driven development based
on Ecore models. Furthermore, it may also deal with regular
Java source code by using the MoDisco [20] framework.

Biihne et al. [21] and Dhungana et al. [22] present ap-
proaches for heterogeneous variability modeling, i.e., manag-
ing commonalities and differences across multi product lines.
Dhungana et al. aim at unifying multi product lines which rely
on different tools and formalisms for modeling variability. Web
services are used for a prototypical implementation. In contrast
to the approach presented here, in both approaches, the term
‘heterogeneity’ concerns different variability models rather
than the product space. While Biihne et al. and Dhungana et
al. only address variability modeling, the approach presented
in this paper covers a larger part of the software life-cycle.
Furthermore, FAMILE does not only allow for variability
modeling, but also for mapping the variability information to
heterogeneous implementation artefacts.

IV. STATE OF THE ART: HOMOGENEOUS MDPLE TOOLS

This section provides a brief overview on the state of the
art of current tools for model-driven product line engineering.
The description is confined to approaches based on negative
variability. As one representative, the original version of the
FAMILE toolchain [8][9] is presented. Current MDPLE tools
assist the user in the following tasks:

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

1) Definition of a feature model At the beginning of
the domain engineering phase of the product line
life-cycle, the problem domain is analyzed and the
commonalities and differences are captured in a fea-
ture model [3]. For feature models, several extensions
such as cardinality-based feature modeling [23] have
been proposed.

2) Creation of the domain model For the construction
of a multi-variant domain model, modelers may use
their preferred modeling languages and tools. Most
MDPLE approaches only support single-resource
models. FAMILE requires that the resulting model
is an instance of an Ecore metamodel.

3) Mapping features to model elements In order
to define which parts of the domain model realize
which feature, or a combination thereof, MDPLE
tools provide different mechanisms to map features to
model elements. For this purpose, FAMILE includes
the Feature to Domain Mapping Model (F2DMM)
editor which supports the process of assigning feature
expressions — arbitrary propositional formula on the
set of features — to particular model elements.

4) Ensuring the consistency of the product line The
increasing complexity coming with both the size of
the multi-variant domain model and the number of
features requires sophisticated mechanisms to detect
and repair inconsistencies among the product line. In
particular, the consistency between (a) the mapping
model and the domain model, (b) the feature model
and its corresponding feature configurations, and (c)
feature expressions and the feature model, must be
ensured. Different approaches are described in [23],
[24]. FAMILE introduces the concepts of surrogates
and propagation strategies [9] for this purpose.

5) Definition of feature configurations As soon as
the mapping is complete, MDPLE tools support the
creation of feature configurations, each describing the
characteristics of a member of the software product
line. For each feature defined in the feature model,
a selection state must be provided that determines
whether a feature is present in the corresponding
product.

6) Product derivation A specific product can be derived
by applying its corresponding feature configuration
to the product line. During the derivation process,
the multi-variant domain model is filtered by ele-
ments whose assigned feature expressions evaluate to
false, i.e., the corresponding features are deselected
in the respective feature configuration. In homoge-
neous MDPLE tools, the result of this operation is a
product-specific single-resource model represented in
the (previously fixed) domain metamodel.

V. EXAMPLE: HOMOGENEOUS FAMILE PRODUCT LINE
FOR GRAPH METAMODELS

The following statements refer to the original version of the
tool FAMILE as one representative of homogeneous MDPLE
tools. Section VI demonstrates how heterogeneous project
support is added to the toolchain.

FAMILE itself has been developed using EMF as its
technological foundation. A model-driven software product

302

ICSEA 2014 : The Ninth International Conference on Software Engineer

=

[E Features &1] [de.ubt.ail famile.

4 o GraphProductline IA Mapping Madel

ing Advances

.example.graph.famile [Ep GraphEcoref2dmm &

a @ Nodes[1,1] (1,1)
0 Color[L1]
a P Edges(1,1](1:0,2)

4|9 Mapping Maodel |

'EE Propagation Strategy [Dependency Conflicts: forward, Missing Annotations: forward, transitive]
4} graph: GraphProductline

0 Weighted[1,1] 4 [Graph
O Directed[1,1] b & nodes: Node
a ¢ Search[1,1] (1,1) I & edges: Edge
0 DFS[L1] 4 [} Node
0 BFS[L1] I = name: EString
O Graphical Editor[1,1] 4 [Edge

> T nodes: Node: not Directed
[» o name: EString
> o weight: Ent: Weighted

[» o source: Node: Directed

[» o target: Mode: Directed

E Color: Coler
Figure 1. Screenshot of the F2DMM mapping model editor showing the multi-variant domain model of the (homogeneous) graph product line.
— — — —Instance of— — — — — — = Ecore <t - — — — — Instance of
| Metamodel |
| _____ Instance of |
| |
Feature L FEL F2DMM
Metamodel | Metamodel Metamodel
| [a
| |
— | | | |
eature Feature . Multi-variant Configured
N . F2D Mapping Model | 8
Configuration I Model PPI o Domain model r’ Domain model

derives

Figure 2. Metamodels and models involved in the original version of FAMILE. Different models are used to map a single-resource multi-variant domain model.

All metamodels are based on Ecore.

line developed with FAMILE is spread over multiple EMF
resources which are instances of multiple metamodels (cf.
Figure 2): Feature models and configurations share a com-
mon metamodel which also supports cardinality-based feature
modeling. The F2DMM mapping model describes how domain
model elements are mapped to features. The domain model is
instance of an arbitrary domain metamodel, which is fixed for
the mapped resource. It is assumed to be a single-resource
entity. The Feature Expression Language (FEL) metamodel
describes a textual language for feature expressions [8].

With the F2DMM editor (see Figure 1), the user is assisted
in assigning feature expressions to domain model elements.
The underlying F2DMM mapping model is constructed auto-
matically and reflects the spanning containment tree structure
of the domain model. Using the reflective EMF editing mech-
anism [11], the F2DMM user interface emulates the reflective
EMF tree editor. Optionally, the user may load an example
feature configuration already during the mapping process in
order to comprehend how feature expressions are evaluated.
The screenshot in Figure 1 depicts an example feature con-
figuration in the left pane. Selected features or groups are
displayed in cyan, deselected features or groups in orange. The
right pane contains the mapping of specific features to artefacts
of the multi-variant domain model. Elements are annotated
with feature expressions after a colon. The calculated selection
states (selected, deselected) are represented in cyan and orange,
respectively.

As a demonstrating example within this paper, the graph
product line example has been adopted, which is frequently
used in research papers because it is easy to understand and its
size is rather small. In Figure 1, an example feature configura-
tion is loaded that represents a directed graph (with uncolored

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

nodes and unweighted edges) that realizes neither depth-first
search nor breadth-first search. The feature “Graphical Editor”
will be explained in Section VII, where the example is revisited
in the context of heterogeneous product line support.

VI. SUPPORT FOR HETEROGENEOUS APPROACHES

This section explains how support for heterogeneous
model-driven software product lines has been added to the
MDPLE tool FAMILE. From a technical point of view, this
requires multiple metamodels for the platform and multiple
models that describe different artefacts of the product in
different stages of the development process (e.g., requirements,
static model, implementation). As stated in the introduction, it
is assumed that all project artefacts may be expressed using
EMF. EMF and its metamodel Ecore are wide-spread in the
Eclipse community, thus a large number of potential domain
models is addressed. A (non-exhaustive) list may comprise of
course Ecore class diagrams, Eclipse UML models [25], Xtext
[26] / EMFText [27] grammars and documents, GMF models
[15], Acceleo source code generation templates [28], MWE2
Workflow files [29], Xtend specifications [30], domain-specific
languages based on Ecore, and many more. Additionally,
FAMILE has been applied successfully to Java source code
as well. To this end, the MoDisco [20] framework is used,
which allows to parse Java source code into a corresponding
Java model instance (which is also based on Ecore). MoDisco
may be also used to create EMF model instances out of XML
files. For plain text files that are not yet mapped by language-
specific mechanisms, the new extension framework provides
an additional “fall-back” metamodel, which operates on the
granularity of text lines. As a consequence, FAMILE may
handle arbitrary resource types that may occur within typical

303

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

MDSE-related Eclipse projects.

Figure 4 shows the conceptual overview of the new, hetero-
geneous version of the FAMILE toolchain. A FAMILE model
wraps different F2DMM model instances which are used
for mapping features to the different (heterogeneous) multi-
variant domain model instances. A FAMILE model references
a given feature model and one out of an arbitrary number of
corresponding feature configurations. Features are mapped to
the respective domain artefacts by using a separate mapping
model per resource.

A. The FAMILE Metamodel

The specific requirements of heterogeneous modeling
projects have been addressed by the FAMILE metamodel and
its corresponding instances, which constitute an extension to
the F2DMM metamodel, where models have been considered
as self-contained single-resource entities [8]. In order to sup-
port multiple (EMF-based) resources of different type, the new
FAMILE metamodel shown in Figure 3 wraps several instances
of the F2DMM metamodel, which still constitutes the core of
the extended toolchain.

| \I/ currentFeature
0.1 Configuration

Productline
featureModel RootFeature
s : PropagationStrate; n (from Feature
deriveProduct() Metamodel)

featureModel |1 0..1(currentFC
0..* | mappingModels
F2DMMlinstance

) X 1 MappingModel
BB (T (from F2DMM
type : Artefactlype | mappingModel Metamodel)
Mapping
4{> (from F2DMM
Metamodel)
1 [domainArtefact
ResourceDescriptor 0..$featureExpr
uri : Estring FeatureExpr
contentType : EString (from FEL
Metamodel)

Figure 3. The FAMILE metamodel which is designed to support heteroge-
neous software product lines.

The FAMILE metamodel defines a logical grouping of
inter-related mapping models. The root element — an instance
of ProductLine — defines a number of global project parame-
ters, being the references to the used feature model and option-
ally a feature configuration, as well as a propagation strategy
(used for automatic detection and resolution of inconsistencies;
see [9]). FAMILE takes care that global project parameters are
kept consistent within different F2DMM resources of the same
heterogeneous product line.

A single F2DMM mapping model, which refers to exactly
one mapped resource, is represented by F2DMMInstance. This
meta-class defines a number of resource-specific parameters,
such as the name and the artefact type (requirements, im-
plementation, test, etc.). Please note that F2DMMInstance ex-
tends the abstract meta-class Mapping defined in the F2DMM
metamodel, which manages variability by the use of fea-
ture expressions and the calculation of selection states [8].

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

The referenced MappingModel describes the mapping of the
specific contents of a mapped resource, e.g., mapped EMF
objects in the case of EMF model resources. Furthermore,
a contained ResourceDescriptor element describes additional
resource-specific parameters, being the relative URI of the
mapped resource, as well as its content type (plain text, XML,
EMF, etc.). The resource containing a multi-variant domain
model is referenced by its URL

Besides the possibility of annotating specific resources of
the multi-variant domain model with feature expressions, the
presented extension addresses the fact that in heterogeneous
projects, cross-resource links occur frequently. For instance, in
the example in Section VII, elements of an Ecore model are
referenced by a corresponding GMF mapping model located
in a different resource. During product derivation, these links
are detected and resolved automatically in order to meet the
requirement of referential integrity across multiple resources.
As a result, a derived product will never contain any reference
to the multi-variant model.

B. User Interface

The user interface has been extended to support heteroge-
neous software product lines. A new FAMILE editor manages
the mapping for a set of resources rather than single-resource
models, which are still covered by the existing F2DMM editor.
In addition to the tasks listed in Section IV, the extended
FAMILE framework supports the following user interactions
(see also example in Section VII):

1) Adding heterogeneous product line support An
arbitrary Eclipse project containing any kind of re-
source (e.g., EMF models, source code and docu-
mentation) can be provided with the FAMILE nature,
which adds heterogeneous product line support by
automatically creating a FAMILE product line model.

2) Definition of a global feature model As soon as the
FAMILE nature has been added, the feature model
editor is opened automatically and can be used to
provide the results of domain analysis. Once a new
feature model has been created or an existing feature
model has been selected, its contained features may
be used in feature expressions annotating correspond-
ing implementation fragments from the multi-variant
domain model(s).

3) Adding variability to resources Initially, it is as-
sumed that none of the project resources is subject
to variability. In order to add variability to a specific
resource, the Add F2DMM Instance command can be
invoked. It will create a new mapping model for the
selected resource and append it to the reference map-
pingModels of the ProductLine instance. Furthermore,
global project parameters are transferred to the new
F2DMM instance.

4) Assigning feature expressions to resources In many
cases, variability is achieved at a rather coarse-
grained level, having resources rather than objects
implement features. The FAMILE editor supports this
requirement by the possibility of assigning feature
expressions to entire resources.

5) Applying a feature configuration globally The
command Set Feature Configuration allows to change

304

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Feature L FEL F2DMM
Metamodel Metamodel Metamodel

FAMILE

Domain (-7 7 7o !
Metamodel Metamodels :

MVDM A | CDM A

{ F2D Mapping Model A
;

L .
EETT e { F2D Mapp|r1g Model B

D
Lol mome |

Feature

Model |

Configurations

{ F2D Mapping Model C

] MVDM C

| FAMILE model

Heterogeneous project 4

derives

Figure 4. Metamodels and models involved in the extension of FAMILE. Abbreviations: MVDM = multi-variant domain model; CDM = configured domain

model.

the current configuration, which will restrict the
visible elements/resources in both the F2DMM and
the FAMILE editor to elements with a feature ex-
pression that satisfies the new configuration. This
global project parameter is propagated to all existing
F2DMM instances.

6) Deriving a multi-resource product After applying
a specific feature configuration, a product can be
exported. Invoking the Derive Product command will
prompt the user for a name of the derived Eclipse
project. As described above, F2DMM product deriva-
tion will be applied to each mapping model covering
a resource, keeping cross-resource links consistent.
Resources which are not wrapped by any F2DMM
instance or which are not annotated with FEL expres-
sions will be copied without any further restriction.

VII. EXAMPLE REVISITED: HETEROGENEOUS PRODUCT
LINE FOR GRAPH METAMODELS AND EDITORS

To demonstrate FAMILE’s support for heterogeneous
software projects, the graph product line introduced in
Section V has been extended by a graphical editor. To
achieve this in a model-driven way, GMF [15] has been
used. A screencast demonstrating how to use the extensions
for heterogeneous projects provided by FAMILE can be
found on the corresponding webpages (http://btnlx4.inf.uni-
bayreuth.de/famile/screencasts).

A. GMF Artefacts as a Heterogeneous Set of Multi-Variant
Domain Models

Figure 5 depicts the different models involved in the
GMF development process. The abstract syntax is defined
by an Ecore model, while the editor providing the concrete
(graphical) syntax is defined by a graphical definition model, a
tooling definition model and a GMF mapping model. The EMF
generator model is used to generate Java source code for the
abstract syntax while the GMF generator model is responsible
for generating the diagram editor’s source code. Please note
that the screencast does not cover the definition of the models
mentioned below. It is assumed that the models describing
the abstract and concrete syntax definitions have been created
beforehand:

1) Ecore The abstract syntax of the graph metamodel
has been created in Ecore. As shown in Section V,
the F2DMM instance which maps features to the
semantic model (abstract syntax).

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

Abstract Syntax Concrete Syntax
Graphical Definition Tooling Definition
Ecore Model \ Model Model
o
L
g GMF Mapping Model
°
T
Q
[}
>
@
‘l? 2
@
1 Y
EMF Generator Model GMF Generator Model
[[
«Q Q
[} @
=3 3
[@
) 2
v v

Java Source Code

Figure 5. Models involved in the GMF development process.

2)

3)

4)

GMFGraph (Graphical Definition Model) GMF
uses a GMFGraph model to define the graphical
representation of the concrete syntax. In case of the
example, the visual appearance of nodes and edges
of the graph is defined.

GMFTool (Tooling Definition Model) Every GEF
based editor uses a so called palette to drag new
elements to the canvas. As GMF is a model-driven
extension to GEF, it follows this paradigm. The
GMFTooling definition model is used to specify the
contents of the editor’s tool palette.

GMFMap (GMF Mapping Model) The models
described above (Ecore, GMFGraph and GMFTool)
are combined in the GMF mapping model. In this
model, a relation between abstract syntax (Ecore)
and graphical notation (GMFGraph) is established.
Furthermore, the tools (GMFTool) for creating cor-
responding model elements are linked to those rela-
tions. Please note that the GMF mapping model is the
central part of the Graphical Modeling Framework. It
has nothing in common with the F2DMM mapping
model, which is the core of the FAMILE toolchain.

305

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

. Eﬁ de.ubt.ail famile.example.graph 23621 [https://btnl
4 [featuremodel 23622
Eva BaseGraphWEditor.featureconf 23622
[} BaseGraphWOEditor featureconf 23622
[3} de.ubt.ail.famile.example.graph.featuremoc
[£) DirectedGraphWEditor.featureconf 23623
4 (7 mappingmodel 23522

B Features 33

4 % GraphProductline
4 P Nodes[11] (1,1)
O Color[1,1]
4 P Edges[11](1:0,2)
O Weighted[1,1]

Eﬁ de.ubt.ail famile.example.graph.famile 2362 O Directed[1,1]
% GraphEcoref2dmm 23630 4 @ Search11] (11)
B GraphGMFGraph.f2dmm 23623 O DFS[L1]

O BFS[L1]

E‘g GraphGMFMap.f2dmm 23623
Eﬁ GraphGMFTool.f2dmm 23623
7 META-INF 23499
&y model 23621
) graph.ecore 23501
Eﬂ graph.genmodel 23439
@ Graph.gmfgen 23403

O Graphical Editor{1,1]

Feature Configuration: Directed(ra... l

e.ubt.ail famile.example.gra Jamile
de.ubt.ail famil ple.graph.famile 53

ri\j Resource Set

4 [CF platform:/resource/de.ubt.ail famile.example.graph/mappingmodel/de.ubt.ail famile.example.c
4 4 Product Line de.ubt.ail famile.example.graph

1> | 4y FZDMM Instance Mapping Model : GraphProductLine |

> <y F2DMM Instance Mapping Model : "Graphical Editor"

> <y F2DMM Instance Mapping Model : "Graphical Editor"

> <y F2DMM Instance Mapping Model : "Graphical Editor"
p [platform:/resource/de.ubt.ail famile.example.graph/featuremodel/de.ubt.ail famile.example.gr:
3 platform:/resource/de.ubt.ail famile.example.graph/featuremodel/Directed GraphWEditor.featur
» [Eb platform:/resource/de.ubt.ail famile.example.graph/mappingmodel/GraphEcore.f2dmm
» B platform:/resource/de.ubt.ail famile.example.graph/mappingmodel/GraphGMFGraph.f2dmm
» B platform:/resource/de.ubt.ail famile.example.graph/mappingmodel/GraphGMFTool.f2dmm
» EP platform:/resource/de.ubt.ail famile.example.graph/mappingmodel/GraphGMFMap.f2dmm

Selection‘ Parent| List|Tree|TabIe| Tree with Columns

‘S Graph.gmfgraph 23639
‘? Graph.gmfmap 23400
&% Graph.gmftool 23439

Figure 6.
FAMILE model are shown.

B GraphGMFMap.f2dmm 53
A Mapping Model

Screenshot of the FAMILE model editor. The left pane shows the feature model and feature configuration. In the main pane, the contents of the

4 % Mapping Model

£% Propagation Strategy [Dependency Conflicts: forward, Missing Annotations: forward, transitive]

b

<y Mapping : GraphProductline

@ Link Mapping <Edge{Edge.nodes:Node-» Edge.nodes:Node}/EdgeConnection> : Edges

I i} Top Node Reference <nodesiNode/MNodeNode> : Nodes
3 Canvas Mapping

Figure 7.
mapping values (in italics).

B. Mapping Heterogeneous Artefacts

In order to use FAMILE for a (heterogeneous) project,
the FAMILE project nature has to be assigned. As a result,
an empty feature model and a FAMILE model are created
within the project. In the example, the feature model shown
in Figure 1 is applied to the entire product line as a global
project parameter. In order to map features to corresponding
implementation fragments, F2DMM mapping models have
to be created for each domain model. In the example, four
F2DMM instances have been defined, one for each EMF/GMF
resource mentioned above.

Figure 6 depicts the state of the example project after
corresponding F2DMM instances have been created. The red
arrows in the left part of the figure indicate which domain
model resource the corresponding F2DMM models refer to. As
one can see, FAMILE model elements may also be annotated
with feature expressions. For the example, a feature called
Graphical Editor has been introduced in order to make the
visualization (tree editor vs. graphical editor) of the graph
variable. In case this feature is deselected in a respective
configuration, it is obvious that the resulting product must not
contain the GMF models. As a consequence, the respective
F2DMM instances are annotated with the feature expression
Graphical Editor, as shown in Figure 6.

Figure 1 has already shown the content of the F2DMM
mapping model for the Ecore model which is used to define
the abstract syntax of the graph model. Analogously, F2DMM

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

= 8 B Mapping Properties 53 . O Outline 4% Tasks

Structural Feature Value FEL Expression
| B domainMetaElement [Edge]

&1 containmentFeature [edges: Edge]

<ntool [Creation Tool Ed...

: - ; —

L1 ture 1e] it

5 linkMeta [lode] ected
o sourceMetafeature [source : Node] Directed

o linkMetaFeature [target : Mode] Directed

Usage of alternative mappings. The red box depicts where elements of the multi-variant domain model have been virtually extended by alternative

instances for the other required models (GMFGraph, GMFTool
and GMFMap) are created. Each model file contains a su-
perimposition of all possible variants. Common approaches
using negative variability suffer from restrictions imposed
by the respective domain metamodels which usually do not
provide adequate support for variability. FAMILE mitigates
this restriction by offering the advanced concept of alternative
mappings. In the example, alternative mappings are used in
the Link mapping in the GMFMap model (c.f., Figure 7). In
case of an undirected graph, the corresponding graphical editor
should just connect two nodes by a solid line. To this end,
the underlying semantic model (i.e., the Ecore class model)
provides a reference nodes in the class Edge. In contrast, if the
feature Directed edges is selected, the graphical editor should
indicate the direction of the edge connecting two nodes by
using an arrow as a target decorator. Furthermore, the semantic
model does no longer contain a reference nodes, but instead
two single-valued references source and target, which are used
to store the corresponding nodes connected by the edge. In
GMF, a link mapping requires to specify the corresponding
EReferences which are used as the link’s source and target.
While in the first case, both source and target features in the
GMFMap file are set to the EReference nodes, the latter case
requires those features to point at the corresponding source
and target EReferences.

In this example, FAMILE’s alternative mapping capabil-
ities are necessary because the GMF mapping model uses
a single-valued EReference to store the sourceMetaFeature

306

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

and linkMetaFeature features. In case of undirected edges, the
nodes Reference defined in the Ecore model of our graph
product line is used. However, in case of directed edges, a
distinction between source and target nodes is required. To
this end, the Ecore model provides corresponding source and
target EReferences in the class Edge (c.f. Figure 1), which
have to be used in the GMFMap model instead in case the
feature Directed is chosen. Figure 7 depicts how this has been
solved using FAMILE’s alternative mappings [8], which can
virtually extend the multi-variant model and thus mitigate the
limited variability of the respective domain metamodels.

C. Product Derivation

Once the mapping is completed, specific feature config-
urations may be used to derive concrete products. In the
example, a derived Eclipse project is created which contains
the required model files. Please note that the derived project
does not include the Ecore and GMF generator models which
are required to generate code. Since code generation is always
invoked on a configured product, this task clearly belongs
to the application engineering rather than to the domain
engineering phase.

With the feature configurations provided in the example
project, a fully automatic generation of four Eclipse plugin
projects may be performed, which differ from each other as
follows:

e an EMF tree editor for undirected, unweighted graphs,

e a GMF-based graphical editor for undirected, un-
weighted graphs,

e a graphical editor for directed, unweighted graphs, and

e a graphical editor for directed, weighted graphs.

Of course this set of feature configurations does not contain
all possible combinations of features and it may be extended
arbitrarily based on the features defined in the feature model.

D. Outlook: Increasing the Heterogeneity of the Example
Project

The example described in this section has been conducted
using only EMF-compatible resources as artefacts. All models
involved in the GMF development process, i.e., the Ecore
domain model, the Graphical Definition Model, the Tooling
Definition Model, as well as the GMF Mapping Model, are
instances of different Ecore-based metamodels. In the current
state of the project, these models constitute the adequate level
of abstraction for variability management. However, it might
become necessary to define additional F2DMM mapping mod-
els for non-EMF resources in addition, for different reasons:

e With Ecore, only structure may be modeled in the
form of class diagrams. For the behavioral part, mod-
ifications to the generated Java source code might
become necessary. In order to map specific parts of the
source code, e.g., specific method bodies, to features,
additional F2DMM mapping models may be added
for the respective Java files. For this purpose, Java
constructs are internally mapped to EMF models using
the MoDisco framework, as described in Section VI.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

Please note that using the current FAMILE extension,
the user may annotate Java elements directly in the
standard Java text editor.

e The file plugin.properties in the Eclipse
project contains language-specific UI string constants,
each declared in a respective text line. Currently, the
generated Editor displays UI elements in English.
However, if support for different languages is desired,
one may add an additional F2DMM mapping model
for the properties file, and corresponding features
for each additional language to the feature model.
The mapping may be adequately managed by means
of a per-line mapping, using the “fall-back” EMF
representation for plain text files (see Section VI).

e The file plugin.xml defines plugin extensions
which are used to integrate the generated editor with
the Eclipse platform. By adding an F2DMM mapping
model and corresponding features, variability may be
added to the plugin’s runtime configuration, i.e., in
order to make the editor’s icon, label, or file extension
depend on specific feature configurations. Assuming
that no EMF-compatible metamodel for Eclipse plugin
files is defined, the “fall-back” EMF representation for
XML files (see Section VI) may be used.

VIII. CONCLUSION AND FUTURE WORK

In this paper, requirements, concepts and limitations with
respect to tool support for heterogeneous model-driven soft-
ware product lines have been discussed. The approach pre-
sented in this paper solves a significant gap in the tool support
for model-driven development of software product lines, whose
artefacts are heterogeneous in terms of the used metamodels
as well as in containing artefacts like text files or XML
documents. As a proof of concept, an implementation of an
extension to the FAMILE toolchain was shown.

Usually, (model-driven) software projects do not only con-
sist of one single model. In contrast, different models and
metamodels are involved. The main challenges of heteroge-
neous SPLE tool support are (a) to cope with different levels
of abstractions (models and source code / plain text files) as
well as (b) different forms of representation, (c) to ensure that
links between different resources are kept consistent, and (d)
to provide a uniform variability mechanism with respect to all
project resources.

The approach presented here comes with the assumption
that each resource type may be expressed by an EMF model;
the new version of FAMILE provides adequate mapping con-
structs in order to support entire Eclipse projects. Furthermore,
the solution to heterogeneous SPLE tooling is to divide a
heterogeneous software project into a set of single-resource
mapping models, for which adequate SPLE support is already
implemented. Links between different models are kept con-
sistent during product derivation. Extensions to the user inter-
face ease the integration of new artefacts into heterogeneous
product lines as well as modifications to existing mappings.
Furthermore, fallback mechanisms for plain text files and
XML files are provided, which also allow to map features
to those kinds of artefacts at a lower level of abstraction.
A demonstration of the presented approach was given by

307

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

applying the heterogeneous FAMILE toolchain to a product
line for graph metamodels and editors, which manages an
entire Eclipse plug-in project.

Current and future work addresses a case study which is

carried out in the field of robotics [31][32]. Although first
results produced by the old (homogeneous) version of the
FAMILE toolchain are very promising, it is expected that a
significant gain in productivity is achieved by exploiting the
new, heterogeneous approach. Future work on the tool com-
prises a better integration of the mapping assistant into the user
interface of Xtext-generated textual editors. Furthermore, work
in progress addresses extensions to the MoDisco framework in
order to provide support for other programming languages like
C++ or C#.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Copyright (c) IARIA, 2014.

REFERENCES

P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Boston, MA, 2001.

K. Pohl, G. Bockle, and F. van der Linden, Software Product Line En-
gineering: Foundations, Principles and Techniques. Berlin, Germany:
Springer Verlag, 2005.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility study,”
Carnegie-Mellon University, Software Engineering Institute, Tech. Rep.
CMUY/SEI-90-TR-21, Nov. 1990.

S. Zschaler, P. Sanchez, J. Santos, M. Alférez, A. Rashid, L. Fuentes,
A. Moreira, J. Aratjo, and U. Kulesza, “VML* - A Family of
Languages for Variability Management in Software Product Lines,”
in Software Language Engineering, ser. Lecture Notes in Computer
Science, M. van den Brand, D. Gaevic, and J. Gray, Eds. Denver, CO,
USA: Springer Berlin / Heidelberg, 2010, vol. 5969, pp. 82-102.

J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Arajo,
“MATA: A Unified Approach for Composing UML Aspect Models
Based on Graph Transformation,” in Transactions on Aspect-Oriented
Software Development VI, ser. Lecture Notes in Computer Science,
S. Katz, H. Ossher, R. France, and J.-M. Jzquel, Eds. Springer Berlin
/ Heidelberg, 2009, vol. 5560, pp. 191-237.

F. Heidenreich, J. Kopcsek, and C. Wende, “FeatureMapper: Map-
ping features to models,” in Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), Leipzig,
Germany, May 2008, pp. 943-944.

C. Kistner, S. Apel, S. Trujillo, M. Kuhlemann, and D. S. Batory,
“Guaranteeing syntactic correctness for all product line variants: A
language-independent approach,” in TOOLS (47), ser. Lecture Notes in
Business Information Processing, M. Oriol and B. Meyer, Eds., vol. 33.
Springer, 2009, pp. 175-194.

T. Buchmann and F. Schwigerl, “FAMILE: tool support for evolving
model-driven product lines,” in Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foundations and Ap-
plications, ser. CEUR WS, H. Storrle, G. Botterweck, M. Bourdells,
D. Kolovos, R. Paige, E. Roubtsova, J. Rubin, and J.-P. Tolvanen,
Eds. Building 321, DK-2800 Kongens Lyngby: Technical University
of Denmark (DTU), Jul. 2012, pp. 59-62.

T. Buchmann and F. Schwigerl, “Ensuring well-formedness of config-
ured domain models in model-driven product lines based on negative
variability,” in Proceedings of the 4th International Workshop on
Feature-Oriented Software Development, ser. FOSD 2012. New York,
NY, USA: ACM, 2012, pp. 37-44.

M. Valter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

OMG, Meta Object Facility (MOF) Core, formal/2011-08-07 ed., Object
Management Group, Needham, MA, Aug. 2011.

ISBN: 978-1-61208-367-4

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]
[31]

(32]

——, UML Superstructure, formal/2011-08-06 ed., Object Management
Group, Needham, MA, Aug. 2011.

T. Buchmann, A. Dotor, and B. Westfechtel, ‘“Mod2-
scm: A model-driven product line for software configuration
management systems,” Information and Software Technology, 2012,
http://dx.doi.org/10.1016/j.infsof.2012.07.010. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2012.07.010

R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit, 1st ed., ser. The Eclipse Series. Boston, MA:
Addison-Wesley, 2009.

“fmp2rsm project,” http://gsd.uwaterloo.ca/fmp2rsm, accessed: 2014-
07-15.

M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature modeling
plug-in for Eclipse,” in Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology eXchange (eclipse’04), New York, NY, 2004, pp.
67-72.

G. Taentzer, “AGG: A Graph Transformation Environment for Modeling
and Validation of Software,” in Applications of Graph Transformations
with Industrial Relevance, ser. Lecture Notes in Computer Science,
J. Pfaltz, M. Nagl, and B. Bohlen, Eds. Charlottesville, VA, USA:
Springer Berlin / Heidelberg, 2004, vol. 3062, pp. 446-453.

B. W. Kernighan, The C Programming Language, 2nd ed., D. M.
Ritchie, Ed. Prentice Hall Professional Technical Reference, 1988.

H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic
and extensible framework for model driven reverse engineering,” in
Proceedings of the IEEE/ACM International Conference on Automated
software engineering (ASE 2010), Antwerp, Belgium, 2010, pp. 173—
174.

S. Biihne, K. Lauenroth, and K. Pohl, “Modelling requirements vari-
ability across product lines,” in RE. IEEE Computer Society, 2005,
pp. 41-52.

D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Griinbacher,
D. Benavides, and J. A. Galindo, “Configuration of multi product lines
by bridging heterogeneous variability modeling approaches,” in SPLC,
E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid,
Eds. IEEE, 2011, pp. 120-129.

K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7-29, 2005.

F. Heidenreich, “Towards systematic ensuring well-formedness of soft-
ware product lines,” in Proceedings of the 1st Workshop on Feature-
Oriented Software Development. Denver, CO, USA: ACM, Oct. 2009,
pp. 69-74.

“Eclipse ~ UML2 Project,” http://www.eclipse.org/modeling/mdt/
?project=uml2, accessed: 2014-07-15.

“Xtext project,” http://www.eclipse.org/Xtext, accessed: 2014-07-15.
“EMFText Project,” http://www.emftext.org, accessed: 2014-07-15.
“Acceleo project,” http://www.eclipse.org/acceleo, accessed: 2014-07-

“MWE?2 Project,” http://www.eclipse.org/modeling/emft/?project=mwe,
accessed: 2014-07-15.

“Xtend project,” http://www.eclipse.org/xtend, accessed: 2014-07-15.

J. Baumgartl, T. Buchmann, D. Henrich, and B. Westfechtel, “Towards
easy robot programming: Using dsls, code generators and software
product lines,” in Proceedings of the Sth International Conference on
Software Paradigm Trends (ICSOFT 2013), J. Cordeiro, D. Marca, and
M. van Sinderen, Eds. ScitePress, Jul. 2013, pp. 548-554.

T. Buchmann, J. Baumgartl, D. Henrich, and B. Westfechtel, “Towards
a domain-specific language for pick-and-place applications,” in
Proceedings of the Fourth International Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob 2013)., U. P. S.
Christian Schlegel and S. Stinckwich, Eds. arXiv.org, 2013. [Online].
Available: http://arxiv.org/abs/1401.1376

308

