
Design of Mobile Services for Embedded Platforms 

 

Guy Lahlou Djiken 

Laboratory of Algorithms, 

Complexity and Logics, 

LACL, UPEC University 

Créteil, France 

guy-lahlou.djiken@lacl.fr 

Sanae Mostadi 

Ecole Supérieure d’Informatique 

Appliquée à la Gestion, 

ESIAG, UPEC University 

Créteil, France 

mostadis@miage.u-pec.fr  

Fabrice Mourlin 

Laboratory of Algorithms, 

Complexity and Logics, 

LACL, UPEC University 

Créteil, France 

fabrice.mourlin@u-pec.fr 

 
Abstract—The design of distributed applications requires 

theoretical knowledge and hands-on experience. Our work is 

about distributed applications based on embedded platforms 

such as smartphones or tablets. We define a software chain 

development from design to implementation where services are 

designed through interface diagrams and component 

diagrams. From these declarations, we are able to generate 

software descriptions into two languages. Android Description 

Language (AIDL) is utilized for local services to an embedded 

platform. Web Application Description Language (WADL) is 

utilized for remote services. Such services are called from one 

platform to another one. The first kind of description allows 

developers to create Android services. Then, WADL 

description provides all the features for building Restlet Web 

services. We applied our strategy to the design and building of 

a case study on medical picture set management. Embedded 

tablets can take pictures during the users’ activities. Local 

services allow users to display their medical picture through 

specific viewers. Remote services are set to expose these data to 

specific medical material. So, we provided a way to exchange 

technical data from well spread platforms to medical 

application servers.   

Keywords-mobility; data collection; mobile service; 

distributed application. 

I.  INTRODUCTION 

Tanenbaum defines a distributed system as a “collection 
of independent computers that appear to the users of the 
system as a single computer.”. This means that two features 
are essential: independent and suitable software for hiding 
the architecture to the users [1]. 

We consider a distributed system as a collection of 
autonomous computers linked by a network and using 
software to produce an integrated computing facility. The 
size of a distributed system can belong to a local area 
network (10's of hosts) or a metropolitan area network (100's 
of hosts) or a wide area network (internet) (1000's or 
1,000,000's of hosts). The key characteristics of such 
distributed systems are the resource sharing where data 
source or external device are used by applications. Then, the 
use of open standard allows building applications which 
need to have the components of a solution work together [2]. 
The concurrency property is also important; in fact,  multiple 
activities are executed at the same time [3]. This reduces 
latency and allows hiding blocking with some computing. 

The scalability in size deals with large numbers of 
machines, users, tasks, etc. This property occurs also in a 
location with geometric distribution and mobility [4]. The 
subject of our work is the design of distributed applications 
based on services. When considering scalable application 
design, a service helps to decouple functionality and think 
about each part of the application as its own service with a 
clearly defined interface. For Service Oriented Architecture 
(SOA) [5], each service has its own distinct functional 
context, and interaction with anything outside of that context 
takes place through an abstract interface, typically the 
public-facing Application Programming Interface (API) of  
another service. 

Building a system on a set of complementary services 
decouples the operation of those pieces from one another. 
This abstraction helps establish clear relationships between 
the services, its underlying environment, and the consumers 
of that service. Our work is about the use of services which 
are web services or embedded services. Both types occur 
into real projects, and it seems to be essential to adopt the 
same design approach. In Section II, we present our 
methodology for specifying both types of services. Section 
III is about the use of intermediate representation between 
design charts and computer representations. The following 
section specifies a way to provide an implementation. The 
two last sections are dedicated to a case study we built on the 
management of the pictures with their localization. Finally, 
we sum up about the results we explained in this paper. 

II. DESIGN OF DISTRIBUTED SERVICES 

Client/server, 3-tier and n-tier distributed applications 
and cloud computing, open up new opportunities and ways 
to design systems and develop applications. The design 
challenge is the main step of the life cycle of any project. 
The definition of message exchange pattern is essential for 
the declaration of each remote service. An object-oriented 
modelling approach is often used to describe business 
requirements, identify components, their interactions and 
placement in a multi-tier environment. 

We have chosen Unified Modelling Language (UML) [6] 
[7] as a specification language. There are a lot of charts 
which can help designers for requirement specification. We 
have selected deployment diagram for architecture level and 
how materials are linked. Next, the use of component 
diagram is the core of our methodology with the 
specification of interfaces and the declaration of signatures. 

354Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:guy-lahlou.djiken@lacl.fr
mailto:mostadis@miage.u-pec.fr
mailto:fabrice.mourlin@u-pec.fr


A. Design step of distributed services 

1) A service approach 
Similar to other distributed applications, Web services 

have a specific structure and behavior. The structure is the 
static part of Web services, which is composed of the 
candidate classes and their associations. The behavior is 
called the dynamic part. It represents how the Web service is 
executed in terms of sending requests, preparing responses to 
these requests, and how they will be sent back to the clients. 

The UML gains greater acceptance among software 
designers, not only because of its standardization by the 
Object Management Group (OMG) [8], but also because of 
the high support from tool vendors, such as IBM and Oracle. 

2) First step in our case study 

Along our paper, we use a case study about the 

management of pictures which are taken with mobile 

devices such as smartphones and tablets. The main goal for 

an end user is to know precisely where a given picture is. 

More precisely, if several devices are used in a lab, it could 

be convenient to localize the pictures on the devices without 

any upload of working pictures on a common data server.  

 
The main goal of the Web service requirements analysis 

task is to capture and gather the requirements for the target 
Web service. This includes the identification of the precise 
services that have to be provided. This means that UML 
interfaces are defined in package structure. For instance, 
assume a context where a set of pictures has to be exposed to 
a network with HTTP methods. So, Figure 1 describes what 
will be the first step of the requirement specification. 

This short example stresses 2 main tasks: the naming and 
the signature definition. Type and name of the domain and 
co-domain are essential to the future implementation and the 
clients. All these definitions are relative to a namespace (in 

our example fr.upec.lacl.project.gallery). 
This allows reducing name conflict. A package structure is 
an ideal entry point into a project dictionary. 

On another side, a material description provides all the 
details useful for the deployment step. In our previous 
example, the occurrences of the service are deployed on 
mobile devices. The clients could also be installed on mobile 
platforms or workstations. In Figure 2, a potential 
deployment diagram is described as a mobile application 
server deployed over a mobile device. Its client is installed 
on an application server. When all data are collected about 
the pictures, the other artifact, called 

picture.inventory.war deployed over the 
application server, can answer to the requests of the standard 
clients. 

From this view, we define several artifacts. They play the 
role of deliverables. Each of them will provide one or more 
components. A component diagram gives a snapshot of a 
runtime. Each component has provided interfaces and also 
dependencies on other parts of the software. Also, we can 
check how precise the requirements are defined. This allows 
defining the used network protocol and the message 
exchange pattern. For instance, the requests to the 

PictureManager service is considered synchronous and 
parameters are exchanged through an XML format  

This component diagram is also the support to express no 
functional properties such that the maintainability of the set 
of services and the management of several versions. All the 
components follow the OSGi specification (Open Service 
Gateway Interface) [9]. A feature of OSGi technology is its 
portability since it can be implemented both in the terminal 
board so that in conventional applications or servers [10]. In 
this context, the OSGi technology is designed to address the 
other no functional aspects, such that to enable the  
management of complex applications and to improve the 
quality of service applications for administration to warm 
(see Figure 3). 

In Figure 3, all components are placed. The naming 
convention allows readers to understand the correspondence 
between components and artifacts. There are three kinds of 
components depending on the kind of deployment node. This 
diagram highlights the roadmap of our development. So, 
because the Figure 2 requires different kinds of platform, 

 
Figure 1.  Precise declaration of interface and signature 

 
Figure 2.  Deployment diagram 

 

Figure 3.  Software architecture of case study 

355Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



then, the next refinements are going to provide more details 
about the technical features. 

B. Integration testing 

The integration testing is a level of the software testing 
process where individual units are combined and tested as a 
group. The purpose of this level of testing is to expose faults 
in the interaction between integrated units. In our context, it 
means the integration of the three parts: mobile part, server 
part and a client part. This level of test can be considered as 
business routes where each of them is a use of our distributed 
application. In Figure 4, we describe the integration scenario 
where the application server sends requests to mobile 
platforms and collects the URLs of pictures and their 
technical features. 

This sequence diagram plays the role of validation after 
the integration of all the components and their deployment 
on to the set of materials. 

We also use such kind of diagrams when we study the 
impact of a scenario on the other behaviors of the application 
server. For instance, the problem can be to understand what 
the consequences of the data collections are during the 
subscription of other mobile devices. It seems to be obvious 
to require that the main business functionalities have to be 
isolated and the use of one mobile device is independent with 
the use of another one. 

Figure 4 shows the interactions between a tablet and the 
application server. First, the mobile device is registered and a 
collector service validates the availability of all the data 
around the pictures (content, format, identification, 
localization, etc.). This diagram can be extended with the 
introduction of other mobile devices or the interaction with 
other scenarios, but this will introduce some noise into the 

description and the role of such diagram will be reduced. 

III. INTERMEDIATE REPRESENTATION 

From the previous set of diagrams, we have to continue 
towards a more technical representation. As we can observe, 
this distributed application is based on the use of remote 
service. These services are clearly defined and depending on 
the kind of platform, we use a precise approach. 

A. AIDL services 

The IDL (Interface Definition Language) is generally 
language independent for the service specification. It is used 
theoretically for generating C++ or Python stub code from it. 
The Android one is Java-based though, so the distinction is 
subtle. One difference is that there is only a single interface 
in an .aidl file, while Java allows multiple classes/interfaces 
per Java file. There are also some rules for which types are 
supported; so, it is not exactly the same as a Java interface, 
and it is not allowed to use one instead of AIDL. 

In the context of mobile programming, a service is an 
application component that runs in the background without a 
user interface. In our case study, the picture manager can 
perform data collection by using a background service to 
prepare data for a foreground application. It means another 
application of the mobile device. This is quite important 
because the consequence is that a service built from AIDL 
cannot be used remotely. 

Services work in the background, even though the 
application is running neither in foreground nor background. 
A service might handle long running tasks like network 
connections or retrieving database records with the help of 
content provider from the background. In our case study, two 
interfaces are defined to expose services on mobile platform: 

 
Figure 4.  Interaction diagram as integration test 

356Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



these are PictureManagerPortType and 

PicturePortType (see Figure 1). So, from these 
declarations, we transform them into two .aidl files.  

These files (called PictureManagerPortType.aidl and 
PicturePortType.aidl) define the interfaces that declare the 
methods and fields available to a client. AIDL is a simple 
syntax that lets designer declare an interface with one or 
more methods, that can take parameters and return values. 
These parameters and return values can be of any type, even 
other AIDL-generated interfaces. Then, the AIDL compiler 
creates an interface in the Java programming language from 
the AIDL interfaces. These interfaces have an inner abstract 
class named Stub that inherits the interface and implements a 
few additional methods necessary for the IPC call (Inter 
Procedure Call).  

The next step is to create two classes that extend our 

previous interfaces PictureManagerPortType.Stub 

and PicturePortType.Stub implements the methods 
we declared in our .aidl file. Then we extend the Service 

class and override Service.onBind(Intent) to return 
an instance of one of our classes that implements one of our 
interfaces. The parameter intent plays the role of incoming 
message. The corresponding AIDL descriptions of Figure 1 
are given Figure 5. 

The primitive types are in direction by default. We limit 
the direction to what is truly needed, because marshalling 
parameters is time expensive. We have a class called 

Picture that we would like to send from a client process 
to the implementation process through an AIDL interface. 
We have made the Picture class which implements the 
Parcelable interface. The consequence is the overriding of 

the method public void writeToParcel(Parcel out) 

that takes the current state of the Picture and writes it to a 

parcel. The dual method is the method public void 

readFromParcel (Parcel in) that reads the value 

of a parcel into a Picture. 

B. REST services 

The use of AIDL is required because of application 
sandboxing. Each application in Android runs in its own 
process. An application cannot directly access another 
application's memory space. In order to allow cross-
application communication, Android provides the inter-
process communication protocol. IPC protocols tend to get 
complicated because of all the marshaling/unmarshaling of 
data that is necessary, but it has also a main limit: it is not 
possible to use it in a remote manner. 

Today, a remote access is a common requirement, but the 
installation of a web server on a mobile platform is not so 
natural. Also, we propose to use remote access by the use of 
the REST service through the use of Google implementation 
called Restlet. REST stands for Representational State 
Transfer. It relies on a stateless, client-server, with cache 
communications protocol, and in generally all cases, the 
HTTP protocol is used. REST is an architecture style for 
designing networked applications. The idea is that, rather 
than using complex mechanisms such as CORBA [11], RPC 
[12], or SOAP [13] to connect between machines, simple 
HTTP is used to make calls between machines. 

As a programming approach, REST is a lightweight 
alternative to Web Services and RPC (Remote Procedure 
Calls) and Web Services (SOAP, WSDL [14], and others). 
Much like Web Services, a REST service [15] is platform-
independent, language-independent, standards-based runs on 
top of HTTP, and can easily be used in the presence of 
firewalls. 

There are several reasons for having a Web server on a 
mobile phone. The main one is to allow third-party 
applications, on other phones or other platforms to access to 
the phone remotely. This requires strong security 
mechanisms that are provided in part by the Restlet 
framework as well as network level authorizations by the 
carrier. We have decided to apply a Proxy design pattern to 
hide Restlet mechanism. So, each AIDL service is equipped 
with a Restlet service. To sum up, the AIDL implementation 
is used as a local facet on the mobile device and the Restlet 
implementation can be considered as a remote facet from 
other platforms. 

In accordance with the Proxy design pattern, we have 

declared a subclass of the ServerResource class which 
belongs to the Restlet framework. Our class is called 

PicturePortTypeResource and has an attribute which 
is the previous AIDL implementation. Both classes 
implement the same business interface, but this last one 
provides our local service on the http protocol as a web 
resource. Figure 6 shows the main changes. Two technical 
packages are drawn to precisely the role of our technical 
classes. 

Now, this mobile part is accessible from other mobile 
devices and also from workstation and application server if 
necessary.  

 

package fr.upec.lacl.project.gallery; 

 

interface PictureManangerPortType { 

    PicturePortType getPicture(long id); 

    long putPicture(in Picture p); 

    String getPictureDetail(); 

  // other methods are added in the case study. 

} 

 

package fr.upec.lacl.project.gallery; 

 

// Declare Picture so AIDL can find it, knows 

// that it implementsthe parcelable protocol. 

parcelable Picture; 

 

package fr.upec.lacl.project.gallery; 

 

interface PicturePortType { 

 Picture read(); 

 boolean update(long id, in Picture p); 

 boolean available(); 

  // other methods are added in the case study. 

} 

Figure 5.  AIDL output files 

357Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



IV. CODE CONSTRUCTION 

We design the embedded part in the respect of such 
properties, such that the independence of the layers and 
interoperability. It means that the client part of the previous 
service does not know any technical details of our solution. 
This preserves the client from the changes of the new 
versions. 

A. JavaEE implementation 

As explained previously, the middle layer is the pilot of 
the data collection. After the subscription of a mobile device, 
requests are sent periodically from the application server to 
the mobile device. Applications that model business work 
flows often rely on timed notifications. We schedule a timed 
notification to occur at time intervals. Then, the collected 
data are stored on the application server. Of course, other 
mobile devices can subscribe to that picture manager service 
even if several data collections are running. Both 
functionalities are isolated. 

Another artifact is deployed on this application server: it 
is the inventory service. It is a stateless component which 
answers to the presentation layer running on a client 
workstation. The role of the inventory service is to answer to 
the client about the previous data collections. For instance, 
assume several mobile devices are previously registered, so a 
client can ask precisely to know where a picture, called 
“picture1”, under a JPEG format is. The structure of that part 
is more convenient: it is a three tier layer. These different 
responsibilities of an application are broken up into distinct 
tiers, typically: 

 The integration tier for data transformation and 
persistence services. The persistence unit is about the 
details which are collected during the data collection. 

 The business tier for the validation, business rules, 
workflow and interfaces to external systems. The 
request is expressed by a subset of the features of the 
pictures. This means the content type, the size the 
annotations, etc. 

 The presentation tier for user interface generation 
and lightweight validation. The web panels allow the 
requester to define his need. 

The requests between the presentation and business layers 
are synchronous over TCP protocol, but a message broker is 
used to separate client and service. The exchanges are totally 
asynchronous between the business and the integration 
layers. This is essential because the integration part can be 
considered as a cache of the database for several web 
applications. 

B. JavaSE implementation 

First, we use a web explorer to send http request and to 
display html tier. This display is a default graphical user 
interface used to send requests about the location of images. 
Next we have provided an API to develop new requests into 
programmatic clients. This is particularly useful for the 
automatic functional tests. This allows us to replace the use 
of Selenium tool of our own test application. 

Our API allows also other developers to program new 
client tiers. It is based on the use of REST services which 
send requests to our business tier. Because, we have chosen a 
REST implementation with the WADL generation (Web 
Application Description Language), other developers can 
build their own version of our API. Also, SOAPUI tool [16] 
provides an easy way to create test suites of our business tier. 

Our next case study is built with a lightweight client tier. 
In this context, the user is sure that the web client is well 
suitable for the version of the business tier.  Moreover, a 
comparison with other testing tool can be done especially for 
performance measures. 

V. CASE STUDY 

As we explained in our contribution, our case study is 
about the management of the pictures on Smartphone. 
Several embedded devices are used, for instance, in a lab or 
in a classroom. So, a distributed tool is necessary to locate 
precisely where the pictures are. More generally, such kind 
of tools is useful for the whole management of the pictures. 
This means collect, remove, transfer, duplicate or transform 
to an appropriate format. 

A. Deployment view 

Before starting our case study, we have to deploy all 
artifacts on given computer as mentioned Figure 2. Next, 
services have to be started by local servers. So, observations 
and measures could be done by a tester. 

1) Mobile data tier 
Under Android 4.2 operating system, the mobile devices 

are used by members of a laboratory to take photos. The 
camera records the pictures into a gallery where each of them 
corresponds to a separate file with a set of features (name, 
format, size, date, owner, etc.). Because, a gallery can be 
considered as a set of pictures, each picture has an own name 
for their identification. Often, the name is generated by the 
software component which manages the camera. This means 
that the name is not easily known by the scientist. 

For a test phase, the first activity is to take several 
photos. And then, register the mobile device as a data tier to 
a business server. This will engage a set of REST services as 
and points to the gallery of photos 

 
Figure 6.  Design class diagram of the mobile part 

358Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



2) Business tier 
Its first objective is to ready for receiving registration of 

all the mobile devices. From its point of view, the mobile 
devices are considered as a distributed data set of pictures. 
Concurrently, it performs a data collection about the features 
of the photos. This is not a collect of the photos because this 
will spend too much time. But, this activity is to bind all the 
features such as localization into a registry for future 
requests. The inventory activity is managed by a timer. Also, 
regularly, a mobile device receives requests about new 
pictures if there are until the end of its registration onto the 
business server. 

A third activity is to answer to the end users who want to 
localize the photos which are taken during a given period of 
time. Additional conditions can be set such as the content 
type, the dimension of the picture, the size of the file, etc. 

3) Client tier 
In the test phase, we use a web client for sending the 

requests. This client is received by sending an HTTP request 
from a navigator. It allows end users to define precisely the 
photos that they want to have access. The answer of a request 
is a set of links. They can be used to access to the embedded 
devices and the concrete photo. So, by the end of a test, this 
means: a request and a click on a hypertext link, a photo is 
displayed in the web browser of the end user. 

B. Artifact deployment 

1) Mobile data tier 
In order to install third party applications to our Android 

phone, we need to install APK (Android Package, files). The 
way we usually do is like the next iteration, but ir is for 
testing: 

 Plug in an USB cable to a PC and mount a SD card on 
the computer 

 Get the APK file somewhere on the SD card on the 
phone 

 Unmount the SD card on the PC, allowing the phone to 
see the SD card contents again 

 Use Astro File Manager or some similar app to browse 
to that file on the SD card and select it, which will 
prompt us if we want to install the app on the phone. 

For the end users, we have defined a more simple 
strategy based on the use of the local repository. We deploy 
the .apk file on a local server (apache http server) with a 
static IP to make the file available for download. Now the 
end user has to open the download link of the apk file in his 
mobile browser. The device will automatically start the 
installation after the download completes. 

2) Business tier 
We use an application server called JBoss where our 

applications are installed though an ear files (Enterprise 
Application aRchive). The standard configuration of JBoss 
provides a system for deploying applications very simple and 
convenient, but not necessarily suitable for a production 
environment. 

As standard, the deploy directory is a configuration 
where deploying services, components and applications. Just 
include a file according to the specific type of component 

specifications for JBoss deployment take into account. It is 
possible to deploy the files to deploy directory or its 
subdirectories. Each file type is taken into account by an 
appropriate service deployment. The EARDeployer service 
is used for our two main components: the registration of 
tablets and the data collector. 

The AbstractWebDeployer service is used for the Web 
application called by the client. It is implemented for the 
servlet container TomcatDeployer. The archive files are in 
the format war (Web ARchive). 

3) Client tier 
In the test phase, we use a web client for sending the 

requests. This is a set of JSP pages which belongs to the 
previous Web application. Also, the client tier is just a Web 
browser which is already installed on the computer of the 
client. 

We also use Java Web Start which is a mechanism for 
program delivery through a standard web server. The Java 
GUI client is downloaded to the client and executed outside 
the web browser. The GUI client does not need to be 
downloaded again on the next run. If the GUI client is 
updated, a new version will be downloaded automatically. 
The jar file contains an XML descriptor with an XML 
schema. It specifies the resources needed to run Java Web 
Start applications. It defines also the URL location of the jar 
file, VM arguments and other resources that JRE on the 
client side should know to start Java Web Start GUI client. 

Such GUI client that needs access to system resources, 
like file system, network connections, etc., need to be signed. 
Also, we generate a keystore (certificate) and attach it to the 
jar file. After that, an end user is able send request to the 
business tier and also to access to a mobile device. 

C. Measures 

Measuring the execution time is a really interesting, but 
also complicated topic. To do it right in Java, we have to 
know a little bit about how the JVM works: generation 
decomposition and so on. But, we do not have the same VM 
on all the nodes of the network. The mobile devices have a 
DVM (Dalvik VM), the business tier and the client tier have 
a JVM (Java VM); but the versions are not correlated. 

Also, we use a "ready to run" benchmarking framework 
that addresses many of our issues [17]. 

1) Measuring method execution time: The framework's 

essential class is named Benchmark. It is the only class that 

we use for the computation of measures; everything else is 

ancillary. Client and business tiers are observed by instances 

of the Benchmark class. We supply the code to be 

benchmarked to the Benchmark constructor. The 

benchmarking process is then fully automatic. Then, we 

generate a result report. The only restriction is that the code 

be contained inside a Callable or Runnable. Otherwise, the 

target code can be anything expressible in the Java language.  

2) Business tier Measures: There are two sets of 

measures. One is about the requests between the mobile 

devices and the application server. There two main tasks 

are: one is the registration of the mobile devices, the second 

359Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



is the data collection which is started and ended by the 

application server. 
The other set is about the treatment of the requests of the 

clients. Each request is received and treated by a business 

action which is also a Runnable instance. This means that 
we have measures on it. Both are interesting and their 
observations involve future improvements. 

3) Results 

Table 1 presents measures of RegistrationTask 

class. It is a Callable subclass and its method is invoked 

when a mobile device needs to belong to the community of 

the mobile data tier. Next, a data collection will be occurred. 

TABLE I.  REGISTRATION OF MOBILE DEVICES 

Measures 
Method execution time 

First time Mean time Standard deviation 

Registration 112.901 ms 108.501 ms 725.510 µs 

 

In the meantime, we have additional information on it: 

deltas: -35.205 µs,+46.206 µs). 

For the standard deviation execution time, we have the 

info: deltas: -161.405 µs, +361.108 µs 

Table 2 presents measures of DataCollectionTask 

class. It is a Runnable subclass and its behavior is 

managed by a timer. Each interval of time a data collection 

is started on a given mobile device. By the end, the changes 

are updated on the business server. This task is not linked to 

the previous one and several data collections are started 

concurrently in a manner that there is no effect from one 

data collection onto the other ones. 

TABLE II.  DATA COLLECTION ON A MOBILE DEVICE 

Measures 
Method execution time 

First time Mean time Standard deviation 

Data collection 225.910 ms 220.050 ms 555.004 µs 

 

In the meantime, we have additional information on it: 

deltas: -31.520 µs,+41.602 µs). 

For the standard deviation execution time, we have the 

info: deltas: -124.040 µs, +302.088 µs 

Table 3 presents the measures of the ClientRequest 

class. It is also a Runnable subclass and its method is 

invoked when the end user sends a request about the url 

addresses of several photos. Next, all the features of the user 

request are parsed and a result is computed from the 

previous data collections. Then, an answer is built with a set 

of URL instances. Each URL instance is a REST call to a 

service deployed on a mobile device. 

TABLE III.  CLIENT REQUEST ABOUT PHOTO ON DISTRIBUTED DEVICES 

Measures 
Method execution time 

First time Mean time Standard deviation 

Client request 164.621 ms 158.921 ms 605.233 µs 

In the meantime, we have additional information on it: 

deltas: -41.115 µs,+51.261 µs). 

For the standard deviation execution time, we have the 

info: deltas: -103.523 µs, +112.561 µs 

VI. ANALYSIS 

The first time that RegistrationTask instance was 
called, it took 112.901 milliseconds to execute. A point 
estimate for the mean of the execution time is 108.501 
milliseconds. The 95% confidence interval for the mean is 
about -35/+46 microseconds, which is relatively narrow, so 
the mean is known with confidence. 

A point estimate for the standard deviation of the 
execution time is 725.510 microseconds. The 95% 
confidence interval for the standard deviation is about -
161/+361 microseconds about the point estimate, namely 
[235.389, 1086.51] μs, which is relatively wide, so the 
deviation is known with much less confidence. In fact, the 
warning at the end says that the standard deviation was not 
accurately measured. The result also warns about the 
outliers. They are no significant in this case because the 
scenarios contain network connections. This involves 
blockings and time consuming only for negotiation between 
mobile devices and business server. 

In the case of the data collection, the first time that 

DataCollectionTask instance was called, it took 
225.910 milliseconds to execute. A point estimate for the 
mean of the execution time is 220.050 microseconds. The 
95% confidence interval for the mean is approximately -
31/+42 microseconds, which is relatively narrow too, so the 
mean is known with confidence. 

We guess the standard deviation of the execution time is 
555.004 microseconds. The 95% confidence interval for the 
standard deviation is about -124/+302 microseconds about 
the point estimate, namely [430.964, 857.092] μs, which is 
less wide than the previous case. So deviation is known with 
much confidence. In fact, the warning at the end notes that 
the standard deviation comes from the size of data which is 
collected. The result also warns about the variability in the 
measurement. The latter is sometimes excluded from the data 
set. 

The last case is about request treatment. The first time 

that ClientRequest instance was called, it took 164.621 
milliseconds to execute. A point estimate for the mean of the 
execution time is 158.921 microseconds. The 95% 
confidence interval for the mean is approximately -41/+51 
microseconds, which is relatively narrow too, so the mean is 
known with confidence. 

Then, we guess the standard deviation of the execution 
time is 605.233 microseconds. The 95% confidence interval 
for the standard deviation is about -103/+112 microseconds 
about the point estimate, namely [501.71, 717.794] μs, which 
is relatively few. So, it is known with confidence. In fact, the 
warning at the end notes that the standard deviation comes 
from the number of requests which are received by the Web 
application. The result also indicates an experimental error 
because of the latency of the network. When we compute 
other measures on a sample with a bigger volume of 

360Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



requests, then this overhead time is hidden or recovered by 
the computation of the answers. 

VII. CONCLUSION 

We have presented in this document our approach to the 
design (D), the implementation (I) and the evaluation (E) of 
mobile applications based on services. It was shown that 
there are two families of services: some of them are local and 
the others are called from outside the mobile platform. Our 
Design is based on the use of UML diagrams and stereotypes 
to identify interfaces and the locality. 

The Implementation is based on Java programming and 
the use of frameworks such as Restlet and Android. We have 
shown how to refine he diagrams towards a more technical 
description. A designer can sketch his applications with the 
use of local or remote services. 

The Evaluation is also described by interaction diagrams 
which will become a test suite. We have built a case study 
based on our approach. It highlights all kinds of services 
(local and remote). So, interoperability is insured by the use 
of XML messages. 

To sum up, our approach, called D.I.E. validates our 
design choice. Our experiments highlight the use of mobile 
devices as mobile data tier. As the number of embedded 
devices increases, our prototype shows that our software 
protocol supplies a way to exploit data on mobile devices 
without big data transfers. 

REFERENCES 

 
[1] J. N. Herder, H. Bos, B. Gras, Ph. Homburg, and A.S. 

Tanenbaum: Reorganizing UNIX for Reliability. “Asia-Pacific 
Computer Systems Architecture Conference”, 2006, pp. 81-94 

[2] M. Gould, M.A. Bernabé, C. Granell, P.R. Muro-Medrano, 
and J. Nogueras, Reverse engineering SDI: Standards based 
Components for Prototyping, “8th EC-GI & GIS Workshop ESDI” - 
A Work in Progress Dublin, Ireland July. 2002. pp. 3-5 

[3] S.U. Khan, A.Y. Zomaya, and L.Wang, “Scalable Computing 
and Communications”: Theory and Practice, Wiley-IEEE Computer 
Society Press. January 2013, 

[4] T. Erl. Service-oriented architecture: concepts, technology, 
and design. Pearson Education India, 2005. 

[5] J. Rumbaugh, J. Ivar, and B. Grady. Unified Modeling 
Language Reference Manual, The. Pearson Higher Education, 
2004.  

[6] M. Randles, D. Lamb, A. Taleb-Bendiab : A Comparative 
Study into Distributed Load Balancing Algorithms for Cloud 
Computing, : Proceedings of the 2010 IEEE “24th 
International Conference on Advanced Information 
Networking and Applications Workshops”, WAINA '10, 
IEEE Computer Society, Washington, DC, USA, pp. 551-556. 

[7] S. Th• one, R. Depke, and G. Engels. Process-Oriented, 
Flexible Composition of Web Services with UML: “ 
Advanced Conceptual Modeling Techniques”. pp. 390-401. 
SpringerLink, October 2003. 

[8] Models, Object. "Object Management Group." Draft 0.3, 
January 12 (1995). 

[9] Alliance, OSGi. Osgi service platform, release 3. IOS Press, 
Inc., 2003. 

[10] P. Kriens, "OSGi Service Platform, Enterprise Specification", 
Version 4.2, aQute publisher, ISBN 978-90-79350-06-3. 

[11] J. Siegel. CORBA 3 fundamentals and programming. Vol. 2. 
Chichester: John Wiley & Sons, 2000. 

[12] N. B. Jay. Remote procedure call. No. CSL-81-9. Carnegie-
Mellon Univ. Dept. Comput. Sci., 1981. 

[13] M. Gunnar, et al. "Simple object access protocol." U.S. Patent 
No. 6,457,066. 24 Sep. 2002. 

[14] C. Erik, F. Curbera, G. Meredith, S. Weerawarana. "Web 
services description language (WSDL). 2001. pp. 1-1. 

[15] K. Rohit, and R. N. Taylor. "Extending the representational 
state transfer (rest) architectural style for decentralized 
systems." Software Engineering, 2004. ICSE 2004. 
Proceedings. 26th International Conference on. IEEE, 2004. 

[16] K. Charitha. Web services testing with soapUI. Packt 
Publishing Ltd, 2012. 

[17] B. Boyer, “Robust Java benchmarking: Introducing a ready-
to-run software benchmarking framework”, Programmer 
Elliptic Group, Inc, IBM Red book 

 

 

 

361Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances


