
ARTIST Technical Feasibility Tool: Supporting the Early Technical Feasibility

Assessment of Application Cloudifications

An approach for estimating the complexity of a cloudification project in a pre-modernization stage

Juncal Alonso Ibarra, Leire Orue-Echevarria, Zurik

Corera Seoane

ICT-European Software Institute Division,

Tecnalia

Zamudio, Spain

 juncal.alonso@tecnalia.com, leire.orue-

echevarria@tecnalia.com, zurik.corera@tecnalia.com

Jesus Gorroñogoitia, Burak Karaboga

Atos Research & Innovation

Madrid, Spain

jesus.gorronogoitia@atos.net, burak.karaboga@atos.net

Abstract— Modernizing an IT system is a long, complex

journey. The pre-migration phase is the starting point of each

migration project where the decision to transform the legacy

rather than to rewrite it has to be taken. In order to support

this decision making, the ARTIST European project [1]

proposes a technical feasibility analysis to as much technical

information as possible about the legacy application itself and

about the required technical tasks to migrate its components.

This paper presents a technical feasibility analysis which relies

on Cloud Migration Point approach to estimate the cost of the

migration (in terms of required effort) and incorporates

techniques such as Model Driven Reverse Engineering,

software complexity metrics or Domain Specific Language-

based heuristics to automate this process as much as possible,

although leaving to the user the knowledge and control all over

the entire process
Keywords-Software modernization, technical feasibility,

software complexity, cloud computing, migration strategy.

I. INTRODUCTION

Prior to facing a challenging project such as a software
migration one, which may involve not only changing the
way companies will deliver their software but also, probably,
their business model and organizational processes, software
vendors need to analyse if what they want to achieve, is
actually feasible for them in terms of technology, processes
and business.

This paper presents an approach for a technical feasibility
analysis of a migration of an application to the cloud. The
main aim of this analysis is twofold. On one hand, support
the establishment of the most suitable migration tasks and
on the other hand, provide an estimation of the required
effort to implement these migration tasks with the final goal
of supporting the decision making process prior to a
modernization project.

II. MOTIVATION

Research literature and real industrial migration projects
have documented several general procedures to estimate the
cost and efforts required by a migration process, and
therefore deciding on its feasibility.

Both analogy based estimation [2], that is, by comparing
current migration project with other undergone migration

projects and estimation given by experts’ judgment [3] uses
the knowledge in previous similar migration experiences,
gained by experts to evaluate and estimate the complexity
and efforts to undertake a new migration mission.
Unfortunately, these approaches cannot be applied to
migration project towards the Cloud, since the Cloud
paradigm adoption is relatively recent, whereby the number
of documented migration projects of legacy software to the
Cloud is scarce [6, 7].

The most popular estimation approach is based on
algorithmic models [4] that propose mathematical models to
derive a quantitative estimation of migration costs based on
identified costs factors. Although this approach also requires
historical data in order to evaluate some parameters
introduced by the mathematical models (i.e. weights in the
model), its applicability is more generic than previous
approaches, and therefore more suitable for a wider range of
migration projects.

In order to estimate software development costs using
metrics for software size measurement, some algorithmic
methods based on Function Point Analysis (FPA) [5] have
been proposed in literature. The FPA cost estimation is based
on the analysis of software requirements.

FPA-based approaches can be more appropriate to
estimate the complexity and provide effort/cost estimations
(by historical data comparison) of migration tasks. In
particular, FPA function points, in the context of a migration
to Cloud project, can be mapped into migration tasks [6].
The systematic estimation of efforts required to migrate a
legacy application into the Cloud has received less attention
in the research community, notably because the migration to
Cloud is a relative new concern. Up to our knowledge, only
one work has proposed a systematic methodology for effort
estimation of Cloud migration projects, namely Cloud
Migration Point (CMP) [7], an adaptation of the FPA
approach for software size estimation applied to the context
of Cloud migration.

Complementing FPA-based approaches, there exist
others based on software size estimation, including software
complexity estimations. However, these methods can hardly
be used on their own when wishing to estimate the size and
complexity of the developments required migrating a legacy

390Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

application to the Cloud [8], because they do not offer
enough information. Nonetheless, software size/complexity
estimations on components of existing software systems can
be used to classify the complexity of migrations tasks
performed on these components, by comparing computed
complexity metrics with historical data [9]. In particular,
coupling metrics seems to help in the re-factoring of
subsystems in an effective way to achieve the lower cost and
high re-usability [10], which are factors to take into account
when migrating to Cloud.

III. ARTIST APPROACH FOR TECHNICAL FEASIBILITY

ASSESSMENT

A. Mission and scope

The ARTIST Technical Feasibility Tool (TFT) aims at
supporting users on the early technical assessment of the
migration of their applications to the Cloud. At this early
stage (e.g. pre-migration phase in ARTIST Methodology
[11]), the users need support to evaluate the feasibility of the
migration, attending its technical aspects, since even for a
very simple application, its migration to the Cloud may
require non negligible efforts and concrete expertise to be
accomplished. Moreover, the support for decision making
requires a detailed breakdown of the migration process into a
set of technical tasks, not only to estimate their required
efforts, but also to identify other resources needed to
accomplish every task, including the selection of the
appropriate technical expertise or even the detection of
dependencies among tasks or other technical intricacies.

B. Functional description

TFT works on Model Driven Engineering (MDE)

representations (e.g. models) of the applications, particularly

UML component models, offering to the users the following

features:

 Visualization of components or features of the

legacy application and the selection of those to be

affected by the migration.

 Visualization of migration goals, which ultimately

will drive the migration process. Migration goals

can be obtained from the Cloud maturity

assessment obtained through the ARTIST Maturity

Assessment Tool (MAT) [12] or expressed by the

user using the ARTIST Goal Modeling Editor [13].

 Identification of the required migration tasks on

affected components. TFT suggests migration tasks

per component. TFT allows users to confirm these

tasks (optionally, TFT tries to select some tasks by

default, but the user is able to override this

selection anytime).Selection of weighted

complexity estimations for every task type from

expert judgment figures, initially taken from [7].

These figures provide task complexity weights

estimated by experts based on accumulate

experiences.

 Computation of complexity estimations for every

component, calculating some metrics, in particular

those metrics that estimate their maintainability.

 Computation of complexity estimations for a single

task, as a function that considers both the

complexity of the component affected by the task

and task complexity itself

 Computation of effort estimations for a single task,

as proportional to the computed task complexity,

where the proportionality weight is given by expert

judgment.

 Computation of global migration effort, by

summing over individual migration task, for each

migrated component.

C. Technical approach

Our implementation of TFT extends the CMP approach
by automating some steps, using techniques explored by
ARTIST such as Model Driven Reverse Engineering
(MDRE), Software Metrics or Domain Specific Language
(DSL)-based heuristics, notably to extract knowledge of the
application, propose migration strategies and estimate the
component complexity. CMP based computation of
migration efforts is mostly conducted manually. On the
contrary TFT is aiming to automate this process as much as
possible, although leaving to the user the knowledge and
control all over the entire process.

TFT approach to estimate the cost of the migration is
based on the analysis of the migration requirements.
Therefore, the specification of the overall objectives of the
migration, that is, the migration goals, combined with the
component-specific migration requirements and the
preliminary Cloud target selection are inputs that will drive
the TFT analysis. TFT leverages on high level model
representations of the application, from which TFT
elaborates a detailed breakdown analysis into components or
features and creates a detailed structural breakdown of the
migration process per legacy component. For such, TFT
extracts legacy components from the high level model
representations of the application, analyses their
relationships and dependencies, determines their type (i.e.
data sources, data entities, distributable services, controllers,
views, etc.), estimates their complexity and maintainability
(and possibly other metrics), and finally reports all these
findings to the user in a component inventory view. TFT
uses sources of domain-specific information, like expert
judgment, to define heuristics that are used to infer the most
appropriate migration strategies. These strategies are
instantiated as migration tasks, for each component selected
for migration, aiming at fulfilling the overall migration goals
and the specific component migration requirements,
addressing the Cloud target selection as well. TFT encodes
these heuristics, used for task suggestion, in rules defined
with a concrete domain specific language (DSL), in
particular, tha JBoss Drools [14] DSL and engine is used.,
This approach avoids hardcoding expert judgment on TFT
code implementation, which provides greater flexibility to
extend the TFT knowledge in the future.

391Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

IV. TECHNICAL FEASIBILITY TOOL: DESIGN AND

IMPLEMENTATION

A. General architecture

In Fig.1 the general architecture of the Technical
feasibility Tool is depicted, and explained in section B.

Figure 1. TFT general architecture

B. TFT components in detail

TFT consists of a set of Eclipse views and other widgets
and wizards, a set of backend components and a set of
external dependencies with other ARTIST components and
tools, accessed through well-defined interfaces.

TFT UI complements the ARTIST Eclipse perspective
with its collection of views on which the functionality of
TFT is offered to the user:

 Navigator view: to browse and select existing

legacy application projects

 Modelling view: to browse and annotate platform

specific/platform independent models (PSM/PIM)

component views provided by the ARTIST Model

Understanding Tool (MUT) [15].

 Annotation View, provided by the ARTIST Target

Specification Tool (TST) [15], which collects

existing migration goals/requirements and provides

support to annotate the existing legacy models in

order to express additional migration goals.

 Inventory of components View: this TFT view

collects the components from the component

model and suggests migration strategies for each of

them. The estimation of efforts for these migration

strategies are also calculated and are shown to the

user in a range of low, average and high for each

migration strategy. The view allows modifying the

migration strategies that affect them from a list of

compatible strategies depending on the

components’ properties. This view also allows the

user to select/deselect components to be considered

to be migrated or not.

 Migration Goals View: allows user to browse and

enable/disable the migration goals provided by

MAT.

 Metrics view: this view allows selecting the

metrics to be calculated for a selected component

and displays the metrics figures.

 Effort estimation report view: this view reports the

estimated effort for the overall migration project

and individual migration tasks.

The TFT-UI makes use of these views, which are heavily

dependent on RCP components such as Standard Widget

Toolkit and JFace. Eclipse Workbench components are also

used to make contributions to the Eclipse UI itself. TFT

contributes to context menus of files with “uml” and “di”

extensions and Papyrus [16] containers, with actions to open

the Inventory View, and to context menus of files with XML

extension to open the Migration Goals View. The TFT

plugin also adds a listener to the opened component diagram

files which listens the changes done to the file via using

EMF/UML2 [17] or Papyrus editors.

TFT relies on several backend components to provide

business logic support to TFT-UI.

 Components Detection component: It analyzes

high level EMF Ecore UML2 PSM/PIM

component models of the selected legacy

application. The component uses EMF-Query to

filter and EMF-Core and UML2 to analyse and

modify the input model.

 Software Complexity component which computes

a set of metrics on selected components. This

component is explained in detail in the next

section.

 Migration Strategy Suggestion component: It is

responsible for analysing the components of the

non-cloud compatible application and the

relationships between them and suggesting certain

migration strategies for each component to assist

the user in the pre-migration process. Strategy

suggestion process relies on a set of Drools rule

defined in a DSL-based rule language which is

interpreted by JBoss Drools. The strategy

suggestion process is handled by the rule engine

which is implemented using JBoss Drools

 Effort Estimation component: This component

estimates the effort required to accomplish each

required migration strategy suggested. The effort

calculation is based on the migration strategy

complexity and the complexity of the affected

component(s). Strategy complexity is calculated

using historical data and the expert knowledge

encoded in the DSL based rules. Component

complexity is provided by the Software

Complexity Component. The final effort metric

values are also based on expert knowledge

combined with the complexity metrics.

392Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 TFT Repository: This component stores historical

data and heuristics required to estimate efforts.

1) Software Complexity Component

In order to evaluate the effort required to perform a

migration task, TFT analyses several parameters as
explained above in the paper. One of these parameters is the
complexity related to the legacy software.

The estimation of the complexity of the legacy software
is performed, by the Software Complexity Component
(SCC). It provides information about how complex the
legacy software is in terms of easiness to evolve it to the
Cloud paradigm. This information is provided by means of
software complexity metrics.

Software complexity has been defined and calculated in a
vast variety of ways in the last years. Upon closer
examination, these are some several commonly used metrics:

 McCabe Cyclomatic Complexity (v(G)) [18]

 Weighted Methods per Class (WMC) [19]

 Afferent Coupling (Ca) [20]

 Efferent Coupling (Ce) [20]

 Instability (I= Ce / (Ca + Ce)) [21]

 Number of Interfaces [21]
The correlation of these metrics is of highly importance,

as a variation in one of them has an impact on the others.
Literature has studied this correlation mainly for
maintainability concerns which is defined by IEEE standard
glossary of Software Engineering [22] as “the ease with
which a software system or component can be modified to
correct faults, improve performance or other attributes, or
adapt to a changed environment”.

The Compound MEMOOD method presented in [23],
based on the MEMOOD model [24], creates a
maintainability model based on the creation of 4 models: 1)
Modifiability, 2) Understandability, 3) Scalability, 4) Level
of complexity. Each of these models is based on metrics
extracted from the source code and the class diagrams.
SCC uses the models cited beforehand in order to calculate

the software maintainability index, the metric that ARTIST

will use to measure the complexity of the legacy code.
These models use several metrics to calculate

maintainability as the way to calculate the complexity. In the
context of ARTIST project where the feasibility for a
migration to cloud is being evaluated, the maintainability
metric (as defined by IEEE) for calculating the software
complexity will be used:

Maintenance = 2.399 + 0.493 × Modifiability + 0.474 ×

Understability + 0.524 × Scalability + 0.507*LOC

Modifiability = 0.629 + 0.471 × NC - 0.173 × NGen -

0.616 × NAggH - 0.696 × NGenH + 0.396 × MaxDIT

Understability=1.66+0.256×NC-0.394×NGenH

Scalability=0.182×0.99×AC+0.100×EC+0.097×ND-

0.036×PC+0.068×DMS

LOC= 0.269+0.008 × Coupling + 0.181×cohesion +

0.119×CC + 0.084×ILCC

The required metrics to perform these models are described

in [25].
The aforementioned models have been predicted using

data from several sources [26] using the multivariate linear
model. However the correctness and fine-tuning of the
formulas have to be updated to the context of ARTIST use
cases.

There are several tools available in the Open Source
community that offers some of the functionalities required by
SCC. A first criterion to select the list of potential candidates
to be re-used has been their availability as Eclipse plugin (as
the basis technology of TFT and the majority of ARTIST
tools), support to Java and C# and finally the availability of
the source code. Following these criteria, three existing plug-
ins where analyzed in detail, Metrics [27], Sonar [28] and
CodeProAnlytix [29].

After a deep analysis of these tools, all of them have been
discarded as they do not accomplish the requirements for the
ARTIST project, rejecting also a possible adaptation of them
for platform compatibility reasons.

The current SCC prototype architecture is a java API that
explores source files and UML models to generate several
metrics of a specific project. It comprises three sub-
components:

 Metric Explorer: This is the main component of

SCC current prototype. It provides the calculation

of all the required metrics that are used to generate

the new ARTIST metrics. Besides, it also provides

exporting features to convenient formats like XML

or JSON.

 Structures: This component contains the structures

of the inputs and outputs models that the Metric

Explorer uses. It also provides the functionality for

generating the output file formats (XML, JSON).

 Test Cases: This component is provided for testing

purposes. It generates several use cases that test the

functionality of the SCC generating console logs

and XML files with the results.

C. TFT validation

The first validation of all the components of the TFT has
been performed executing in parallel:

1. The TFT comprising the TFT-UI, component

detection component, strategy suggestion

component, effort estimation component and TFT

repository (see Fig. 3)

2. The Software Complexity Component, which

calculates the maintainability index and other

required metrics per component. (see Fig 2)
The component models of the Java version of the

Petstore [30] application and two ARTIST use cases, Line of
Business (LoB) [31] and Distant Early Warning System

393Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

(DEWS) [31] were used as sample inputs for TFT and SCC.
Petstore is a multi-tier J2EE application, a B2C Web portal
that displays a Pet catalog and support basic commerce. LoB
is a .NET solution over Microsoft Sharepoint [32] for
collaborative business process modeling. DEWS offers a
complex SOA-based system (including desktop end-user
command and control UIs) enabling the early detection and
warning broadcasting of tsunami threats.

 The component model of Petstore and DEWS were
obtained using semi-automatic MDRE techniques, but the
component model of LoB was created by hand. The MDRE
process followed to obtain these models was as follows.
Using Modisco [33], we obtained PSMs from the legacy
code. These models were abstracted to a PIM level using a
search-based model exploration approach [34], using either
ATL [35] query and INC-Querying [36] techniques,
combined with UML profiling [37] and slicing methods [38].
A further ATL M2M transformation generated a UML
component model from the UML stereotyped classes
existing in the PIM, aggregating similarly stereotyped classes
within the same containment (i.e. package) to constitute
components.

Two sample MAT reports were used (one for each
platform) as the second input of TFT. TFT was fed with the
MAT report and the component model of the legacy
application in order to identify suggested migration strategies
for each component of the application and compute the effort
estimations for these strategies. TFT triggered its expert
knowledge base (encoded as a set of rules) to suggest and
select migration strategies for each component located in the
input model. The migration complexity reported by TFT is
the average of the complexity of selected strategies
(information encoded in the TFT expert knowledge base as
well). The estimated migration efforts are computed by TFT
following a similar FP analysis conducted in [7] as the sum
of efforts computed for each strategy selected for each
component.

TFT was successful to deliver meaningful results in both
migration suggestions and effort computations. In order to
improve the quality of the suggestions, a deeper analysis on
the components and its complexity metrics is required which
is achievable by creating more complex rule definitions. The
migration effort computation may be enhanced by increasing
the number of evaluated applications thus enlarging the
historical data.

In Fig. 2 and 3 the results for DEWS use case are shown:
 ****** Maintenance
Component: org.aspencloud.widgets Maintenance: 2.6357682
Component: org.aspencloud.widgets.cdatepicker Maintenance:
2.652078
Component: org.aspencloud.widgets.cnumpad Maintenance:
2.6818948
Component: org.aspencloud.widgets.snippets Maintenance:
2.7467294
Component: org.dews_online.ccui Maintenance: 2.5707283
Component: org.dews_online.ccui.control.jobs Maintenance:
2.590284
Component: org.dews_online.ccui.splashHandlers Maintenance:
2.6118982
Component: org.dews_online.ccui.profiles.actions Maintenance:

Figure 2. SCC console log for DEWS (Maintainability metric)

Figure 3 TFT Inventory View showing migration suggestions and efforts

for DEWS

V. CONCLUSIONS

This paper presents a systematic approach that enables an
early estimation of the complexity and the efforts required
for the migration of existing applications to a Cloud
provider. This approach combines traditional FPA
techniques for migration task decomposition and effort
estimation with others such as a) model-driven reverse
engineering and model comprehension techniques to capture
information about application components, b) expert
judgment (for task suggestion and complexity estimation)
implemented as a knowledge base of domain specific
heuristics and c) complexity estimation (i.e. software
maintainability) using an empirical combination of
computable metrics. A prototypical implementation of this
approach, available as an Eclipse plugin, has been described.
Preliminary evaluation of the approach and tooling support
has been conducted in an early evaluation of some case
studies. This have enabled us to increase the TFT knowledge
base of rules suggesting migration tasks and estimating their
complexity, relying on the migration experiences gained
through these cases. Nonetheless, the lack of reported
experiences about migrating to Cloud has constrained our
knowledge base to the expert judgment acquired in these few
experiments and the effort figures reported on [6].
Nonetheless, the TFT decoupling between its knowledge
base and its implementations eases the extension of the
knowledge base as soon as new insights are gathered in other
validation experiments. Foreseen future work, in the short
term, includes: a) the integration of computed SCC metrics,
in the computation of migration task efforts using empirical
formulas that combines component maintainability with task
complexity, b) the extension of TFT knowledge base to
incorporate additional expert judgment heuristics to suggest
additional Cloud optimization patterns, c) adjustment of the
TFT effort figures collecting experimental data from
ARTIST migration case studies.

VI. ACKNOWLEDGMENT

This work has been supported by the ARTIST Project
and has been partly funded by the European Commission
under the Seventh (FP7 - 2007-2013) Framework
Programme for Research and Technological Development,
grant no. 317859.

394Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

VII. REFERENCES

[1] ARTIST project “Advance software based service
provisioning and migration of legacy Software”,
http://www.artist-project.eu/ [retrieved: July, 2014].

[2] M. Shepperd,C. Schofield, “Estimating software project
effort using analogies”, IEEE Transactions on Software
Engineering, vol. 23, no. 11, Nov. 1997, pp. 736-743.

[3] M. Jorgensen, “A review of studies on expert estimation
of software development effort”, Journal of Systems and
Software, vol. 70, no. 1-2, 2004, pp. 37-60.

[4] M. Jorgensen and M. Shepperd, “A systematic review of
software development cost estimation studies”, IEEE
Transactions on Software Engineering, vol. 33, no. 1,
January 2007. pp. 33-53.

[5] A. Albrecht, J. Gaffney, “Software function, source lines
of code, and development effort prediction: A software
science validation”, IEEE Transactions on Software
Engineering, vol. 9, 1983, pp. 639-648.

[6] V. Tran, JW. Keung, A. Liu, A. Fekete. “Application
Migration to Cloud: A Taxonomy of Critical Factors”.
SECLOUD 2011 Software Engineering For Cloud
Computing Workshop, 2011, pp. 22-28.

[7] V. Tran, JW. Keung, A. Liu, A. Fekete .“Size Estimation
of Cloud Migration Projects with Cloud Migration Point
(CMP)”, Proceedings of International Symposium on
Empirical Software Engineering and Measurement
(ESEM'11), Banff, Canada, September 2011, pp. 265-274.

[8] B. Touesnard, “Software Cost Estimation: SLOC-based
Models and the Function Points Model”. Version 1.1,
2004.

[9] H. Najadat, I., Alsmadi,Y., Shboul. “Predicting Software
Projects Cost Estimation Based on Mining Historical
Data”, ISRN Software Engineering Volume 2012.

[10] H.Ramakrishnan, "Analysis of complexity and coupling
metrics of subsystems in large scale software systems",
M. S Thesis 2006.

[11] ARTIST Consortium “D6.2.1 ARTIST Methodology”
http://www.artist-
project.eu/sites/default/files/D6.2.1_ARTISTMethodolog
y_M12_30092013.pdf [retrieved: July, 2014].

[12] ARTIST Consortium “Business and Technical
Modernization assessment tool M12”, http://www.artist-
project.eu/sites/default/files/D5.2.1Businessand Technical
Modernizationassessmenttool_M12_30092013.pdf,
[retrieved: July, 2014].

[13] ARTIST Consortium “Methodology and Environment for
evaluating migration success”, http://www.artist-
project.eu/sites/default/files/D11.3.1 Methodology and
Environment for evaluating migration success
M8_31052013.pdf [retrieved: July, 2014].

[14] JBoss Drools, http://www.jboss.org/drools/ [retrieved:
July, 2014].

[15] ARTIST consortium, “ARTIST Integrated Architecture
M15.

[16] Papyrus, http://www.eclipse.org/papyrus/, [retrieved:
July, 2014].

[17] EMF /UML2
http://www.eclipse.org/modeling/mdt/?project=uml2
[retrieved: July, 2014].

[18] McCabe (1976). "A Complexity Measure”. IEEE
Transactions on Software Engineering
http://www.literateprogramming.com/mccabe.pdf,
[retrieved: July, 2014].

[19] http://metrics.sourceforge.net/ [retrieved: July, 2014].

[20] R. Martin. “OO Design Quality Metrics: An Analysis of
dependencies”. Workshop Pragmatic and Theoretical
Directions in Object-Oriented Software Metrics.
http://www.cin.ufpe.br/~alt/mestrado/oodmetrc.pdf.
[retrieved: July, 2014].

[21] Instability
http://en.wikipedia.org/wiki/Software_package_metrics,
[retrieved: July, 2014]

[22] IEEE (1990). “IEEE Std 610.12-1990 - IEEE Standard
Glossary of Software Engineering Terminology”.

[23] Ch. Gautam,, S. Kang, “Comparison and implementation
of software maintenance models”. International Journal of
Engineering Research & Technology (IJERT), Vol. 1
Issue 6, August 2012.

[24] S.W.A. Rizvi, R.A. Khan, “Maintainability Estimation
Model for Object Oriented Software in Design Phase
(MEMOOD)”. Journal of Computing. Volume 2, Issue 4,
April 2010

[25] M. Genero, M. Patiani, C. Calero, (2005)“A Survey of
Metrics for UML Class Diagrams” Journal of Object
Technology
http://www.jot.fm/issues/issue_2005_11/article1/article1.
pdf [retrieved: July, 2014]

[26] S. Muthanna, K. Kontogiannis, K. Ponnambalam, B.
Stacey, “A maintainability model for industrial software
systems using design level metrics”. Published in IEEE
Proceedings Seventh Working Conference on Reverse
Engineering, pp.248-256, 2000.

[27] http://sourceforge.net/projects/metrics2/ [retrieved: July,
2014].

[28] http://docs.codehaus.org/display/SONAR/Using+Sonar+i
n+Eclipse [retrieved: July, 2014].

[29] https://developers.google.com/java-dev-
tools/codepro/doc/ [retrieved: July, 2014]

[30] Java PetStore http://www.mia-
software.com/html/miaStudio/download/modisco/exampl
es/javapetstore-2.0-ea5.zip [retrieved: July, 2014]

[31] ARTIST Consortium “Use cases definition and migration
architecture” (2012) http://www.artist-
project.eu/sites/default/files/D12.1 Use Cases definition
and migration architecture_M12_01102013.pdf
[retrieved: July, 2014]

[32] Microsoft Sharepoint: http://office.microsoft.com/en-
001/sharepoint/ [retrieved: July, 2014]

[33] H. Brunelière, J. Cabot, G. Dupé, F. Madiot. MoDisco: a
Model Driven Reverse Engineering
Framework.Information and Software Technology 56, 8
,2014, pp.1012-1032

[34] P. Baker , M. Harman , K. Steinhofel , A. Skaliotis,
Search Based Approaches to Component Selection and
Prioritization for the Next Release Problem, Proceedings
of the 22nd IEEE International Conference on Software
Maintenance, p.176-185, September 24-27,

[35] F., Jouault, and I. Kurtev,:On the Architectural Alignment
of ATL and QVT. In: Proceedings of ACM Symposium
on Applied Computing (SAC 06), Model Transformation
Track. Dijon (Bourgogne, FRA), April 2006 [retrieved:
July, 2014]

[36] INC-Query, http://www.eclipse.org/incquery/

[37] J. Cabot, C. Gómez. A simple yet useful approach to
implementing UML Profiles in current CASE tools. In
Workshop in Software Model Engineering, 2003.

[38] A., Blouin, B., Combemale, B., Baudry, O., Beaudoux.
“Modeling Model Slicers”. Model Driven Engineering
Languages and Systems. Lecture Notes in Computer
Science Volume 6981, 2011, pp 62-76

395Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://www.artist-project.eu/sites/default/files/D5.2.1Businessand%20Technical%20Modernizationassessmenttool_M12_30092013.pdf
http://www.artist-project.eu/sites/default/files/D5.2.1Businessand%20Technical%20Modernizationassessmenttool_M12_30092013.pdf
http://www.artist-project.eu/sites/default/files/D5.2.1Businessand%20Technical%20Modernizationassessmenttool_M12_30092013.pdf
http://office.microsoft.com/en-001/sharepoint/
http://office.microsoft.com/en-001/sharepoint/

